
An Investigation of New Ionospheric
Models Using Multi-source

Measurements and Neural Networks

A thesis submitted in fulfilment of the requirements for the degree of
Doctor of Philosophy

Andong Hu
Bachelor of Engineering (BEng) from Nanjing University of Information Science and

Technology, China

School of Science
College of Science, Engineering and Health

RMIT University

October 2019





Doctoral Citation

Dr Hu developed an innovative earth-ionosphere model using machine learning methods
based on multi-source measurements. The research produced several sub-models which
targets different ionospheric parameters using different machine learning techniques. These
findings improve the accuracy of the prediction and enhance our understanding for the
physical mechanisms of the ionosphere.





Declaration

I certify that except where due acknowledgement has been made, the work is that of the
author alone; the work has not been submitted previously, in whole or in part, to qualify for
any other academic award; the content of the thesis is the result of work which has been
carried out since the official commencement date of the approved research program; any
editorial work, paid or unpaid, carried out by a third party is acknowledged; and, ethics
procedures and guidelines have been followed.

Andong Hu
7 October 2019





Acknowledgements

Firstly, I would like to express my sincere gratitude to my supervisors, Prof Kefei Zhang,
Dr Brett Carter, Dr Julie Currie, Dr Robert Norman and Dr Suqin Wu, for their full sup-
port, encouragement, and guidance throughout my PhD study. They spent countless hours
proofreading my research papers and providing valuable suggestions, which always result in
significant improvements in the quality of the thesis and refinement of my research. What I
have learnt from them is not only vital for the accomplishments achieved during the period
of my PhD study but also very beneficial to my future career.

I am also grateful to the help and friendship from those colleagues at the SPACE Research
Centre or the project team members, including A/prof. Suelynn Choy, Dr Pawel Hordyniec,
Dr Yubin Yuan, Dr Fu Chen, Dr Zishen Li, Dr Li Li, Dr Jianqiang Wang, and many others
at RMIT. My thanks also go to my lab-mates and fellow students for all their supports and
fun we had together in the last four years. They are Dr Yuntian Brian Bai, Dr Xiaoming
Wang, Dr Changyong He, Dr Han Cai, Dr Yang Yang, Dr Yaguang Tao, Dr Yang Zhao, Mr
Micheal Andoh Afful, Dr Timothy Kodikara, Ms Yeasmin Alea, Ms Samantha Le May, Mr
Viet Duong and Mr Nenad Radosevic. I would like to acknowledge my master’s supervisor,
Prof Jian Wang, who continues giving me his valuable advice and help.

My PhD work has been financially supported by the Chinese Scholarship Council, Co-
operative Research Centre for Space Environment (SERC Limited) through the Australian
Government’s Cooperative Research Centre Programme and Australian Bureau of Meteorol-
ogy Linkage project through Australian Research Council. Dr. Steve Gower and Michelle
Fulton are thanked for their help during my PhD study.

Last but not the least, I must express my very profound gratitude to my parents and my
lovely girlfriend for their unreserved love and continuous encouragement throughout all my
years of study, the process of research and thesis writing. This accomplishment would not
have been possible without their support. Thank you all.



viii

Abbreviations

ANN Artificial Neural Network

AFRL Air Force Research Laboratory

Bi-LSTM Bidirectional Long Short-Term Memory

BoM Australian Bureau of Meteorology

BVBLS Base-Vector-Based Least Squares

COSMIC Constellation Observing System for Meteorology, Ionosphere, and Climate

CAS Chinese Academy of Sciences

CHAMP Challenging Minisatellite Payload

CDAAC COSMIC Data Analysis and Archive Centre

DNN Deep Neural Network

DoY Day of Year

EBP Equatorial Plasma Bubble

EDP Electron Density Profile

EIA Equatorial Ionisation Anomaly

GRACE Gravity Recovery and Climate Experiment

GRACE-FO Gravity Recovery and Climate Experiment Follow-On

GNSS Global Navigation Satellite Systems

GPS Global Positioning System

GIM Global Ionosphere Map

GIPP Group of Ionosphere and Precise Positioning based on BDS/GNSS

GFZ Germany’s National Research Centre for Geosciences

HF high frequency



ix

ISR Incoherent Scatter Radar

IRI International Reference Ionosphere

IGS International GNSS Service

IAG International Association of Geodesy

JPL Jet Propulsion Laboratory

LSTM Long Short-Term Memory

LS Least Squares

LEO Low Earth Orbit

MSNA Mid-latitude Summer Nighttime Anomaly

NRL Naval Research Laboratory

NSPO Taiwaness National Space Organization

Ne Electron Density

NN Neural Network

RO Radio Occultation

RNN Recurrent Neural Network

Te Electron Temperature

TS Topside Sounder

TECU Total Electron Content Unit

TIEGCM Thermosphere-Ionosphere-Electrodynamics General Circulation Model

UCAR University Corporation for Atmospheric Research

VSH Vertical Scale Height

VCE Variance Component Estimation

VTEC Vertical Total Electron Content

WTLS Weight Total Least Squares





Abstract

Ionosphere is one of the atmospheric layers that has a major impact on human beings since it
significantly affects the radio propagation on Earth, and between satellites and Earth (e.g.,
Global Navigation Satellite Systems (GNSS) signal transmission). The variation of the
electrons in the ionosphere is strongly influenced by the space weather due to solar and
cosmic radiation. Hence, the short/long-term trend of the free electrons in the ionosphere has
been regarded as very important information for both space weather and GNSS positioning.

On the other hand, precisely quantifying the distribution and variation of free electrons at
a high spatio-temporal resolution is often a challenge if the number of the electrons (electron
density) is detected only from the traditional ionospheric sensors (e.g., ionosonde and topside
sounder and Incoherent Scatter Radar (ISR)) due to their low spatio-temporal coverage. This
disadvantage is also inherited from the empirical ionospheric model developed based on these
data sources. Nowadays, the availability of advanced observation techniques, such as GNSS
Radio Occultation (RO) and satellite altimetry, for the measurement of Electron Density (Ne)
and related parameters (e.g., hmF2, NmF2, Vertical Scale Height (VSH), Electron Density
Profile (EDP) and Vertical Total Electron Content (VTEC)) in the ionosphere has heralded a
new era for space weather research in the upper atmosphere. The new sources of data for
ionospheric modelling can improve not only the accuracy but also the reliability of the model
(such as[96] for hmF2 and [28] for VTEC).

In this study, Helmert Variance Component Estimation (VCE) aided Weight Total Least
Squares (WTLS) is selected for modelling global VTEC using International GNSS Service
stations, satellite altimetry and GNSS-RO measurements. The results show that the new
VTEC model outperforms the traditional global ionospheric VTEC Model by at least 1.5
Total Electron Content Unit (TECU) over the ocean. This improvement is expected to be
significant in the refinement of global ionospheric VTEC Model development.

As is well known, the most traditional models developed are prone to the effects of
inherent assumptions (e.g. for the construction of the base functions in the models) which
may lead to large biases in the prediction. In this study, an innovative machine learning
technique (i.e. Neural Network (NN)) is investigated as the modelling method to address this
issue. Different from the traditional modelling method, neither the observation equations (or
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the so called ‘design matrix’), nor apriori knowledge of the relationship (both of them can be
considered as the source of the aforementioned assumptions) is required in the modelling
process of a NN. This network system can automatically construct an optimal regression
function based on a large amount of sample data and the designed network [43].

In this study, Deep Neural Network (DNN), which is an advanced Artificial Neural
Network (ANN) (with more than one hidden layer), is investigated for their usability of VSH
and topside EDP modelling, as well as the relationship between Ne and electron temperature.
The results reveal that the new VSH model agrees better than the traditional model with
regards to either out-of-sample measurements or the external reference (i.e. ISR data). In
addition, the new model can represent the characteristic of VSH in the equatorial region better
than that of traditional approaches during geomagnetic storms. The relationship between
Ne and Electron Temperature (Te) investigated from ISR data can be used to improve the
performance of the current Te model. The local time-altitude variation of the model outputs
agrees well with that from a physical model (i.e., Thermosphere-Ionosphere-Electrodynamics
General Circulation Model (TIEGCM)). The new topside EDP model takes hmF2 and NmF2
into consideration as part of the variable set. Comparing with the reference data (i.e., out-
of-sample COSMIC data, GRACE and ISR data), the new model agrees much better than
the International Reference Ionosphere (IRI)-2016 model. In addition, an advanced NN
technique, Bidirectional Long Short-Term Memory (Bi-LSTM), is utilised to forecast hmF2
by using the hmF2 measured by Australian ionosondes in the five hours prior. The forecast
results are better than the results from real-time models in the next five hours. The new model
performs also better than the current hmF2 model (i.e., AMTB [2] and shubin [96] models,
which is used inside IRI-2016 model) by at least 10km in most ionosonde stations.

Overall, the neural network technique has a great potential in being utilised in the
ionospheric modelling. In addition to the accuracy improvement, the physical mechanism
can be observed from the model outputs as well. In future work, the neural network is
expected to be further applied in some other space weather studies (e.g., Dst, solar flare, etc).
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Chapter 1

Introduction

1.1 Background and Motivations

“Space weather” is a branch of space physics and aeronomy, or heliophysics, which is
concerned with the time-varying conditions within the solar system. It emphasises the space
surrounding the Earth, including the solar wind, the magnetosphere, the ionosphere, and the
thermosphere. Space weather can influence the reliability of space-borne and ground-based
observation systems and even endanger human lives. Extreme space weather conditions in
the space environment can cause significant disruption of satellite operations, communication,
navigation, and power distribution grids, leading to colossal economic losses [78].

Space weather conditions can be observed/revealed by the behaviour of the ionised
plasma in the upper atmosphere which is usually defined as the region between 80km and
2000km. At this altitude, the density of neutral particles is low enough to free electrons. It
can be done through ionisation which is a process of making positively or negatively charged
atoms or molecules by adding or stripping away one or more electrons. Ionisation is much
more common in the upper atmosphere because it is mostly caused by either high-energy
photons (mostly UV and X-rays) or energetic particles (from either solar wind or cosmic
radiation) that penetrate into the atmosphere and collide with the surrounding gas. The peak
number of free ions and electrons (so-called ’NmF2’) usually occurs at an altitude around
300km (so-called ’hmF2’). The region surrounding this peak (in electron density) is called
the ionosphere (i.e. 80km-2000km above the earth). Therefore, the space weather events can
be forecast by analysing the variation of these ionospheric parameters (such as hmF2 and
NmF2).

In addition to space weather research, our daily life activities can also be affected by
the ionospheric irregularities such as scintillations (in both low and high latitudes), plasma
bubbles (mostly in lower latitudes, so-called ‘Equatorial Plasma Bubble (EBP)’) and large
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scale travelling ionospheric disturbances (mainly observed at high latitudes) [25]. For
example, the ionospheric anomalies affect GNSS signals as the signals transmitted through
the ionosphere which can lead to huge positioning errors, and in the worst scenario, it
can completely lose track to the GNSS satellites. Although the first-order ionospheric
delay can be removed by using dual-frequency receivers, it is not enough to eliminate the
entire influence of the ionosphere, especially in an extreme space weather event which may
cause a non-negligible high order ionospheric refraction effect [52]. Furthermore, strong
geomagnetic storms are also known to cause a complete blackout of radio communications
because at that time the ionosphere will be a complete mess. Therefore, modelling and
forecasting the variation of the electrons in the ionosphere can be beneficial to both space
weather analyses and solving real world problems (e.g., Ne and VTEC can help mitigate the
GNSS positioning errors).

In addition to the aforementioned hmF2 and NmF2, several other essential ionospheric
parameters are also investigated in this study, including Ne, VTEC, VSH and Te. Ne is the
number of the electrons presented at a specific location and Te is the energy carried by these
electrons. VTEC is the total number of electrons in a vertical cube from the earth surface to
the upper boundary of the ionosphere (cross-section area is 1m2). VSH is generally defined
as the value of dh/d(ln(Ne)) by relating to the gradient of the topside Ne profile [61]. All of
these data (except Te) can be obtained from an Ne vertical profile. Based on the relationship
between Ne and Te, Te can be retrieved from the profile as well.

A number of instruments have been used to measure the Ne profiles. They can be broadly
divided into two categories: ground-based (e.g., ISRs [62] and ionosondes [83, 62]) and
satellite-based (e.g., topside sounder satellites [20, 9] and GNSS-RO satellites [92, 116,
97, 21–23]). Currently, the most frequently used Ne data are measured by ionosonde and
have been collected since the early 20th century. There are hundreds of ionosonde stations
operating at the same time all over the globe, and each station can provide Ne measurements
in a 15-30 minutes interval. The flip side of the ionosonde measurements is that it cannot
measure Ne profiles in the topside ionosphere (above hmF2) which plays a very important
role in the ionospheric study. In contrast, Topside Sounder (TS) satellites can measure the
topside ionosphere, but not the bottomside. ISRs and GNSS-RO satellites can measure Ne in
both the bottomside and topside of the ionosphere [77, 21, 22]. Although ISR by far is the
most powerful ground-based remote-probing tool for the study of the ionospheric process
[62], the horizontal coverage of ISR is too limited (the window of sky view over an ISR is
very small) to be adopted for global modelling.

The GNSS-RO is a relatively new and interesting atmospheric sounding technique
[44, 85, 118, 86, 111]. It is based on the fact that the L-band radio signals are refracted in
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the atmosphere during the transmission from a GNSS satellite to a Low Earth Orbit (LEO)
satellite. The idea of GNSS-RO is to retrieve atmospheric parameters (e.g.,refractivity and
water vapour) in the neutral atmosphere [85] from the bending angles of the radio signals
and ionospheric parameter from calibrated phases (related to the L1-L2 phases) [44]. More
importantly, GNSS-RO can provide long-term (low-cost) worldwide atmospheric profiles
with a high vertical resolution in comparison with other traditional atmospheric sounding
techniques. The quality of GNSS-RO products has been investigated and confirmed by many
researches [64, 100, 117, 36, 37]. Hence, GNSS-RO data are selected as the main source of
data in this study (sometimes assisted by other sources of data).

Ionospheric information can also be obtained from the ionospheric model [9] based on
either empirical function (e.g., Vary-Chap function [81] in the IRI) or physical mechanism
(e.g., the equations inside TIEGCM [67]). However, ionospheric information from both
methods is prone to the effect of inherent assumptions in the models which leads to potential
bias problem in the prediction. Hence, the results from the both types of the models are only
used for comparison in this study.

The bias of physical ionospheric model (like the aforementioned TIEGCM) is mostly
caused by the fact that the complicated physical mechanism of the ionosphere is impossible
to be described thoroughly by current equations. The exact relationship between independent
variable and ionospheric information remains unknown. To address this issue, NN method
is utilised for the ionospheric studies. The NN was initially inspired by biological neural
systems for regression or classification for an unknown function based on a large amount of
input/training data. Nowadays, the NN has been widely used in many fields, e.g. data mining
[18], automatic driving [33], and even atmospheric modelling [53, 55, 88]. It is well-known
that a set of observation equations (or so-called “design matrices”) need to be designed first
in the traditional Least Squares (LS) estimation method for regression modelling [74]. The
design matrices are generally based on the assumed relationships between the dependent
and independent variables (the relationship is also called "base function"). However, as is
mentioned above, some of the exact relationships are unknown. Fortunately, neither the
observation equations nor the apriori knowledge of the relationship is required for the NN
modelling. This NN system can automatically construct the optimal regression function
based on the sample data and the designed network [43]. Thus, in this study, different NN
methods are utilised to different applications to take new physical features into consideration
for ionospheric modelling. In addition, for those models whose base function is well known
and widely used (i.e., spherical harmonics for GIM), advanced modelling methods, i.e.
Helmert-VCE-aided weight total least squares (Helmert-VCE-aided WTLS), is applied to not
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only consider the bias among various sources of data but also adjust the error in the design
matrix as well.

1.2 Research Aims and Objectives

The major aims of this research are to develop new global/regional ionospheric models
(in both spatial and temporal domains) to nowcast/forecast various essential ionospheric
parameters by utilising advanced neural networks and some other cutting-edge modelling
methods from multi-source data. In addition to the space weather analysis, these models
can be also applied to mitigate the interference to GNSS usages at the second order (dual-
frequency receivers) in real-time/near-real-time. The specific objectives of the research
are:

• to develop new VSH and topside Ne models from COSMIC using DNN, an advanced
ANN) algorithm and the models’ performance are then assessed with regards to both
out-of-sample data and an external reference (i.e. ISR in this study) in comparison
with the traditional empirical models.

• to investigate the relationship between Ne and Te by using global ISR measurements
(from three ISR stations on behalf of low, mid and high latitude regions respectively)
and generate corresponding topside Te from Constellation Observing System for
Meteorology, Ionosphere, and Climate (COSMIC) Ne profile based on the new Ne-Te

model. A comparison has been made between the model results and TIEGCM outputs
(it should be noted that it is just a comparison since no ground true for Te in global
coverage can be considered as the reference).

• to develop a new global ionospheric VTEC model based on IGS, Jason-3 and COSMIC
data using Helmert-VCE-aided WTLS method. The model results are compared with
three traditional VTEC global models with reference to the out-of-sample observations.

• to forecast Australian hmF2 in the next hour by using the hmF2 in the past five hours
based on ionosonde measurements and the Bi-LSTM method.

• to investigate if the physical characteristics of the ionosphere can be captured by the
proposed models’ output (e.g., Mid-latitude Summer Nighttime Anomaly (MSNA)
and Equatorial Ionisation Anomaly (EIA)).
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1.3 Thesis Structure

Chapter 2 introduces the source of data and the methods utilised in this research in detail.
Chapter 3 (paper A) develops a topside Ne model from GNSS-RO data. The model takes

hmF2 and NmF2 into consideration as part of the variable set. The performance of the
new model is then evaluated by comparing with IRI-2016 model using the out-of-sample
COSMIC data as well as GRACE and ISR data as references. Whether the ionospheric
characteristics (i.e., EIA and MSNA) can be captured by the model outputs is also validated
in this chapter.

Chapter 4 (paper B) proposes a new VSH model from GNSS-RO data using the DNN
method. The new model agrees well with both out-of-sample GNSS-RO data and the external
reference (i.e. ISR data) better than the traditional model. In addition, the new model agrees
with the characteristic of VSH in the equatorial region better than traditional approach during
geomagnetic storm times as well. It suggests that the new VSH model may be able to be
used in space weather analysis and prediction even during extreme conditions.

Chapter 5 (paper C) introduces a new VTEC Global Ionosphere Map (GIM) developed
by using Helmert-VCE-aided WTLS method from multiple source data. It is the first time
to utilise WTLS in the GIM (or even ionospheric) modelling. In this chapter, the proposed
VTEC model was tested using the data in the period of Day of Year (DoY) 217-224, 2016 and
validated using GIMs produced by the other research centres, such as Group of Ionosphere
and Precise Positioning based on BDS/GNSS (GIPP) at the Academy of Opto-Electronics,
Chinese Academy of Sciences (CAS).

Chapter 6 (paper D) forecasts hmF2 in the Australian region up to five hours from
ionosonde data using the Bi-LSTM method. Various assessments have been conducted by
comparing the new model with the traditional hmF2 model (i.e., AMTB, Shubin, also ANN
and Long Short-Term Memory (LSTM) models). In addition to the space weather prediction,
this model possibly can be utilised for the validation of the auto-scaled ionosonde data.

Chapter 7 (paper E) investigates a better relationship (closer to the reality) between Ne

and Te using both DNN method and the ISR measurements which haven’t been improved
since 1980s. The results generated by the model and GNSS-RO (as the input) are then
compared with TIEGCM for investigating whether the model can capture the characteristics
of Te in both spatial and temporal domains.

Chapter 8 gives a summary and conclusion of this research and prospect for future work.





Chapter 2

Data and Methods

This section introduces all the data and methods (algorithms) adopted in the chapter to be
followed for a better understanding of the ionospheric models developed in this research.
The data subsection includes the data used as either samples or references. The methods
section contains the algorithm used for developing either the new model or the model for
comparison.

2.1 Data

2.1.1 International GNSS Service (IGS)

IGS, established by the International Association of Geodesy (IAG) in June 1994, was
initially known as International Global Positioning System (GPS) Service. The name of
IGS from GPS to GNSS was changed in March 2005, when it was freely available for high
precision GNSS satellite users [5]. Until May 2017, a total of more than 500 stations exist in
the IGS network all over the world [35] as is shown in Fig. 3(a) in [54]. The highest quality
of GNSS data in support of research, earth observation, and the terrestrial reference frame
has been provided by IGS. The society has been significantly benefited, particularly in the
areas of navigation, timing, and some other scale applications. A closely related product
of the IGS is the GIM contains the two-hourly maps of global VTEC estimated from the
permanent tracking sites which becomes a trustworthy source for ionospheric information
since 1998.
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2.1.2 GNSS-Radio Occultation (GNSS-RO)

The GNSS-RO is a relatively new and cutting-edge atmospheric sounding technique [44, 85].
It is based on the fact that the L-band GNSS signals are refracted in the atmosphere during the
transmission from a GNSS satellite to an LEO satellite. The idea of GNSS-RO is to retrieve
atmospheric parameters in both the neutral atmosphere [85, 113, 65] and ionosphere [44, 68]
from the excess phases (related to the L1-L2 phases). More importantly, GNSS-RO can
provide long-term (low-cost) worldwide atmospheric profiles with a high vertical resolution,
in comparison with other traditional atmospheric sounding techniques.

Among all the GNSS-RO missions launched to date, two of them (i.e. COSMIC and
Gravity Recovery and Climate Experiment (GRACE)) listed below can provide qualified iono-
spheric measurements through the COSMIC Data Analysis and Archive Centre (CDAAC).
It should be noted that Challenging Minisatellite Payload (CHAMP) is not discussed in
this study since it is no longer operational since 2010. COSMIC and GRACE are briefly
introduced below:

1. COSMIC is a program designed to provide advances in meteorology, ionospheric
research, climatology, and space weather by using GPS satellites in conjunction
with LEO satellites. The term "COSMIC" may refer to either the organisation itself
or the constellation of satellites (also known as FORMOSAT-3 in Taiwan). The
constellation is a joint U.S.-Taiwan mission with major participants including the
University Corporation for University Corporation for Atmospheric Research (UCAR),
the National Science Foundation, the Naval Research Laboratory (NRL), the Air Force
Research Laboratory (AFRL) on the U.S. side and the Taiwaness National Space
Organization (NSPO) on the Taiwanese side. COSMIC is one of the most powerful
GNSS-RO missions and its constellation consists of six LEO micro-satellites launched
in April, 2006 [91, 64]. About 2000 Ne profiles per day were obtained in the initial
operational stage (2006-2010), but it decreased considerably after 2010 (to around
1000 events per day).

2. The GRACE was a joint mission of NASA and the German Aerospace Centre. Twin
satellites took detailed measurements of Earth’s gravity field anomalies from its launch
in March 2002 to the end of its scientific mission in October 2017. The Gravity
Recovery and Climate Experiment Follow-On (GRACE-FO) is a continuation of
the mission with near-identical hardware, launched in May 2018. GRACE was a
collaborative endeavour involving the Center for Space Research at the University
of Texas at Austin, NASA’s Jet Propulsion Laboratory (JPL), the German Aerospace
Centre and Germany’s National Research Centre for Geosciences (GFZ), Potsdam.
The measurements from the GRACE satellites are an important tool for studying the
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Earth’s ocean, geology, and climate. GRACE-A continuously provided ionospheric
radio occultation data since the DoY 059, 2007 (February 28, 2007) until October 31,
2017 [6].

2.1.3 Satellite Altimetry

Altimetry is a technique for measuring height. Satellite altimetry measures the time taken by a
radar pulse to travel from the satellite antenna to the surface and back to the satellite receiver.
Combined with precise satellite location data, altimetry measurements yield sea-surface
heights and can obtain fundamental information for tides. Jason-3 mission is one of the
latest satellite altimetry missions and can provide worldwide VTEC data. With a 66° orbital
inclination and a 1,336 km altitude, the trajectories of the satellite cover the latitudinal range
from 66°N to 66°S. It should be noted that the polar regions are not measured. There are two
bands used in Jason-3 measurements: Ku-band (main band, frequency is 13.575 GHz) and a
C-band (auxiliary band, frequency is 5.3 GHz). The VTEC is mostly derived from Ku-band
measurements.

VTEC can be calculated by following equation:

V T EC =−dR× f 2

40.28
(2.1)

where f is the frequency of the Ku-band and dR is the Ku-band ionospheric range
correction provided by the output of Jason-3 directly.

The onboard radar altimeters can directly access the differential ionospheric delay of the
transmitted signals which can be used as an ionospheric correction. The error or uncertainty
is usually no larger than 2–3 TECU. Each Jason-3 measurement is considered having equal
quality in this study, thereby their initial weights are set to the same value.

2.1.4 Ionosonde (in Australian region)

The ionosonde instrument was prototyped in 1925 and further enhanced in the late 1920s.
An ionosonde typically consists of four parts: a high frequency (HF) radio transmitter; a
HF receiver; an antenna with a suitable radiation pattern; and a central control and data
processing system. There are more than 100 ionosonde stations deployed around the world
that routinely measure the structure and variability of bottomside ionosphere using the
reflection of radio waves (echo sounding) [79]. hmF2 is the peak altitude of the detection
range. There are 12 ionosonde stations in Australian region (see Figure 2.1). The geographic
location and operational period of these stations are detailed in Table 2.1 which suggests that
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they can provide enough samples for the proposed modelling work. In order to obtain stable
quiet-time hmF2, monthly median hmF2 for each local hour (derived by using Eqn. (1)-(5)
in [56] from various ionosonde measurements. The measurements are provided (manually
scaled) by the Australian Australian Bureau of Meteorology (BoM) and it can be downloaded
from ftp://ftp-out.sws.bom.gov.au/wdc/iondata/medians/) selected as the samples.
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Fig. 2.1 Distribution of the 12 ionosonde stations in the Australian region.

2.1.5 Incoherent Scatter Radar (ISR)

ISR is a powerful instrument capable of simultaneously measuring the range-resolved iono-
spheric and atmospheric parameters [41, 32, 122, 58, 119, 63], including electron densities
as well as the ion/electron temperature profiles, from the lower ionosphere up to the topside
ionosphere. There are around 20 ISR stations arranged all over the globe. Only a few of them
were used to measure Ne and Te in upper atmosphere simultaneously (e.g., Arecibo, Millstone
Hill, Poker Flat, etc). The location of these six ISR stations as examples is shown in Tab. 2.2,
along with the number of sample data measured by each station. Arecibo, Millstone Hill and
Poker Flat are selected representing the low, mid and high latitude regions respectively.
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Table 2.1 Australian ionosonde stations and their geographic coordinates

Acronym (Station Name) Latitude Longitude Open Closed
CI (Cocos Islands) -12.20 96.80 Nov 1961 Sep 1974

Aug 2008
DW (Darwin) -12.45 130.95 Dec 1982
TS (Townsville) -19.63 146.85 Jun 1946
BB (Brisbane) -27.53 152.92 Jun 1943 Dec 1986

Jun 1997
NI (Norfolk Island) -29.03 167.97 Feb 1964
MD (Mundaring) -31.98 116.22 Apr 1959 Dec 2007
CB (Canberra) -35.32 149.00 Mar 1937
HB (Hobart) -42.92 147.32 Dec 1945
MI (Macquarie Islands) -54.50 158.95 Jun 1950 Nov 1958

Nov 1983 Jun 2015
CA (Casey) -66.30 110.50 Jul 1957 Jan 1975

Apr 1989 Mar 1992
Nov 2000

MS (Mawson) -67.60 62.88 Feb 1958
DA (Davis) -68.58 77.96 Feb 1985

Table 2.2 Number of sample data from seven ISR stations

Region Station Geog-lat Number of sample events
Low-lat ARECIBO 18.3 193,012

JICAMARCA 11.9 1,727
Mid-lat MILLSTONE 42.6 106,928

KHARKOV 50.0 3,645
POKER FLAT 74.8 28,981

High-lat SONDRE STROMFJORD 73.2 19,142

2.2 Methods

2.2.1 Deep Neural Network (DNN)

DNN is a series of algorithms designed to identify underlying relationships among dependent
and independent variables by using a process that mimics the way the human brain operates.
A generalised DNN procedure has the following five steps [90]:
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1. coefficients (Θ) initialisation using Xavier approach [38]
2. forward propagation (obtaining a and z)
3. cost function (J) calculation
4. backward propagation (obtaining da, dz, and dΘ)
5. coefficients update, then go back to step 2 until the cost function converged.

Initialisation and Forward Propagation

In this study, the algorithm (so called ’Xavier’) of the first step is developed by Glorot and
Bengio [38] and further proved by He et al. [45] that Xavier is one of the best initialisation
methods for the training with a small number of inputs (i.e. less than 20). The equation is
expressed as

Θ
l =

2
pin + pout

(2.2)

where pin and pout are the numbers of input and output units of the lth layer respectively. Θl

is the coefficient set in the l layer in Fig. 2.2. The detailed structure of a DNN system is
shown in Fig. 2.2 which describes the structure of the aforementioned three layers. From
left to right are input, hidden and output layers respectively. It should be noted that more
than one sublayer can exist in the hidden layer (larger than or equals to three). The equations
in the figure describe how forward propagation works (the second step of neural network
procedure). During the backward propagation (in this study, the mini-batch gradient descent
[49, 87] is selected as a backward approach), Θ will be optimised together with the cost
function J. x and hθ (x) are the input and output of the model respectively. In addition, g(l) is
the activation function for the lth layer, which is normally highly non-linearised, such as a
rectified linear unit (ReLU), Tanh and Sigmoid. Their equations are expressed as:

ReLU(x) = max(0,x) (2.3)

Tanh(x) =
ex + e−x

ex − e−x (2.4)

Sigmoid(x) =
1

1+ e−x (2.5)

L2-regularisation based DNN

One of the common problems for the traditional neural network is that it can be easily
overfitted/underfitted [24], especially for the cases that have only one hidden layer. This
issue is normally dealt with using regularisation algorithm [98], and in this study, one of the
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Fig. 2.2 Three layers of DNN: input (blue); hidden (yellow) and output (green) layers. ’a’s
are the values of each cell (the round boxes in figure). The superscript of ’a’ represents the
index of the layer and the subscript of ’a’ represents the index of the cell in that specific layer.
’a(l)0 ’s denote the bias units in each layer (’l’ is the index of the layer). Θ(l) is the cluster

of all ’θ ’s on the linkage between the (l −1)th layer and the lth layer, and θ
(l)
nm means the

coefficient between the nth cell in the (l −1)th layer and the mth cell in the lth layer. x and
hθ (x) are the input and output of the system respectively. In addition, g(l) is the activation
function for the lth layer and hθ (x) is the symbol for the whole DNN fitting model.
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advanced algorithms — the L2 regularisation algorithm [75] is chosen for this purpose. The
L2 cost function equation (i.e., general quadratic cost) of the bth cell in the lth layer can be
expressed as (also the step 3 in the neural network procedure):

J(q) =
1
2k

k

∑
i=1

(
y(q)[i]−h(q)[i]

θ
(x)

)2

︸ ︷︷ ︸
regular J

+
1
k

λ

2 ∑(θ (q))2︸ ︷︷ ︸
L2 regularised cost (JL2)

(2.6)

where λ is the regularised factor and k is the number of training/sample data. y is the value of
dependent variable (or measurement, i.e., Ne in this study) in the output layer, and it denotes
the reference of each cell in each layer back-propagated from the measurement. q is the
index of the outputs (in this study, q=1). It should be noted that, based on our experiments,
L2-regularisation is better than the dropout approach (another commonly used advanced
approach) in this case (not shown here).

In addition to the regular dΘ, the gradient of L2 regularised cost function in backward
propagation (as an extra component of the regularised dΘ) is the same as Hu et al. [55]. So
is the gradient descent procedure [55].

After regular training, the aforementioned dataset — cross-validation dataset is used to
obtain the optimal λ . The flowchart for the overall L2 regularisation based DNN procedure
is shown below. In addition, the network of the study has three hidden layers, the number of
neural units in each layer is 16, 16, 8 respectively, and their activation functions are Relu,
Tanh and Sigmoid respectively. This configuration is based on our historical experience
considering both accuracy and efficiency.

2.2.2 Recurrent Neural Network (RNN)

Recurrent Neural Network (RNN) takes the sequential variation nature among sample data
into consideration which is ignored by the ANN method. The structure of an RNN system is
detailed in Fig. 2.4. In comparison with the ANN, temporary results from the current epoch
will influence the model in the next epoch. Xt is the independent variable set at the tth epoch,
and Y is the independent variable. ht is the temporary results from the tth RNN unit, h0 is
manually initialised. The connection between h and Y are normal softmax/regression. Each
RNN unit can be considered as an DNN model (Fig. 2.2). W s and bs are the coefficients and
biases that need to be estimated during the training. In addition, H is the Tanh function.
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Fig. 2.3 Flowchart showing the process to obtain a regression model using DNN. The greyed
parallelograms indicate the section of the dataset used at each stage in the process, white
rectangles indicate the processes, white diamonds indicate the questions that control the
following steps and the white cylinder is the final DNN derived model.
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Fig. 2.4 Structure of RNN. Xt is the independent variable set at the tth epoch, and Y is the
independent variable. ht is the temporary results from the tth RNN unit, h0 is manually
initialised. The connection between h and Y are normal softmax/regression. Each RNN unit
can be considered as an ANN model (Fig. 2.2). ‘W ’s and ‘b’s are the coefficients and biases
that need to be estimated during the training. In addition, H is the Tanh function.
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Long Short-Term Memory (LSTM) Method

Currently, LSTM method is one of the most widely used RNN methods which inherits the
advantages of RNN. In addition, the influence of sample data at a specific epoch to the
traditional RNN unit will dwindle with the epoch going by. In order to investigate the feature
of the temporal sequences, a new type of interim result — memory cell c is applied in LSTM
as is shown in Fig. 2.5. c can keep the historical data in memory, and wake it up in any epoch
when needed. The Input gate (i) and Forget gate( f ) decide the relative weights of this RNN
cell and historical memory cell respectively, and o is the output gate. The detailed algorithm
is described in Fig. 2.5 as well.

Fig. 2.5 Structure of the LSTM. Similar to RNN (Fig 2.4) but with memory cell c added. i, f ,
o are the input gate, forget gate and output gate respectively. σ is the Sigmoid function.
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Bidirectional LSTM (bi-LSTM) Method

Memory cells in LSTM can carry forward the information from previous sample sets into the
prediction of Y ultimately. However, the implementation process is directional, forward-only,
which ignores the backward connection and makes the model less robust. To solve this
disadvantage, the training process in the Bi-LSTM method is conducted in a sequential order
not only forward, but also backward. The details of the Bi-LSTM method are shown in Fig.
2.6.

Fig. 2.6 Structure of the bi-LSTM method, similar to the LSTM method (Fig 2.5), the training
is carried out in both directions (i.e. both sequential forward and sequential backward).
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2.2.3 Helmert Variance Component Estimation Aided fast-Weighted
Total Least Squares (Helmert-VCE-Aided fast-WTLS)

Helmert Variance Component Estimation Aided fast-Weighted Total Least Squares (Helmert-
VCE-Aided WTLS) is an advanced least squares (LS) method. Compared with traditional
LS, Helmert-VCE-aid WTLS method can not only automatically adjust the weight for each
source of data for LS, but also mitigate the bias inside the design matrices. The details of this
method are introduced in Chapter. 5.

2.3 Summary

This Chapter introduces the data and neural network methods used in this study in details.
The data section includes the IGS, GNSS-RO, satellite altimetry, ionosonde and ISR data.
The methods section includes DNN and RNN (including LSTM and bi-LSTM methods) and
Helmert-VCE-aided fast-WTLS. They will be used in the the following sections.





Chapter 3

Topside Electron Density Modelling
using DNN from GNSS RO Data

3.1 Introduction

Electron Density (Ne) is one of the most important ionospheric parameters that describes
how many electrons in a unit volume (commonly in 1 m3 or 1 cm3) at a specific altitude. The
variations and anomalies of Ne have been investigated by many researchers [3, 34, 102, 31,
69, 19, 95] since 1940s. Nowadays, with the development of GNSS, those Ne study becomes
more and more important since dual-frequency GNSS positioning can only remove the
first-order ionospheric delay, and higher-order ionospheric effects [52, 54] sometimes can be
non-negligible especially during high ionospheric disturbance periods [80]. High-resolution
vertical Ne profiles have been used widely in investigating those ionospheric anomalies (e.g.,
equatorial plasma bubble [31] and travelling ionospheric disturbances [102]).

A number of instruments are used to measure Ne profiles, and they can be broadly divided
into two categories: ground-based (e.g., ISRs [62] and ionosondes [83, 62]) and satellite-
based (e.g., Topside Sounder (TS) satellites [20, 9] and GNSS-RO satellites [92, 116, 97]).
Currently, the most frequently used Ne data are measured by ionosonde which have been
collected since the early 20th century. There are hundreds of ionosonde stations operating
all over the globe, and each station can provide Ne measurements in 15-30 minutes interval.
However, the flip side of the ionosonde measurements is that it cannot measure Ne profiles in
the topside ionosphere (above the peak of the F2 layer (i.e., hmF2) in the ionosphere) which
are very important in the ionospheric study. Topside information is currently obtained from
model prediction [9] based on either bottomside measurements (e.g., Vary-Chap function
[81] in the IRI) or physical mechanism (e.g., TIEGCM [67]). Topside information from both
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methods is prone to the effect of inherent assumptions in the models which could lead to a
potential bias problem in the prediction. The investigation of an enhanced topside model in
both spatial and temporal domains from topside measurements is, therefore, significant for
GNSS precise positioning and the study of the upper atmosphere.

Three of the aforementioned data sources (ISR, topside sounder and GNSS-RO) can
provide the topside measurements. Although ISR by far is the most powerful ground-based
remote-probing tool for the study of the ionospheric process [62], the horizontal coverage of
ISR is too limited (the window of sky view over the ISR station is very small) to be adopted
for global modelling. ISR data are thereby used as a reference in this study instead. In
addition, topside sounder satellites are no longer operational and there have been no launches
since the 1980s [9]. The horizontal distribution of measurements from topside sounder
satellites is not as good as that of GNSS-RO. An analysis of GNSS-RO and ground-based
data shows that COSMIC, which is one of the GNSS-RO missions, profiles are generally
in a good agreement with ionosonde profiles both in NmF2, hmF2 and the bottomside part
of the profiles [59]. The comparisons made between COSMIC derived Ne profiles and
those measured by ISR at Millstone Hill in Massachusetts (mid-latitude) and Jicamarca
(low-latitude) in Peru is shown by Lei et al. [64]. Generally, the COSMIC profiles agree well
with the ISR measurements. Thus, GNSS-RO data are considered to be the optimal data
source for the topside Ne modelling in this study.

As is mentioned above, generally there are two kinds of topside Ne (above hmF2)
models —the empirical and physical models. In addition to the spatial and temporal features
considered, the empirical topside model is mostly based on the characteristics of the topside
profile [19, 9] (e.g., the Chapman model consists of the effective scale height [70]), and the
physical/semi-physical model has taken some physical features (e.g., Kp, F10.7 and magnetic
fields) into account [82].

Due to the fact that the exact relationship between Ne and the independent variable set is
unknown, DNN is used in this study. Again, the DNN was initially inspired by biological
neural systems for regression or classification of an unknown function based on a large
amount of input/training data. Nowadays, a neural network has been widely used in many
fields, e.g. data mining [18], atmospheric modelling [101, 55, 45, 88], and even automatic
driving [33]. It is well-known that a set of observation equations (or so-called “design
matrices”) need to be designed first in the traditional Least Squares (LS) estimation method
for regression modelling [74]. The design matrices are generally based on the assumed
relationships between the dependent and the independent variables. However, as mentioned
above, some of the exact relationships are unknown. Fortunately, neither the observation
equations nor apriori knowledge of the relationship is required in the modelling of ANN.
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This network system can automatically construct the optimal regression function based on
the sample data and the designed network [43].

This study investigates a new four dimensional (in spatial and temporal domains) topside
Ne model constructed from GNSS-RO measurements using a L2-DNN approach and a
comprehensive independent variable set (which is so-called "training"), and then obtains
the Ne (which is so-called "prediction") by giving the input set. However, several physical
variables in the input set, representing the features of Ne profile (including electron density
peak (NmF2) and hmF2), cannot be obtained everywhere (or anytime) without an external
data source (e.g., models). Therefore, in this study, hmF2 and NmF2 models are developed
from COSMIC (similar to the model developed by Sai Gowtam and Tulasi Ram [88]) for
providing the inputs (subsequently used during the prediction) where hmF2 and NmF2
measurements are unavailable (hereinafter this scenario is called "with sub-models" mode).
The same modelling approach is used in the construction process of the two sub-models.
"Out-of-sample" COSMIC measurements (which are not used in model training process),
together with the data from other GNSS-RO missions (e.g. GRACE) and ISR are used as
references to evaluate the performance of the new Ne model. In addition, the effectiveness of
each variable (including two sub-models) and the characteristics of the new model results,
are also investigated.

3.2 Paper A: Four-dimensional Topside Electron Density
Modelling using L2-ANN from GNSS-Ionospheric Ra-
dio Occultation Data

Citation: Hu, A.; Wu, S.; He, C.; & Zhang, K. Four-dimensional Topside Electron Density
Modelling using L2-ANN from GNSS-Ionospheric Radio Occultation Data (Under Review)

Status: Submitted to Space Weather on 3 May 2019

3.3 Summary

In this study, a new topside four-dimensional Ne model was developed using an advanced
deep-learning technique (L2-DNN) and the COSMIC satellite-to-satellite limb sounding (i.e.
GNSS-RO) measurements. A new variable set by considering both physical and empirical
information in the ionosphere was designed. Two sub-models (i.e. NmF2 and hmF2)
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were developed and subsequently used as inputs in the DNN when no hmF2 and NmF2
measurements were available. The performance of the new model was then evaluated by
comparing with IRI-2016 model using the out-of-sample COSMIC data as well as GRACE
and ISR data as references. The effectiveness of each variable and modelling approach was
also investigated and the results showed:

• Compared with the out-of-sample COSMIC measurements, hmF2 and NmF2 sub-
models agree better than the international reference ionosphere-2016 (IRI-2016) by
4.5% and 11.0% respectively;

• The new model developed outperforms IRI-2016 by 35%, 36% and 53% in comparison
with out-of-sample COSMIC, GRACE, and ISR data respectively. In addition, the
model with sub-models also outperforms IRI by 16% with regards to ISR data;

• The spatial and temporal variables, together with hmF2, NmF2 and F10.7, Kp affected
the performance of the topside Ne model significantly.

• The new model inherited the characteristics of COSMIC measurements in low and
high solar activity conditions. The EIA and MSNA phenomenons were also revealed
in both the model outputs and COSMIC measurements;

• The new model agreed better with GRACE data rather than ISR (relative differences:
12.4% versus 24.3%), which may suggest that the quality of GRACE data are similar
with that of COSMIC in this type of applications. Hence, GNSS-RO may be considered
as a new and promising source of measurements in improving the performance of the
topside Ne model in future.



Chapter 4

Investigation of Topside VSH Based on
GNSS-RO Measurements

4.1 Introduction

The scale height is often used to characterise Ne profile [99, 4, 70]. Three definitions for scale
height can be found in the literature —plasma scale height (Hp), effective scale height (Hm),
and VSH [70]. Hp can be directly obtained from Tp using Hp = kbTp/mig. Hm is defined as
the scale height of a Chapman-α function fitting the Ne profile taking both the topside and
bottomside of the ionosphere into account. The VSH is generally defined as the value of
dh/d(ln(Ne)), relating to the gradient of the topside Ne profile [61]. The relationship between
the three scale heights has been explored [63, 42]. The VSH, as one type of ionospheric
scale heights, has been used in ionosphere studies (e.g., geomagnetic storm analysis [42]).
VSH, together with NmF2 (the peak electron density in the F layer) and hmF2 (the height
of peak electron density), can be used to reconstruct topside electron density (Ne) profiles
(especially below the transition height). Both NmF2 and hmF2 can be obtained from a
classical empirical model, e.g. IRI model [14, 7, 8, 15, 11]. VSHs obtained from Topside
Sounder (TS) measurements do not have sufficient density/coverage of observations in some
regions. Establishing a global VSH model using homogeneous observations around the world
is therefore important for the construction of global ionosphere models.

It is well known that the Te, as the main component of Tp, strongly depends on the
local slope of the vertical electron density profile [e.g., 16, 70]. There are no techniques
that can provide long-term global Te measurements with a high vertical resolution except
empirical/physical models, it is important to adopt VSH as an independent variable to aid
the model (such as Te-Ne model). In addition to utilise VSH in modelling, although the



26 Investigation of Topside VSH Based on GNSS-RO Measurements

characteristics of topside ionosphere is too complex to be described only by VSH, VSH
can still be used for the investigation of the complex topside ionosphere. For example, the
constant Ne gradient assumed in the VSH definition implies a constant plasma temperature
in O+ dominated topside ionosphere by neglecting the presence of He+ ions [61, 60].

The ionospheric VSH of an EDP is generally defined as the value of dh/d(ln(Ne)) from
the topside EDP ( from 1.1×hmF2 to max(hmF2+200,500) km, which is O+ predominance )
[61]. More specifically, VSH is the first derivative of altitude (h) with respect to ln(Ne) at the
peak of EDP in F layer (NmF2) [61, 60]. It should be noted that the correlation coefficient
of VSH will be poorer if the upper boundary reaches the COSMIC’s orbit. Traditionally, the
VSH over a geographic location can be obtained from an EDP measured by instruments,
such as TS, ISR and RO. If no such measurements are available, the only option is to use
a global ionosphere model, such as the IRI or the TIEGCM model to obtain the VSH for a
given location.

Depuev and Pulinets [30] developed a global topside EDP model by fitting the data from
Intercosmos-19 topside sounders. Kutiev et al. [61] used 170,033 VSHs measured from two
topside satellites—Aluoette and ISIS—and added extra variables (i.e. F10.7 and Kp compared
to Depuev and Pulinets [30]) to develop a new topside EDP fitting model. However, the
variation of VSH with longitude has not been taken into consideration in their model, mainly
due to the inhomogeneous distribution of the TS data with respect to longitude [61].

In addition, Gulyaeva [42] used TEC obtained from IGS GIM, together with the NmF2
and hmF2 obtained from ionosondes, as the input for IRI-Plas [8] to generate VSH. This
research shows that the VSH increases with the absolute value of the geomagnetic latitude
during a geomagnetic storm. However, in their study the conclusion was drawn using only
the ionosonde data (i.e. the locations of seven ionosonde stations; five other stations were
used for validation). Therefore, the horizontal resolution may not be adequate to reveal
detailed global VSH features. A better VSH model based on new data sources is therefore
required for obtaining a high spatial resolution of VSH values.

In this study, ionospheric RO data were used to investigate the inclusion of an additional
variable – longitude– in the global VSH modelling process for improving the model accuracy.
The quality of GNSS-RO data and its products has been assessed by many researchers. Lei
et al. [64] showed some of the first comparisons made between COSMIC derived electron
density profiles and those measured by ISRs at Millstone Hill in Massachusetts (mid-latitude)
and Jicamarca (low-latitude) in Peru. Generally, the COSMIC profiles agree well with the
ISR measurements. Lei et al. [64] and Stolle et al. [100] compared electron density profiles
derived from RO measurements on-board CHAMP and COSMIC and ISR data. Generally
speaking, the RO results agree quite well with ISR data on a comparison with F2 layer peak



4.2 Paper B: Modeling of Topside Ionospheric Vertical Scale Height Based on Ionospheric
Radio Occultation Measurements 27

density. Although RO data have been applied in the latest version of the IRI model (i.e.
IRI-2016 [10]), this inclusion was limited to the hmF2. The data sources for the topside EDP
modelling of IRI since IRI-2007 were from Aluoette and ISIS [15]. This analysis explores
the possibility of incorporating RO data in the topside EDP modelling as a new source of
data.

The traditional Base-Vector-Based Least Squares (BVBLS) estimation method [61] was
used to estimate the unknown coefficients of a topside VSH regression model. In the event
that longitude is added as a variable, the computational requirement is beyond the capacity of
an ordinary PC or even a normal workstation. A more advanced and sophisticated technique –
DNN – is proposed in this study to solve this problem and to explore the relationship between
the VSH and longitude. The DNN is an effective tool in investigating if the correlation
between a set of dependent variables and a new variable is significant.

In this study, a new VSH model is established from the COSMIC [91] measurements
using the DNN approach. Its accuracy is assessed by comparing to models in various
configurations with out-of-sample RO measurements and ISR measurements as internal and
external references respectively. The effectiveness of each new variable is also assessed.
In addition, the improvement of the VSH model in geomagnetic storm conditions is also
explored.
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4.3 Summary

In the past, global VSHs were modelled using TS measurements and the BVBLS estimation
method, and several spatial and temporal variables were included in the models. Longitude
is usually excluded from the variable set of the modelling. One possibility is due to the
inhomogeneous distribution of TS data along the longitudinal dimension and the limitation

https://doi.org/10.1029/2018JA026280
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of BVBLS on computational capacity. In this study, the DNN method was applied to global
VSH modelling process to address the computational limitations of BVBLS. A new data
source –RO data –was also used in the modelling. Since RO data are typically homogeneously
distributed over the globe, it is possible to take the longitude into account in the variable set
of the new model. Testing results showed that with the inclusion of longitude, the accuracy of
the model improved by only around 1% globally, but was shown to have a substantial positive
impact in equatorial and high-latitude regions. Further, the accuracy of the RO-derived
models was found to be around 9% better than that of TS-derived models.

In terms of modelling techniques, this study revealed a couple of key advantages in
adopting the DNN method for modelling the VSH over the previous BVBLS method. First,
the VSH results from the DNN model were found to agree more closely than the BVBLS
model with both the out-of-sample data and the independent ISR data from low, mid and high
latitudes. Second, the DNN VSH results reveal a clear equatorial peak during the geomagnetic
activity, which was not presented in the BVBLS results; the storm-time equatorial peak was
verified in the RO observations.

In conclusion, it is suggested that the proposed VSH model could be used to update or
improve the current empirical VSH models (even for Te modelling in Chapter 7) and enhance
the understanding of topside ionosphere.



Chapter 5

A New GIM Developed by
Helmert-VCE-Aided fast-WTLS Method
from Multi-Source of Data

5.1 Introduction

The ionospheric delay is proportional to the TEC along the ray path and inversely proportional
to the frequency of the signal squared. It is one of the major errors in GNSS measurements,
which significantly affects the performance of GNSS applications such as single-frequency
positioning. If this delay can be accurately estimated, the ionospheric error in GNSS
measurements can be corrected or considerably mitigated. Since the ionosphere is a dispersive
medium, the ionospheric delay can be largely mitigated using the differential approach – a
linear ionosphere-free combination of simultaneous dual-frequency GNSS measurements.
However, for single-frequency measurements, the ionospheric delay cannot be mitigated
through the differential approach. In this case, an ionospheric model can be used to correct
the ionospheric delay at the user’s location. The ionospheric model can be derived from
a network of GNSS reference stations where dual-frequency receivers are deployed. The
vertical TEC (VTEC) values over all the network stations are often used to develop a VTEC
model for the region covered [57].

Several types of global empirical VTEC models have been developed, e.g. the Global
Assimilative Ionospheric Model [26, 27], and empirical models such as NeQuick [50, 82] and
the IRI [14, 7, 8, 15, 11, 10]. In addition, several different GIMs are produced by a number of
IGS data processing centres [84, 115, 112], including NASA JPL, European Space Agency
(ESA), the Polytechnic University of Catalonia (UPC), Center for Orbit Determination in
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Europe (CODE) etc. All of these are official near real-time ionospheric products of the IGS
Ionosphere Working Group using a similar approach (i.e. spherical harmonic (SH) models
with a 2-hour temporal resolution). Detailed comparison among the current GIMs can be
found in Hernández Pajares et al. [48].

Traditional VTEC data used for producing GIMs are obtained from ground-based GNSS
measurements collected at global IGS stations. In a 2-hour period, the number of measure-
ments can reach one million, which is regarded to be sufficient for generating a high-accuracy
GIM [46, 47, 73]. [66] estimated GIMs by an innovative approach –SHPTS functions and
the data from the BeiDou-2 system were also used in the modelling. However, due to the
lack (or low number) of IGS stations in some regions, especially over the oceans, the GIMs
produced may not perform well across the entire globe.

In order to improve the performance of GIMs, Todorova et al. [104] established another
GIM by incorporating VTECs derived from GNSS measurements with satellite altimetry (e.g.
Jason-1) measurements mainly for compensating insufficient data over the oceans. The per-
formance of the GIMs showed significant improvements, but the inhomogeneous distribution
of the satellite altimetry data over the oceans is still a factor limiting the model’s performance.
To overcome this problem, Alizadeh et al. [1] for the first time took into consideration an
additional data source – VTECs retrieved from GNSS-RO of the COSMIC/FORMOSAT-3
satellites into global ionospheric modelling and the accuracy of the VTEC GIM over the
ocean regions was further improved. The combined GIMs of VTEC show a maximum
difference of 1.3–1.7 TECU with respect to the GNSS-only GIMs on the whole day.

When the VTEC data used in the LS estimation for the optimal coefficient estimates of
the ionospheric model have different precision or qualities, the use of appropriate weights
plays an important role in getting the “optimal” estimates. Therefore, instead of using the
apriori variance (or covariance) of the observations to determine the weights, Chen et al. [27]
applied a Helmert VCE method to estimate the variance of each type of observations, and the
results showed further improvement to the GIMs [27].

In addition, each element in the design matrix of the observation equations is usually a
fixed value derived from the approximate coordinates of the ionospheric pierce point (IPP)
for each of the VTECs derived from ground-based GNSS and Jason observations. However,
for each RO-derived VTEC, the coordinates for the tangent point (similar to the IPP for a
GNSS observation) of the RO event vary during the event which can last 1-2 minutes, thus
its coordinates are no longer fixed values (up to 10 degrees in the geomagnetic coordinate
frame). This means that neglecting the uncertainty in the elements of the design matrix may
not be appropriate. In this study, the fast WTLS method was adopted [39, 89, 94] instead
of using the conventional least squares estimation and the uncertainty of the elements in
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the design matrix was also taken into account in this approach. Moreover, the sequential
technique was also used (rather than the conventional batch processing approach) in order to
reduce the large computational load of the model estimation process.

In order to assess the improvement of the new approach, the latest GIM developed by
the GIPP of the Chinese Academy of Sciences (hereinafter called ‘CAS’) [66, 114]. The
CAS model was based on SHPTS and validated using several data sources. This includes
the ionospheric TECs retrieved from global GPS data, the GIMs released by the other
Ionospheric Associate Analysis Centers (IAACs), the TOPEX/Poseidon satellite and the
DORIS etc. According to Li et al. [66], the CAS model could achieve an accuracy of 2–6
TECU approximately over areas without GNSS observations, and its performance is similar
to those of other models released by IAACs. To further validate the accuracy of the new
model, out-of-sample Jason-3 measurements are also used as an external reference in this
study.
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5.3 Summary

In this study, an innovative approach –Helmert-aided fast-WTLS was proposed to enhance
global VTEC modelling process. Three VTEC data sources including ground-based GNSS,
satellite altimetry and RO data were used to establish a global SH model for generating a
GIM. Test results showed: 1) the fast-WTLS approach can improve the accuracy of the GIMs
by around 5% since the uncertainty of the design matrix of the observation equations of the
SH model has been taken into account; 2) the accuracy improvement was more pronounced
when the GIMs (provided by GIPP, i.e. CAS) was selected as the reference (roughly 8%); and
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3) the improvement of the proposed model over the ocean is validated by using out-of-sample
Jason-3 measurements as reference and about 20% improvement (mostly over the ocean) has
been achieved.



Chapter 6

Using Bi-LSTM Method for hmF2
Forecasting from Ionosonde
Measurements in Australian Region

6.1 Introduction

The height of F2 peak (hmF2) is an essential ionospheric parameter that is defined by the
altitude of Ne peak in the ionosphere. The variation of the hmF2 reflects the ionospheric
variability. Therefore, it can also reveal the activity of either the earth magnetic field (B)
or the solar wind [76, 40]. In addition, hmF2 forecasting can be considerably important in
analysing the structure of ionosphere and enhancing both GNSS positioning and LEO orbit
determination (especially during scintillation) capabilities.

The hmF2 can be obtained through a number of techniques, such as digisondes/ionosondes,
GNSS RO satellites and topside sounders. Ionosonde is a typical ionospheric sounding device
that has been used widely for over 90 years (can be traced back to 1920s [29]) due to its
high accuracy. Currently, there are hundreds of ionosonde stations operating all over the
globe, and each station can provide hmF2 in 30 minutes frequency. Therefore, ionosonde-
derived hmF2 has been widely used as the data source for ionosphere modelling (e.g., IRI
[12, 13, 15, 71, 2, 11, 10]). The ionosonde-only model developed by Altadill et al. [2]. is
called the “AMTB” model which represents the first character of the four authors’ surnames.
Concurrently, Hoque and Jakowski [51] established their model based on data from both
the ionosonde measurements and GNSS-RO, including CHAMP, GRACE, and COSMIC.
Shubin et al. [96] developed a hmF2 model based on radio occultation data from COSMIC,
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GRACE, and CHAMP only. The AMTB and Shubin’s models have been selected for the
inclusion in the 2016 version (the latest version) of the IRI model [10].

Sai Gowtam and Tulasi Ram [88] carried out the hmF2 modelling in a different way.
Most current models are established using known base functions (i.e. empirical orthogonal
functions or spherical harmonics functions) which may not be perfect. Sai used the ANN
technique (with only one hidden layer) to estimate the coefficients without knowing the
base function of independent variables in advance from COSMIC (ibid). Tulasi Ram et al.
[109] then further enhanced his model by including other RO measurements (i.e. GRACE
and CHAMP) as well as ionosonde data as data sources. Furthermore, he also assessed the
performance of the ANN model by comparing with IRI-2016 model, and also proved that the
anomalies of ionosphere (e.g., EIA and MSNA) are well captured by the model [88, 109].

All the above models, however, have a common disadvantage that several physical
parameters, such as F10.7 (a measure of solar flux per unit at a wavelength of 10.7cm) and Kp

(a global geomagnetic activity index) which can only be measured in real-time (or near-real-
time) are required as inputs for the hmF2 models. Therefore, the values of those physical
parameters have to be estimated during the process of hmF2 forecasting which may impact
the quality of the hmF2 output from the model.

In this study, a more advanced machine learning technique —bidirectional Long Short-
Term Memory network (hereinafter termed “bi-LSTM” [93]) is used for predicting/forecasting
hmF2 from ionosonde-only data at 12 ionosonde stations in the Australia region. In com-
parison with ANN, the Bi-LSTM method can be considered as a special type of the RNN
technique which takes into account of the sequential variation of hmF2 value. This advan-
tage offers us an opportunity to perform the prediction by using the data in recent epochs.
However, this technique has some disadvantages. The most important one is that the sample
data of the model must be continuous (each sample set must have the same time intervals)
and at the same location, which is not as flexible as ANN. This is another reason why the
ionosonde data were selected for this study (i.e. continuous measurements at a fixed location).
First, hmF2 models for each station were established and assessed, then a regional hmF2
model was built by considering the geographic location of the stations (i.e. longitude and
latitude). The three models aforementioned, i.e. AMTB, Shubin and ANN models [90] were
selected for comparison. The traditional LSTM model was used for the evaluation to show
the advantages of the bi-LSTM. Out-of-sample ionosonde data were used as the reference.
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6.3 Summary

In this study, a new Australian regional hmF2 forecast model was developed from ionosonde
data using the Bi-LSTM method. With this new model, hmF2 values can be predicted well
forward up to five hours using the data in the past five hours. Decimal Month, LT, geographic
longitude and latitude, together with Kp, F10.7 and hmF2, in the past five hours, were chosen
as an independent variable set to model the hmF2 in the hour forward. Various assessments
have been conducted by comparing the new model with the AMTB, Shubin, ANN and LSTM
models. Results showed that:

1. The new bi-LSTM and LSTM models substantially outperform the other three tested
models, even when real-time data are used as part of the input for these three models.

2. The new model is more robust, and more easily and rapidly converge compared to the
LSTM model. The overall performance improvement of the new bi-LSTM model is
30% compared to the ANN regional model.

3. The minimum sample numbers for the LSTM and bi-LSTM methods to converge are
around 3000 and 2000 respectively.

4. The biLSTM-1h and biLSTM-3h (using the bi-LSTM for predicting hmF2 in 1, 3 and
5 hours forward at each station) agree better with ionosonde measurements compared
to the Shubin model, but the biLSTM-5h is slightly worse than that of the Shubin
model.

5. The performance of the Shubin model is better than that of the AMTB model in
Australian region.

https://doi.org/10.3390/rs10101658




Chapter 7

Global Topside Electron Temperature
Modelling from ISR Measurements

7.1 Introduction

Ionospheric plasma temperature (Tp) reflects the overall energy absorbed from solar and
cosmic radiation by the upper atmosphere and is one of the essential factors reflecting the
ionospheric variability [103]. It is also found that the variation of Tp affects the thermal
equilibrium in the Earth’s upper atmosphere significantly [120]. Tp is taken to be the average
of ion temperature (Ti) and electron temperature (Te). The value and variation of Te are
considerably larger than those of Ti, especially in the topside ionosphere. Hence, Te variation
(in both spatial and temporal domains) is the primary research focus of this study. Obtaining
a high-resolution high-quality Te map all over the globe could prove to be significant for
gaining a better understanding of the upper atmosphere and its interaction with the space
environment.

Te is measured by various instruments (e.g., incoherent scatter radar (ISR) station from
the ground, and ISIS, AE-C and AEROS satellites from the space). However, none of them
can provide Te measurements with both high spatial and temporal resolution. Among all
types of Te measurements, ISR measurements have the best vertical resolution and accuracy
[41, 32, 122, 58, 119, 63]. However, the disadvantage of ISR is that although a number of
ISR stations are deployed all over the globe, only some of them can provide Te measurements
and the horizontal coverage of ISR is quite limited (the window of sky view over the ISR
station is very small). In contrast, measurements from spacecrafts have better horizontal
coverage but its vertical coverage and accuracy are not as good as that of ISR measurements.
Hence, many efforts have been made to develop a Te model in order to provide the global
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Te information with high quality and high resolution. Brace and Theis [16] used Te and Ne

samples from Atmosphere Explorer-C (AE-C) data during solar minimum to develop the
Brace-78 model based on the relationship between Te and Ne. Brace-78 still exists in the
latest IRI model, although several essential factors such as solar activity (i.e. F10.7), local
time, season and magnetic condition (i.e. Kp/Ap) were not taken into account. Considering
the sparseness of Te and Ne data from one single spacecraft in both the spatial and temporal
domains, Brace and Theis [17] used the data from multi-satellite missions (i.e. AE-C and
ISIS-1/2) to develop four fitting models for Te at 300, 400, 1400 and 3000 km altitudes
with 8th order Legendre polynomials. The variables of the models were dip latitude, local
time, solar activity, and magnetic activity. However, the Te models exhibited a low vertical
resolution, and Ne information was not considered in their study. Since then, many efforts
have been made to improve Brace’s models, e.g. Mahajan and Pandey [72], Bilitza and Hoegy
[12], Titheridge [103], Truhlík et al. [107], Webb and Essex [110], Truhlik et al. [105, 106].
The TBT-2012 model developed by Truhlik et al. [106] is the latest Te model and is applied
in the IRI-2016 model. The TBT-2012 model used the variables of magnetic local time,
invdip (calculated from invariant latitude and diplat) [108] and PF10.7 (for solar activity).
However, geomagnetic activity and Ne information have not been considered in these models
accordingly, although it was shown that Te significantly varies with Ne [63, 120, 16].

Instead of using traditional modelling approaches, the DNN, as an advanced artificial
neural network technique is selected as the modelling method in this study due to the fact
that the exact relationship between Te and the whole variable set is not entirely known. The
DNN technique has been widely applied in many fields, e.g. data mining [18], atmospheric
weather prediction [101] and even automatic driving [33], since it is much more adaptive than
many other machine learning methods (e.g., support vector machine) in regression modelling.
More importantly, DNN is able to optimise the regression model without knowing the exact
base vector of each independent variable, which makes it a powerful tool for space physics
modelling.

In this study, both DNN and ISR data are used to model the topside Te, and the Ne profiles,
along with other variables such as VSH obtained from the topside Ne profile, are adopted as
independent variables for this new Te model. VSH is often used to characterise the topside of
an Ne profile [99, 4, 70], which is generally defined as the value of dh/d(ln(Ne)), relating to
the gradient of the topside Ne profile [61]. Lei et al. [63] showed evidence of the statistically
relationship between the VSH and Te profile in the topside ionosphere. Therefore, in this
study, four variables reflecting the characteristics of the Ne profile (VSH, together with hmF2,
NmF2 and correlation coefficient (r) between the measured Ne profile and its fitting profile
(i.e., exponential function)) are added into the independent variable set of the new Te model.
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7.3 Summary

In this study, the DNN technique was used to model the global topside Te using ISR mea-
surements, and out-of-sample ISR measurements were used to evaluate its performance. The
model was also compared with the Brace-78 and TBT-2012 models. After obtaining the new
model, Te results can be generated from GNSS-RO measurements based on the new model
and the results were then compared with Te from TIEGCM to further investigate if the Te

variability was well captured by the new model.
In terms of modelling techniques, this study revealed a couple of key advantages in

adopting the DNN method and ISR measurements for modelling the Te over the existing
methods. First, the Te results from the new model were found to agree more closely than
the Brace-78 and TBT-2012 models with the out-of-sample independent ISR data from low,
mid and high latitudes. Second, the regional new Te models can be converged by only taking
500 ISR profiles as modelling sample data and the accuracy of the model was shown to be
improved by taking candidate variables into account during the DNN training. Eventually,
the characteristics revealed by the DNN Te results agreed with TIEGCM, e.g., the clear
morning and evening enhancements in the altitude-LT and latitude-LT analysis. Furthermore,
the study also proved that the bias between the new model and TIEGCM was mostly because
TIEGCM always underestimates the Ne measurements.

One of the current limitations of this study is the inhomogeneous temporal distribution
of observations from both ISR and RO which leads to the performance of the model during
nighttime is not as good as that during daytime. Another limitation is the complex interactions
in high-latitude region between the magnetosphere and ionosphere which result in a lower
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reliability and accuracy of the high-latitude sub-model (existed in TBT-2012 and Brace-78 as
well).

More and more GNSS-RO satellite missions are launched or being launched recently (e.g.
COSMIC-2, FY-3E, etc), thus the number of RO data will be increased and the number of
Te profiles obtained from our model will be increase simultaneously. Besides, an advanced
high-power phased array incoherent scatter radar is under construction in Sanya, China [121]
which might be able to provide better data (especially in equatorial region) for the new Te

modelling in the near future. In conclusion, it is suggested that the proposed Te model could
be used to update or improve the current empirical Te models (even for Te modelling in
future) and enhance the understanding of the topside ionosphere.



Chapter 8

Summary, Conclusion and
Recommendation

8.1 Summary and Conclusion

The primary aim of this research was to investigate the application of the neural networks
(including DNN and Bi-LSTM) and some other new methods (Helmert-VCE and WTLS) to
develop new ionospheric models (including hmF2, electron density, electron temperature
V SH and V T EC) based on multi-source data. The findings from this research suggested
that the new techniques (especially the NN) have great potential to be used in ionospheric
modelling. These new models developed are expected to be helpful in the application of
GNSS positioning and space weather analyses. The main research tasks conducted and
findings from the results are listed as follows:

• The Helmert-WTLS developed VTEC GIMs (with a 2h temporal resolution) can
improve the determination of VTEC by 0.28 TECU over those from the Helmert-WLS
approach (with reference to CAS) and by 1.61 TECU better than those from WLS, in
terms of the mean RMSE in the 8-day testing period. In addition, by comparing with the
out-of-sample Jason-3 observations, results from the proposed method also outperform
Helmert-WLS, CAS and CODE models by 1.5, 2.4 and 2.4 TECU, respectively.

• The median of the relative residuals of the new VSH model is 8.5% less than that of
the traditional approach/model (which was based on the TS data). The apparent errors
in the polar region are mitigated by taking the variable longitude into consideration.
The new model also agrees better than IRI model by around 14% and 10% with
regards to the out-of-sample COSMIC data and ISR data respectively; In addition, the
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characteristics of the global VSHs generated from the new model during geomagnetic
storms agree with the reality better than that of the traditional model.

• The new Te model has a relative error of 7.3% in the low-latitude region (i.e., against
Arecibo data), 8.2% in the mid-latitude region (i.e., against Millstone Hill data) and
13.6% in the high-latitude region (i.e., against Poker Flat data), and all of them out-
perform IRI significantly. In addition, statistical analyses of the diurnal electron tem-
perature profiles obtained from GNSS-RO show a good agreement with the TIEGCM
outputs on some features.

• The new hmF2 model using Bi-LSTM can substantially outperform the current model
(Shubin & AMTB) and those models using ANN and LSTM. Compared to the model
developed by LSTM, the new hmF2 model is proven to be more robust and can rapidly
converge. The minimum sample number required for the Bi-LSTM method (i.e. 2000)
to converge is about 50% less than that is required for the LSTM method (i.e. 3000). In
addition, compared to the Shubin model, the Bi-LSTM method can effectively forecast
the hmF2 values up to 5 hours.

• The new topside Ne model developed agrees better than IRI-2016 by 35%, 36% and
53% with regards to out-of-sample COSMIC, GRACE, and ISR data respectively.
In addition, the model developed with sub-models is also better than IRI by 16%
with regards to ISR data. The spatial and temporal variables affect the performance
of the topside Ne model significantly. In comparison with these variables, F10.7 and
Kp, together with hmF2 and NmF2, affect the performance on a smaller scale. The
two sub-models (NmF2 and hmF2) agree better with the out-of-sample COSMIC
measurements than IRI-2016 by 4.5% and 11.0% respectively. The new topside Ne

model agrees well with COSMIC measurements during both solar maximum and solar
minimum conditions. The ionospheric anomalies (e.g., MSNA and EIA) can be well
captured by the new topside Ne model.

8.2 Future work

In the current study, most of the ionospheric models are used for nowcast (except hmF2
model) since either it is a short-term model or some real-time physical parameters are required
as part of the input (e.g., kp or F10.7). hmF2 model can only forecast with the data from the
past five hours at a specific geographic location. In addition, the DNN method is indeed a
general universal method but it also results in the fact that DNN does not perform very well
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in dealing with the dataset in either spatial or temporal domains. Both CNN and RNN are
designed only for individual spatial and temporal dataset respectively, thereby they don’t
perform well in the spatio-temporal modelling. Fortunately, with the rapid development of
modelling methods, some machine learning algorithms which perform well in both domains
(e.g., Multi-Layer Recurrent Neural Network or Convolutional Recurrent Neural Network)
are developed/matured, a forecast model with less limitation in both spatial and temporal
domains is feasible. Hence, one future work is to investigate these advanced neural network
methods and utilise them for advanced ionospheric modelling in order to not just improve
the performance of the models but to show better physical features (namely, better fitting to
the real ionosphere).

Although the NN used in this study is better than the traditional least-squares method in
many areas, the uncertainties/covariance of coefficients are still missing (which do exist in
the LS procedures). The uncertainties are pretty essential to help us understand not only what
happens inside the model during the modelling, but also a physical mechanism explanation
of the model. That is also one of the main reasons why so many space weather physicists are
sceptical to machine learning. It is currently one of the top priorities in this area and also
one of my primary research foci in future. I have tried to use several other machine learning
techniques (e.g. Gaussian Process) to assist the NN in order to gain that uncertainty. Some
achievements have been obtained and presented in a conference paper (i.e., IGL-1). Further
publications are under preparation.

Nowadays, more and more GNSS RO satellite missions are either planned to be ready to
launch, thus the number of RO profiles will increase significantly. An advanced high-power
phased array incoherent scatter radar is under construction in Sanya of China which might be
able to provide better data source (especially in the equatorial region) for the new Te model
[121] in the near future. Another future work will be focused on improving the quality and
spatial resolution of the ionospheric model by assimilating new sources of data.
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