Thank you for downloading this document from the RMIT Research Repository.

The RMIT Research Repository is an open access database showcasing the research outputs of RMIT University researchers.

Citation:

See this record in the RMIT Research Repository at:

Version: Accepted Version

Copyright Statement:
©2017 Australian Health Promotion Association

Link to Published Version:
https://dx.doi.org/10.1002/hpja.2
Exercise at an onsite facility with or without direct exercise supervision improves health-related physical fitness and exercise participation: an 8-week randomised controlled trial with 15-month follow-up.

Running head: Exercise supervision in the workplace: RCT

Abstract

Issue addressed: Physical activity and exercise participation is limited by a perceived lack of time, poor access to facilities and low motivation. The aim was to assess whether providing an exercise program to be completed at the workplace with or without direct supervision was effective for promoting health-related physical fitness and exercise participation.

Methods: Fifty university employees aged (mean±SD) 42.5±11.1 years were prescribed a moderate- to vigorous-intensity aerobic and resistance exercise program to be completed at an onsite facility for eight weeks. Participants were randomly allocated to receive direct exercise supervision or not. Cardiorespiratory fitness (VO₂max) and maximal muscular strength were assessed at baseline and 8-weeks. Self-report physical activity was assessed at baseline, 8-weeks and 15-months post-intervention.

Results: Attendance or exercise session volume were not different between groups. Cardiorespiratory fitness (mean±95% CI; +1.9±0.7 ml·kg·min⁻¹; p<0.001), relative knee flexion (+7.4±3.5 Nm·kg⁻¹ %; p<0.001) and extension (+7.4±4.6 Nm·kg⁻¹ %; p<0.01) strength increased, irrespective of intervention group. Self-reported vigorous-intensity physical activity increased over the intervention (mean±95% CI; +450±222 MET·minutes per week; p<0.001), but did not remain elevated at 15-months (+192±276 MET·minutes per week).

Conclusion: Providing a workplace exercise facility to complete an individually-prescribed 8-week exercise program is sufficient to improve health-related physical fitness in the short-term independent to the level of supervision provided, but does not influence long-term participation.
So what?: Lower cost onsite exercise facility supervision is as effective at improving physical health and fitness as directly supervised exercise, however ongoing support may be required for sustained physical activity behaviour change.

Trial registration number: Australian New Zealand Clinical Trials Registry (ACTRN12613000453785).

Introduction

Physical inactivity\(^1\) and low cardiorespiratory fitness (CRF)\(^2\) are significant cardiovascular, metabolic and mortality risk factors; with evidence that CRF has a greater effect on cardiovascular risk reduction than physical activity per se.\(^3\) Independent of traditional cardiovascular risk factors such as age, smoking, family history of premature coronary heart disease, diabetes, hyperlipidaemia and hypertension, people with low CRF have a 2- to 3-fold increase in mortality risk.\(^2,4\) Increased mortality risk is additionally associated with low muscular strength,\(^5\) which is a greater predictor of mortality than muscle mass.\(^6\) Despite these well-recognised risks and the widely documented physical and psychological benefits associated with an active lifestyle,\(^7\) 41% of men and 48% of women living in high-income countries fail to meet advocated aerobic physical activity targets.\(^8\)

Further, even fewer adults meet the recommendations for muscle-strengthening activity.\(^9\) Given the substantial costs of managing the increasing burden of chronic diseases, facilitating exercise participation as a health promotion strategy is needed to improve known modifiable risk factors including physical activity, CRF and muscle strength.

A lack of time and access to facilities are commonly reported barriers to increasing exercise participation and improving health.\(^10\) Onsite workplace exercise programs have the potential to overcome these barriers for large numbers of individuals given that two-thirds of adults in developed countries have ongoing employment, and as such, the World Health Organisation recommends the workplace as a setting for exercise promotion.\(^11\) Furthermore, improved health
through health promotion programs offer potential benefits for both the employee and employer by
reducing the burden of employee health issues (absenteeism), moderating medical costs, increased
productivity, and boosting employee morale. Universities may be advantageous settings in which
to investigate workplace exercise participation strategies as these institutions often possess existing
infrastructure, resources and expertise required to deliver and monitor appropriate exercise or
health-promotion programs. Small to moderate magnitude increases in physical activity levels and
reductions in cardiometabolic disease risk factors have been observed following onsite workplace
exercise interventions. However, there is an absence of longitudinal follow-up data
investigating the effect of short to moderate duration onsite exercise programs with or without
direct exercise supervision on adherence to physical activity guidelines and ongoing physical health
outcomes.

Sustained increased exercise participation is required to maintain the myriad of associated physical
health benefits. Studies involving people with intermittent claudication and obesity have
reported increased participation, greater health (fat loss) and improved fitness (maximal walking
distance) with supervised compared to unsupervised (home-based or self-directed) exercise after
six weeks to 12 months. Improved exercise participation and health might be achieved with
supervision through increased participant motivation and exercise adherence. In contrast to these
findings in clinical non-workplace populations, exercise studies involving office workers with neck
and shoulder pain and overweight-obese individuals from the community did not find any greater
improvements to musculoskeletal or metabolic outcomes respectively, for supervised compared
to minimally supervised (i.e. supervision for the first two weeks only) or unsupervised (instruction
provided at program commencement only) resistance and combined aerobic and resistance
exercise over five and six months. Therefore, the effectiveness of direct exercise supervision to
improve long-term physical activity behaviour and associated cardiometabolic risk factors in
apparently healthy populations over and above the provision of an exercise program to complete at
an onsite exercise facility without direct individual supervision, remains unknown. Direct exercise supervision however, is expensive to administer. If direct exercise supervision is no more effective than providing access to an onsite exercise facility in promoting ongoing exercise adherence along with health and fitness improvements, there is little value in implementing this as a broad health promotion strategy. Given the limited effect of previous interventions to date, and the potential adherence and health benefits that direct exercise supervision might offer, it is pertinent to establish the effectiveness of providing direct (1:1) exercise supervision as a health promotion strategy as opposed to only providing an onsite facility in which to complete a prescribed exercise program. Therefore, the aim of this study was to assess whether providing an exercise program to be completed at the workplace with or without direct supervision was effective for improving CRF and muscle strength. A secondary aim was to investigate whether such participation was effective for increasing physical activity participation both over the short and longer-term.

Methods

Study Population and Design

This 8-week parallel group, randomised controlled trial with 15-month self-report follow-up (ACTRN12613000453785) was conducted from April 2013 to March 2015 in accordance with the CONSORT statement. Recruitment took place by advertisement on the university research webpage, flyers placed throughout campus buildings and employee mailboxes. Interested employees provided written informed consent to participate in the study, which was approved by the university Human Research Ethics Committee. Computer-generated concealed randomisation stratified by sex was used to allocate 50 university employees from a single Australian university campus to either directly supervised exercise (SUP; n=25) or exercise without direct supervision (CON; n=25) following baseline testing. Randomisation was implemented using individual opaque envelopes by a person independent of the investigators. Individuals aged 18-65 years, currently employed by the university and free from any condition for which exercise is contraindicated.
were eligible for participation. Limitations of funding and expertise dictated that assessors conducting outcome testing were not blinded to participant grouping. Physical activity behaviour was followed-up at 15 months by self-report questionnaire. Primary outcomes were CRF, muscular strength, exercise volume (exercise session attendance, aerobic and resistance training volume), and physical activity behaviour (walking, moderate and vigorous-intensity physical activity). Secondary outcomes were body mass, waist circumference and physical activity behaviour at 15-month follow-up. All participants were instructed to maintain their usual dietary intake and to avoid strenuous exercise for the 48 hours prior to each testing session.

Blood measurements were taken at baseline and anthropometric measurements were taken at baseline and 8-weeks. Following a 12-hour overnight fast, 8ml of blood was drawn from an antecubital vein. Serum was analysed for each of total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), triglycerides (TG), glucose and high-sensitive C-reactive protein (CRP) using Roche Cobas c701 and c502 instruments. Low-density lipoprotein cholesterol (LDL-C) was calculated using the Friedewald equation. Anthropometric measurements (body mass, height, waist circumference, body mass index) were measured using standardised protocols.

Exercise Capacity

Cardiorespiratory fitness was assessed using a multi-stage protocol on a cycle ergometer (Monark 828E, Sweden). Following a 3-minute warm-up (work-rate (watts):body mass (kg) ratio = 0.5:1), each subsequent 3-minute stage increased by 25 watts (W) until the participant reached 85% of their predicted maximum heart rate (HR_max), estimated using the equation: HR_max = 206.9-(0.67×age). Maximal oxygen consumption (VO2max; ml·kg·min⁻¹) was estimated with a validated equation at each stage and extrapolated to predicted HR_max.
Maximal knee flexion and extension strength were assessed by isokinetic dynamometry (Biodex Medical Systems, USA) using a standardised setup. Following five submaximal warm-up/familiarisation repetitions and two minutes of passive rest, five maximal concentric knee flexion and extension repetitions at 60°·sec⁻¹ were performed, with verbal encouragement provided by the assessor. Upper body strength (isometric grip strength of the dominant hand) was assessed using a digital hand-held dynamometer (Jamar Plus, Patterson Medical, Bolingbrook, IL) with the elbow at 90 degrees flexion and the maximum of three trials recorded.

Exercise Volume and Physical Activity Behaviour

Exercise session duration, mode, intensity (cycling watts, walking and jogging speed) and RPE were recorded for aerobic exercises and for any activities performed outside of the study. Aerobic training volume and activities performed outside of the study were calculated as MET-minutes of energy expenditure using the compendium of physical activities. Sets, repetitions, weight and RPE were recorded for resistance exercises. Resistance training volume (kg) was calculated using the equation: sets x repetitions x mass lifted (kg). The short-form International Physical Activity Questionnaire (IPAQ) was used to assess physical activity at baseline, after the 8-week intervention and at 15-month follow-up. Weekly energy expenditure (MET·min) was calculated using the validated IPAQ formula to classify individual physical activity levels.

Exercise Supervision

Participants were required to complete a minimum of one and a maximum of five onsite exercise sessions per week at any of the following gymnasium opening times that suited them on any given day (0730 to 0930; 1130 to 1400; and 1600 to 1830; Monday to Friday). Direct individual (1:1) supervision for every exercise session was provided to those allocated to SUP. Those allocated to CON received access to an exercise facility in which to complete the prescribed exercise, overseen by floor staff for safety, with assistance provided only if requested or required as is typical in a
standard gym setting. The exercise programs were prescribed and implemented by the same accredited exercise physiologist who guided all participants through their individual program at the beginning of the intervention, and at the beginning of week five when new exercises targeting the same muscle groups were introduced. Trained undergraduate exercise science students assisted with the day-to-day delivery of the programs (i.e. provided the exercise supervision for SUP and facility supervision for CON) under the guidance of an accredited exercise physiologist. No dietary advice was provided to participants.

Exercise Programming

Each participant was prescribed an 8-week moderate- to vigorous-intensity progressive aerobic and resistance exercise program at an onsite gymnasium, using American College of Sports Medicine (ACSM) guidelines. Twenty to thirty minutes of aerobic exercise (stationary cycling and outdoor walking and jogging) was prescribed at 64-74% of HR$_{max}$ for the initial four weeks and progressed to 74-91% HR$_{max}$. Three sets of 8-12 repetitions of a combination of three multi-joint (e.g. bench press, squat, lunge) and three single-joint (e.g. bicep curl, calf raise, abdominal curl) resistance exercises for the development of upper- and lower-body muscular strength were also prescribed with a between-set rest period of 30-120 seconds. Resistance load was adjusted to maintain an intensity of 15-18 on the 6-20 Borg RPE scale.

Statistical Analysis

All data were analysed using the Statistical Package for Social Sciences (SPSS for Windows, vers. 24.0, SPSS Inc., Chicago, IL, USA). Data were inspected visually and statistically for normality prior to analysis, and are presented as mean±SD unless otherwise indicated. An alpha level of 0.05 was set as significant for all statistical testing. An *a-priori* sample size calculation using previous literature suggested 100 participants were required, however post-hoc power calculations for
change to CRF between groups on data collected up until the summer break indicated an effect size
double that utilised for the \textit{a-priori} calculation (0.53 with 99\% power from our sample of 50
participants); therefore recruitment was discontinued.

To assess the effect of the intervention on fitness and anthropometric outcomes, two-way
(supervision x time) ANOVA were conducted using an intention-to-treat method whereby missing
values were substituted with the last known observation. Findings from per-protocol analyses
excluding the four withdrawals (SUP $n=3$, CON $n=1$) were not different to intention-to-treat
analyses, therefore only intention-to-treat analyses are presented. Sex, working hours and
employment role have previously been show to not influence the physical activity levels of
university employees, therefore were not included as covariates in the two-way ANOVA analyses.33
Effect sizes (ES) are reported to indicate the magnitude of the effects. Partial eta squared are
reported to better account for within group variation with a value of ≤ 0.06 indicating a small effect,
between 0.06 and 0.14 indicating a moderate effect, and >0.14 indicating a large effect.34 Pearson’s
correlation coefficient (r) were used to assess effect size for non-normally distributed physical
activity outcomes. Independent t-tests (two-tailed) compared overall training volume completed
over the 8-week intervention. Repeated measures analyses of variance (ANOVA) were used to
investigate attendance throughout the intervention period.

Physical activity behaviour (i.e. walking, moderate, vigorous and total physical activity) were
analysed using non-parametric tests (Friedman with Wilcoxon Signed Rank post-hoc) to assess
change in the 34 participants (SUP=15; CON=19) who completed follow-up at 15-months. Mann-
Whitney’s U-test compared physical activity between groups at each time point (i.e. baseline, 8-
weeks and 15-months), and also the change in physical activity for walking, moderate, vigorous and
total physical activity between groups across each time period. A Chi-square test investigated
associations between supervision and the attainment of physical activity guidelines at baseline, post
and 15-months after the exercise program. Cochrane’s Q test investigated changes in the proportion of participants meeting physical activity guidelines across the three time-points. A standard multiple regression was used to determine the predictors of physical activity behaviour at 15-month follow-up, using change in CRF, strength and anthropometric measures as the postulated independent predictors.

Results

Participant recruitment and withdrawals are presented in Figure 1, and participant baseline characteristics are presented in Table 1. Nineteen participants completed at least one exercise session every week in accordance with the prescribed minimum (SUP=10; CON=9).

Cardiorespiratory fitness, relative isometric grip strength, and both relative isokinetic knee flexion and extension strength significantly increased over the 8-week intervention ($p<0.01$; partial eta squared effect sizes ranged from 0.16 to 0.41; large effects) with no interaction or group effects (Table 2). The exercise intervention reduced waist circumference ($p<0.001$) with no interaction or group effects, but did not change body mass at the immediate 8-week follow-up (Table 2). Aerobic training volume (mean±SD; SUP = 1,610±1,268; CON = 1,487±1,219 MET·minutes per week; $p=0.73$), resistance training volume (mean±SD; SUP = 35,858±27,999 kg; CON = 34,659±26,189 kg; $p=0.88$) and other physical activities (mean±SD; SUP = 3,002±3,712; CON = 2,786±7,169 MET·minutes per week; $p=0.90$) completed over the intervention period were not different between supervision groups.

Mean number of sessions attended throughout the intervention was $13.0±8.7$ and $12.8±7.1$ for SUP and CON groups respectively (equating to an average of 1.6 sessions per week for both groups), with no between-group differences ($p=0.94$). As there were no group or interaction effects for attendance, data were pooled (i.e. SUP and CON groups combined) and are presented in Figure 2A. A negative trend in weekly session attendance throughout the intervention was observed ($p<0.001$;...
Figure 2A). Attendance decreased by a mean 0.06 sessions per week per participant, or 0.5 sessions from week one to week eight. Summed training attendance were compared between weeks one and two and weeks seven and eight with a significant time effect ($p<0.001$) confirmed, but no significant interaction or group effects (Figure 2B).

Of the 46 participants (SUP: $n=22$; CON: $n=24$) who completed the 8-week intervention, 34 (74%) completed the 15-month self-report follow-up. Baseline characteristics were similar between those who did and did not complete the follow-up questionnaire. There was a significant increase in self-reported weekly vigorous-intensity activity from baseline to 8-weeks for both SUP (mean±95% CI: $+720±595$ MET·minutes per week; $p=0.011$; $r=0.47$; medium ES) and CON (+$407±246$ MET·minutes per week; $p=0.005$; $r=0.47$; medium ES) groups, but no changes in walking, moderate-intensity or total physical activity over this time period. There was a significant decrease in moderate-intensity activity from 8-weeks (post-intervention) to 15-month follow-up for the CON (-$188±163$ MET·minutes per week; $p=0.025$; $r=0.37$; medium ES) group (Table 3), which was the only change in physical activity behaviour during this time period. There was a significant change in the proportion of participants reporting meeting physical activity guidelines ($p=0.04$) from baseline (59%), to 8-weeks (82%), to 15-month follow-up (59%), which was not associated with the type of supervision received during the 8-week intervention (Figure 3). Furthermore, no statistically significant differences were identified in physical activity participation at any time point between supervision groups, or in the magnitude of change in physical activity between groups (Figure 3). A greater reduction in BMI over the 8-week intervention was associated ($p<0.05$) with higher weekly vigorous-intensity physical activity at 15-month follow-up (Table S3).
Discussion

Improvements to employee CRF, muscle strength and waist circumference were achieved from an 8-week workplace exercise program, with no greater benefit received by providing direct exercise supervision in addition to access to an onsite exercise facility and prescribed exercise program. The equivalent health and fitness improvements are likely explained by the similar mean exercise session attendance and training volume completed by each group. Furthermore, direct supervision did not lead to greater physical activity behaviour at 15-month follow up than simply providing an onsite exercise facility and prescribed exercise program.

The improvements to health-related physical fitness during this exercise program support previous research involving 8- to 12-week exercise interventions in blue- and white-collar workplaces that provided standard exercise supervision. Low CRF has been identified as an important independent cardiovascular and all-cause mortality risk factor in both men and women, and even small increases to CRF are associated with reduced mortality. Overall, a large effect was observed for CRF improvements in the current study. Furthermore, fourteen participants improved predicted $\dot{V}O_{2\text{max}}$ by 3.5 ml·kg·min$^{-1}$ (1 MET) or more, a magnitude shown to lower all-cause mortality risk by 8 to 14%. The remaining 36 participants attended 1.5±1.0 sessions per week for an average CRF improvement of 0.8±1.5 ml·kg·min$^{-1}$, therefore they are still likely to have experienced reductions in all-cause mortality risk but to a lesser extent than participants who averaged two sessions per week. This finding provides guidance for the minimum frequency of prescribed exercise required to achieve the greatest improvements to health through CRF in the short term (8-weeks).

Muscular strength is also a key predictor of morbidity and mortality and large overall effects were observed for improvements to both upper and lower body strength. Similarly, previous
randomised controlled trials have reported significant strength improvements in university,35 pharmaceutical39 and high-tech company40 employees following exercise interventions of 8- to 12-weeks in duration conducted at the workplace.

The current findings suggest that direct exercise supervision may not confer any additional attendance, training volume, health-related physical fitness or physical activity improvements over and above providing a prescribed exercise program and access to an onsite exercise facility over 8-weeks in healthy university employees. Exercise interventions involving obese20 and chronic obstructive pulmonary disease patients41 have demonstrated greater exercise adherence,20 health,20 and physical capacity improvements41 after 4- to 6-months when exercise is directly supervised. _ENREF_24 _ENREF_25 Equivalent longer-term follow-up data are not available in apparently healthy individuals to allow comparison of the outcomes reported in this study. It is possible that any additional benefits that may be achieved by providing direct exercise supervision will only become apparent after an extended period greater than eight weeks.

A limiting factor to the effectiveness of many previous exercise interventions is poor compliance, particularly over extended durations.42, 43 Previous 6-month exercise interventions involving \geq 3 sessions per week conducted in the workplace with standard exercise facility supervision involving apparently healthy employees report dropout rates of 27\%42 and 40\%.43 Participant retention was similar between exercise supervision groups in the current study (SUP=88\%; CON=96\%). However, whether greater retention or exercise training volume is achieved by providing direct exercise supervision compared with only the provision of an exercise facility and training program over a longer period of time (e.g. 6-12 months) is unknown. Given the cost implications of delivering exercise with varying levels of
supervision, an understanding of the long-term costs and benefits associated with providing an onsite exercise facility with the capacity for direct exercise supervision is warranted. Of further interest is whether longer interventions have a greater effect on long-term physical activity participation. Fifty-nine percent (baseline), 82% (8-weeks) and 59% (15-months) of participants in the current study self-reported achieving the minimum 500-1000 MET-minutes of weekly physical activity-related energy expenditure associated with health benefits. This shows that while a short-term workplace exercise intervention was able to increase physical activity participation, this was not maintained with participants reverting back to their previous physical activity behaviour after 15 months, regardless of the type of exercise supervision they received during the intervention. It must be acknowledged that the actual proportion of employees meeting physical activity guidelines at each time point may have been lower, as self-report measures of physical activity participation are prone to measurement error. Specifically, adults have been shown to over-report walking, moderate- and vigorous-intensity physical activity using the short-form IPAQ. Nevertheless, the current findings suggest that additional support such as access to an onsite supervised exercise facility may be required to maintain ongoing exercise behaviour. Furthermore, although there were no significant changes in body mass over the 8-week intervention, a decrease in BMI was positively associated with higher levels of vigorous-intensity physical activity participation at 15-month follow-up, indicating that even small amounts of weight loss had a positive effect on long-term behaviour. An increase in grip strength was negatively associated with long-term moderate-intensity physical activity participation. Increased strength might have meant moderate-intensity activity was supplemented with higher levels of vigorous-intensity activity.

Conclusion
Providing a suitable workplace exercise facility with appropriate exercise prescription was sufficient to increase short-term vigorous-intensity physical activity participation, CRF and muscle strength. Access to an onsite exercise facility therefore presents a worthwhile health promotion strategy for employers wanting to increase employee physical activity behaviour and improve cardiometabolic health. Clinically meaningful increases to CRF and muscle strength can be achieved by performing an average of two exercise sessions per week for 8-weeks, with exercise session volume or facility attendance not affected by direct exercise supervision. Furthermore, a short-term workplace exercise program with or without direct exercise supervision and support does not result in sustained changes to physical activity participation, therefore additional strategies such as ongoing guidance and support may be required to bring about long-term behaviour change particularly for employees with low physical activity levels.
References

Table 1.
Physical characteristics of participants.

<table>
<thead>
<tr>
<th></th>
<th>Exercise group</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SUP (n = 25)</td>
<td>CON (n = 25)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean ± 95% CI</td>
<td>Mean ± 95% CI</td>
<td>Mean ± 95% CI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex (male/female)</td>
<td>5 / 20</td>
<td>5 / 20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>42.2 ± 4.3</td>
<td>42.8 ± 4.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height (cm)</td>
<td>168.1 ± 3.3</td>
<td>168.0 ± 4.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body mass (kg)</td>
<td>74.6 ± 6.0</td>
<td>71.2 ± 5.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI (kg·m$^{-2}$)</td>
<td>26.3 ± 1.7</td>
<td>25.2 ± 1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waist circumference (cm)</td>
<td>86.5 ± 5.6</td>
<td>83.1 ± 4.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-sensitive CRP (mg·L$^{-1}$)</td>
<td>3.3 ± 1.6</td>
<td>1.5 ± 0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glucose (mmol·L$^{-1}$)</td>
<td>5.2 ± 0.3</td>
<td>5.1 ± 0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total cholesterol (mmol·L$^{-1}$)</td>
<td>5.1 ± 0.3</td>
<td>5.0 ± 0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triglycerides (mmol·L$^{-1}$)</td>
<td>1.2 ± 0.3</td>
<td>1.2 ± 0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDL cholesterol (mmol·L$^{-1}$)</td>
<td>3.0 ± 0.4</td>
<td>3.0 ± 0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDL cholesterol (mmol·L$^{-1}$)</td>
<td>1.54 ± 0.19</td>
<td>1.41 ± 0.21</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CON, control group; SUP, directly supervised group; n = number of subjects.
Table 2.
Fitness and anthropometric outcomes pre and post 8-week workplace exercise intervention for university employees during 2013-2015.

<table>
<thead>
<tr>
<th></th>
<th>SUP (n = 25)</th>
<th>CON (n = 25)</th>
<th>Effects (group)</th>
<th>Effects (time)</th>
<th>Effects (group x time)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fitness (primary) Outcomes</td>
<td></td>
<td></td>
<td>Pre</td>
<td>Post</td>
<td>Δ</td>
</tr>
<tr>
<td>Predicted VO$_{2\max}$ (ml·kg·min$^{-1}$)</td>
<td>24.1 ± 1.5</td>
<td>25.7 ± 1.8</td>
<td>1.6 ± 0.8</td>
<td>23.0 ± 2.1</td>
<td>25.2 ± 2.2</td>
</tr>
<tr>
<td>Relative isometric grip strength (kg·kg body mass)</td>
<td>0.49 ± 0.14</td>
<td>0.51 ± 0.13</td>
<td>0.02 ± 0.03</td>
<td>0.50 ± 0.11</td>
<td>0.54 ± 0.13</td>
</tr>
<tr>
<td>Relative isokinetic knee extension strength at 60 deg·sec$^{-1}$ (Nm·kg%$^{-1}$)</td>
<td>193.8 ± 20.6</td>
<td>200.6 ± 19.2</td>
<td>6.8 ± 5.7</td>
<td>195.7 ± 22.8</td>
<td>203.6 ± 19.8</td>
</tr>
<tr>
<td>Relative isokinetic knee flexion strength at 60 deg·sec$^{-1}$ (Nm·kg%$^{-1}$)</td>
<td>98.0 ± 10.3</td>
<td>105.3 ± 12.1</td>
<td>7.3 ± 5.8</td>
<td>101.3 ± 12.5</td>
<td>108.9 ± 13.0</td>
</tr>
</tbody>
</table>

Anthropometric (secondary) Outcomes

<table>
<thead>
<tr>
<th></th>
<th>Pre</th>
<th>Post</th>
<th>Δ</th>
<th>p</th>
<th>Mean ± 95% CI</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>WC (cm)</td>
<td>86.5 ± 5.6</td>
<td>84.4 ± 5.3</td>
<td>-2.0 ± 1.2</td>
<td>0.35</td>
<td><0.001**</td>
<td>-1.97 ± 0.77</td>
</tr>
<tr>
<td>Body mass (kg)</td>
<td>74.6 ± 6.0</td>
<td>74.5 ± 6.0</td>
<td>-0.1 ± 0.8</td>
<td>0.42</td>
<td>0.60</td>
<td>0.12 ± 0.47</td>
</tr>
</tbody>
</table>

Abbreviations: Δ, change; CI, confidence intervals; deg·sec$^{-1}$, degrees per second; CON, exercise facility access only group; (ml·kg·min$^{-1}$), millilitres of oxygen consumed per kg body mass per minute; (Nm), Newton-meters of torque; (Nm/kg %), Newton-meters of torque as a percentage of body mass; SUP, directly supervised exercise group; WC, waist circumference. Analysis based on intention to treat; n = 25 for SUP group, n = 25 for CON group. Data are presented as mean values±95% CI. p values using between-within analysis of variance. Bold font indicates statistical significance (*$p<0.01$; **$p<0.001$). Predicted VO$_{2\max}$ measured using submaximal cycle test. Isokinetic knee strength measured using Biodex. Grip strength measured using handheld dynamometer.
Table S3.
Associations between baseline, 8-week change scores and physical activity at 15-month follow-up for university employees.

<table>
<thead>
<tr>
<th>Change variable</th>
<th>Walking per week (MET·minutes)</th>
<th>Moderate-intensity activity per week (MET·minutes)</th>
<th>Vigorous-intensity activity per week (MET·minutes)</th>
<th>Total activity per week (MET·minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r</td>
<td>p</td>
<td>r</td>
<td>p</td>
</tr>
<tr>
<td>∆ BMI (kg·m²)</td>
<td>-0.303</td>
<td>0.111</td>
<td>-0.056</td>
<td>0.786</td>
</tr>
<tr>
<td>∆ WC (cm)</td>
<td>0.074</td>
<td>0.724</td>
<td>0.049</td>
<td>0.829</td>
</tr>
<tr>
<td>∆ Absolute isometric grip strength (kg)</td>
<td>-0.044</td>
<td>0.820</td>
<td>-0.552</td>
<td><0.01</td>
</tr>
<tr>
<td>∆ Absolute isokinetic knee extension strength (Nm)</td>
<td>0.106</td>
<td>0.598</td>
<td>-0.142</td>
<td>0.498</td>
</tr>
<tr>
<td>∆ Relative isokinetic knee extension strength (Nm/kg %)</td>
<td>0.256</td>
<td>0.207</td>
<td>-0.256</td>
<td>0.227</td>
</tr>
<tr>
<td>∆ Absolute isokinetic knee flexion strength (Nm)</td>
<td>0.040</td>
<td>0.832</td>
<td>0.160</td>
<td>0.424</td>
</tr>
<tr>
<td>∆ Relative isokinetic knee flexion strength (Nm/kg %)</td>
<td>0.097</td>
<td>0.609</td>
<td>0.140</td>
<td>0.497</td>
</tr>
<tr>
<td>∆ Predicted VO₂max (ml·kg·min⁻¹)</td>
<td>-0.147</td>
<td>0.438</td>
<td>-0.174</td>
<td>0.386</td>
</tr>
</tbody>
</table>

Abbreviations: ∆, change (8-weeks–baseline); BMI, body mass index; (ml·kg·min⁻¹), millilitres of oxygen consumed per kg body mass per minute; (Nm), Newton-meters of torque; (Nm·kg⁻¹ %), Newton-meters of torque as a percentage of body mass; WC, waist circumference. r and p values using Pearson correlations with walking per week, moderate-intensity activity per week, vigorous-intensity activity per week, and total activity per week as dependent variables. Bold font indicates statistical significance (*p < 0.05; **p < 0.01).