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Abstract 

Additive manufacturing (AM), defined as a process of joining materials to make parts 

from three dimensional (3D) model data, usually layer upon layer, as opposed to 

subtractive and formative manufacturing methodologies, has been recognized globally 

as a group of revolutionary near-net-shape or net-shape fabrication technologies. AM 

offers advantages of more freedom in design, lower buy-to-fly ratio and shorter lead 

times. Selective electron beam melting (SEBM) is a powder-bed-fusion-based AM 

process, developed by Arcam AB in Sweden in 2002, which offers high energy 

efficiency and power density, rapid scan speed and unique capability of manufacturing 

high reactive metals such as titanium (Ti) due to the vacuum build chamber involved. 

Although much research has been devoted to the SEBM of Ti alloys, particularly Ti-

6Al-4V, current understanding of the mechanical performance of SEBM-fabricated Ti 

components is still limited in a number of aspects. This thesis aims at enhancing the 

current understanding of the AM process of Ti and Ti alloys by SEBM in the following 

four aspects.  

 Manipulation and characterization of a novel Ti powder precursor for SEBM 

applications 

A low-cost novel Ti powder precursor (sponge Ti particles) has been manipulated using 

a proprietary powder manipulation technology (PMT) in order to produce a low-cost, 

nearly spherical Ti powder for SEBM applications. Research has shown that the PMT 

is capable of producing more than 50 wt.% of nearly spherical Ti powder in the size 

range of 45–106 μm (usable for SEBM) and about 30 wt.% of less than 45 μm of nearly 

spherical powder (usable for AM by cold spray processes). PMT-processed Ti powder 

with a size range of 75–106 μm exhibited similar flowability and spreadability to those 

of recycled Arcam Ti-6Al-4V powder when assessed in an external Arcam powder bed 

evaluation system. Cubic samples were built with the PMT-processed Ti powder using 

an Arcam A1 SEBM system under different SEBM parameters. The resulting density, 

surface conditions and microstructures of the as-built samples were investigated. It was 

concluded that through appropriate modification of the SEBM parameters in 

conjunction with the use of suitable melt strategies, it is feasible to produce quality 

samples with the newly developed low-cost nearly spherical Ti powder. This research 

demonstrates the potential of developing low-cost feedstock powder for AM by SEBM. 
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 Positional dependence of microstructure and tensile properties of a thick Ti-

6Al-4V block additively manufactured by SEBM 

Limited information exists in the open literature about the microstructure and 

mechanical properties of SEBM-fabricated thick-section (≥25.4 mm) Ti-6Al-4V 

samples or parts, while thick sections are involved in many components for structural 

applications. A systematic study has been made of the positional dependence of the 

microstructure and tensile properties of a 34mm-thick Ti-6Al-4V block additively 

manufactured by SEBM. Marginally graded microstructures were observed along the 

build direction and from the side surface to the centre. Abnormally coarse α laths, thick 

and tortuous grain boundary α phase, and massive α phase transformation products  

were observed. To assess the tensile properties, a total of 27 tensile samples were 

prepared from nine different heights of the block sample, and all samples satisfied the 

minimum requirements for mill-annealed Ti-6Al-4V, irrespective of their positions in 

the thick block. This conclusion demonstrates the capabilities of SEBM in producing 

quality thick-section Ti-6Al-4V components. A range of other revealing observations 

were documented and discussed.   

 The influence of as-built surface conditions and hot isostatic pressing (HIP) on 

tensile and fatigue properties of SEBM Ti-6Al-4V  

Achieving a high surface finish is a major challenge for most current metal AM 

processes. A quantitative study has been made of the influence of as-built surface 

conditions on the tensile and fatigue properties of Ti-6Al-4V produced by SEBM as 

compared to acid-etched and machined conditions. The experimental results indicate 

that chemical etching can double tensile elongation and noticeably improve tensile 

strengths due to improved surface finish. However, the fatigue strength remained to be 

much inferior to that of mill-annealed Ti-6Al-4V due to residual surface defects. 

Consequently, it remains challenging to modify the as-built surfaces of SEBM-

fabricated components for fatigue-critical structural applications, particularly for those 

components which contain deep and narrow internal channels and complex concave 

and convex surfaces. 

HIP was employed to enhance the fatigue properties of SEBM-fabricated Ti-6Al-4V. 

Samples with different surface conditions (as-built, etched, machined and insufficiently 

machined) were subjected to HIP and their fatigue properties were evaluated under 
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  Introduction 

 Background 

Additive manufacturing (AM), defined as a process of joining materials to make parts 

from three dimensional (3D) model data, usually layer upon layer, as opposed to 

subtractive manufacturing and formative manufacturing methodologies as per ASTM 

F2792-12a [1], has transformed from a prototyping technology to a rapid manufacturing 

process over the past decades [2]. AM offers many unprecedented advantages versus 

traditional manufacturing approaches, such as more freedom in design, lower buy-to-

fly ratio and shorter lead time, and has witnessed rapid growth [3]. Recent reviews by 

Qian et al. [4] and by Lewandowski and Seifi [5] classified the various metal AM 

processes into different categories based on energy source, feedstock form and additive 

method. The powder bed fusion branch is distinguished from other ones by its capability 

to fabricate components with overhang surfaces and/or intricate structures as well as 

good surface finish and dimension accuracy [6]. 

Selective electron beam melting (SEBM) commercialized by Arcam AB Company 

belongs to the powder bed fusion branch. Compared to selective laser melting (SLM) 

which operates at room temperature in an inert environment, SEBM proceeds in a high 

temperature powder bed (e.g. 730 oC for Ti-6Al-4V) under vacuum conditions, and is 

particularly suited to fabricating Ti & Ti alloys and other active metal materials. SEBM 

also provides easier scanning control by electromagnetic coil without inertia (vs.  SLM 

controlled by mirror with inertia) [7]. The higher beam energy allows SEBM to use 

coarser powder (~ 180 μm) compared to SLM (~ 50 μm). Furthermore, the high 

temperature powder bed also helps to release the thermal stress accumulated during the 

building process for intermetallic materials like titanium aluminide [8-10].  

In the AM community, AM of Ti alloys, Ti-6Al-4V in particular, has attracted 

tremendous attention due to many reasons: (i) Ti alloys have excellent specific 

mechanical properties, high corrosion resistance and good biocompatibility; (ii) poor 

workability/machinability of Ti alloys and therefore low buy-to-fly ratio by traditional 

subtractive manufacturing make the final cost beyond general acceptance; and (iii) AM 

of Ti alloys offers a lower waste percentage, shorter lead time and less even no need of 

machining [11, 12]. To date, much effort has been made to understand the processing-

microstructure-property relationships of SEBM-fabricated Ti-6Al-4V and the as-built 
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tensile properties are comparable to or better than those of wrought counterpart [13-18]. 

However, before the wider acceptance and application of AM Ti-6Al-4V by SEBM, 

many other unanswered questions need to be addressed, such as applicability of low 

cost Ti alloy powder, the effect of as-built surface conditions on tensile and fatigue 

properties, and detailed microstructural and mechanical features of large bulk 

specimens built by SEBM. This PhD project aims to answer these issues for better 

design and application of SEBM-fabricated parts. 

 Aim and Objectives 

The high cost of AM Ti alloy parts by SEBM or SLM mainly arises from the powder 

manufacturing process besides the Ti metal itself. Currently, liquid gas atomization and 

wire based plasma atomization, each having a high operating cost, are the two major 

technologies in Ti alloy powder industry for AM. To reduce the cost of the final AM 

parts, low-cost spherical Ti powders are needed. AMETEK, Inc. [19], Withers et al. [20] 

and Lu et al. [21] have reported their respective processes. Commonwealth Scientific 

and Industrial Research Organisation (CSIRO), Australia, has also patented its powder 

manipulation technology (PMT), but its applicability for SEBM has not been assessed 

yet. In terms of microstructures and mechanical properties, despite the encouraging 

tensile properties reported to date, the inhomogeneous microstructure resulting from 

the localized solidification and cyclic heating under focused electron beam is not 

desired from a traditional perspective [14, 17, 22, 23]. A study of the spatial variations 

in microstructure and tensile properties of thick block specimen is not reported yet but 

of great importance to the AM community. Another deficiency of the SEBM process is 

the rough surface due to the partially melted powders and staircase effect arising from 

the mismatch between the computer-aided design (CAD) model and slicing strategy. 

The surface roughness Ra can reach 30–68 µm compared to Ra<1 µm for machined 

surfaces [24, 25]. A quantitative understanding of the influence of this surface condition 

on mechanical and fatigue properties is also missing in literature. Although SEBM-

fabricated Ti-6Al-4V is being increasingly adopted by biomedical industry today, a 

detailed assessment of the electrochemical responses of Ti-6Al-4V manufactured by all 

common approaches will contribute to the community with a solid knowledge for better 

application. 
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The main objectives of this thesis include: 

 To characterise the properties of the PMT-processed powder by referring to the 

benchmark Arcam powder; 

 To apply the PMT-processed powder to the SEBM process and characterize the 

microstructures produced with different parameters; 

 To investigate the spatial variations in microstructure and tensile properties of 

a thick Ti-6Al-4V block sample; 

 To quantify the influence of as-built surface conditions on the tensile properties 

and fatigue performance and to assess the effectiveness of chemical etching for 

surface modification; 

 To study the electrochemical responses of Ti-6Al-4V manufactured by different 

processes and correlate them with respective microstructures. 

 Thesis Outline 

This thesis is composed of seven chapters. Chapter 1 concisely states the project 

background and objectives. Chapter 2 describes relevant basic metallurgy of Ti alloys 

and reviews the current methods of Ti alloy powder production and recent 

developments in metal AM. Chapter 3 characterizes the properties of the low-cost 

PMT-processed powder and investigates the influence of process parameters on 

microstructure produced using the PMT-processed powder. Chapter 4 studies the 

microstructure variation in a thick Ti-6Al-4V block sample and the corresponding 

tensile properties. Chapter 5 quantifies the influence of as-built surface conditions on 

mechanical properties and the effectiveness of surface modification by chemical 

etching. Chapter 6 studies the electrochemical responses of seven different types of Ti-

6Al-4V alloy in Hank’s solution for biomedical application. Chapter 7 concludes the 

entire thesis and recommends a range of further research activities. 
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Table 4. MW heating results of Ti-xTiH2 powder compact samples in a cylindrical cavity of 
Φ90mm×60mm with a SiC MW susceptor (see Fig. 1(d)). 

No. 
TiH2 wt.% in Ti-
xTiH2 samples 

Shape of 
sample* 

Mass of 
samples 
(mTi + mTiH2) 

Response  
to MW 

Heating rate 
achieved 
(oC/min) 

26 0 1× Φ20 15g + 0g √ (1325 oC) 34 

27 20 
3× tensile bar, 
1× Φ20 

3×4g 
1.8g + 0.2g 

√ (1200 oC) 38 

28 30 
3× tensile bar, 
1× Φ20 

3×4g 
1.4g +0.6g 

√ (1204 oC) 44 

29 100 
3× tensile bar, 
1× Φ20 

3g×4g 
0g + 2g 

√ (1300oC) 55 

30† 100 
3× tensile bar, 
1× Φ20 

3×4g 
0g + 2g 

√ (1300oC) 45 

Note: *The 20mm diameter disk sample (2 grams) in each experiment was used for temperature 
measurment.  
†A low vacuum of 10-1 Pa was used.  
"√" means successful heating by MW radiation from RT to the temperature given in parentheses.  

 

Fig. 6 Heating curves recorded from experiments Nos. 26-30 by MW hybrid heating. 

Figs. 7 shows the microstructures of Ti samples sintered from 100%TiH2 in a low vacuum of 10-1 
Pa (No. 30 in Table 4) and in a high vacuum of 10-3 Pa (No. 29 in Table 4) by MW hybrid heating. 
All samples were heated to 1300 oC for 60 min of isothermal sintering. The resulting sintered 
densities are 97.4%TD for low vacuum sintering and 97.5%TD for high vacuum sintering. The 
residual pores are small (most pores < 20 µm) in both cases. These results demonstrate the 
effectiveness of using MW hybrid heating to sinter TiH2 powder compacts.  
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Fig. 7 Optical micrographs of Ti samples sintered from 100%TiH2 powder by MW hybrid heating. 
Samples were heated to 1300 ºC for 60 min of isothermal sintering. (a, b): low vacuum sintering 
(10-1 Pa, No. 30 in Table 4) and (c, d): high vacuum sintering (10-3 Pa, No. 29 in Table 4). Kimet 

TiH2 powder (-100 mesh) was used, pressed at 750 MPa. (a) and (c) are unetched showing the pores 
while (b) and (d) are etched showing the grain structures. 

Vacuum condition (low or high levels) is not the key factor which affects the heating response of 
TiH2 to pure MW radiation. With the assistance of a SiC MW susceptor, TiH2 can be consistently 
heated up under both conditions but heating in low vacuum is slower. In addition, the temperature 
fluctuations last longer because of the easier formation of MW-induced hydrogen plasmas in low 
vacuum. No noticeable difference was found to be related to the vacuum levels in terms of both the 
density and the microstructure of the as-sintered titanium. 
TiH2 was identified to be a MW absorbing material in previous studies [28-31]. Nakamori et al. [30] 
measured the dielectric constant and dielectric loss of TiH2 and concluded that the rapid heating of 
TiH2 is mainly due to its dielectric loss. The mechanisms responsible for the effective coupling of 
TiH2 powder with MW radiation has recently been summarized by Luo et al. [31]: (i) the electrons 
in the 3d shell of non-stoichiometric TiHx (x<2) could induce spontaneous magnetization, thereby 
making TiH2 more responsive to the H-field of MWs; (ii) the Ti–H bond of TiHx in all electron 
states is strongly polarized (Ti+H-) with an H–Ti–H angle of ~140º in the ground state or of ~150º in 
the second triplet state [34]; and (iii) MWs (2.45GHz) penetrate deeper in TiH2 (skin depth: 11 μm 
[29]) than in Ti (skin depth: 6.6 μm) at room temperature, which allows a higher volume fraction of 
a TiH2  powder particle to undergo MW absorption than the case for a Ti metal powder particle of 
the same size. Indeed, a number of samples (No. 3, 10, 11, 17-19 and 22) in this study showed 
excellent coupling with MW radiation. However, many failures also occurred as pointed out 
previously. In addition, attempts made by changing the TiH2 powder source, cavity shape and size, 
vacuum level and MW input power failed to identify the underlying reasons. The MW furnace used 
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was in good order as can be concluded from the consistent performance of the furnace with the 
assistance of a SiC MW susceptor (Fig. 1d, No. 26-30). The dictating factors thus remain unclear. 
The use of a SiC MW susceptor which has a high dielectric loss provides a simple solution to the 
effective heating and sintering of Ti-xTiH2 powder mixtures using MW energy. However, it should 
be noted that the use of a SiC MW susceptor can lead to noticeable contamination of Si and C in the 
as-sintered Ti and Ti alloys due to being radiated by MWs at the high sintering temperatures (≥1200 
ºC) for Ti [31]. In this regard, heating by direct MW radiation without the assistance of a SiC MW 
susceptor is still much preferred. The next step is to identify the unknown factors that interfere with 
the intrinsic response of TiH2 powder to MW radiation. 

4. Summary 

The following conclusions can be made from this experimental research. 

• TiH2 powder can be heated to temperatures greater than 1300 ºC by MW radiation without 
the assistance of a MW susceptor. However, the heating response of TiH2 powder to direct 
MW radiation was found to be inconsistent and unpredictable.  

• MW hybrid heating proved to be an effective and highly consistent heating method for Ti-
xTiH2 mixtures (x = 0-100) with relative density reaching more than 97.4 %TD.  

• The MW hybrid heating rate of Ti-xTiH2 powder compacts increased progressively with 
increasing TiH2 content in the Ti-xTiH2 mixture. This is consistent with the observation that 
TiH2 powder is more responsive to direct MW radiation than HDH Ti powder. 

• The use of a SiC MW susceptor can cause potential significant contamination of Si and C. 
In that regard, heating of TiH2 powder by direct MW radiation without the assistance of a 
SiC MW susceptor is preferred. However, there are unknown factors which can interfere 
with the intrinsic response of TiH2 powder to MW radiation making the heating process 
inconsistent.  
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