
 

Software Design Metrics for Predicting Maintainability 

of Service-Oriented Software 

 

 

 

 

A thesis submitted in fulfilment of the requirements for the degree of 

Doctor of Philosophy 

 

 

 

Mikhail Perepletchikov 

B.App.Sc. (Hons.) 

 

 

 

 

 

 

School of Computer Science and Information Technology 

College of Science, Engineering and Health 

RMIT University 

Melbourne, Australia 

February, 2009 

 

 



II  

Declaration 

I certify that except where due acknowledgement has been made, the work is that of the au-

thor alone; the work has not been submitted previously, in whole or in part, to qualify for any 

other academic award; the content of the thesis is the result of work which has been carried 

out since the official commencement date of the approved research program; any editorial 

work, paid or unpaid, carried out by a third party is acknowledged; and, ethics procedures and 

guidelines have been followed. 

 

 

 

 

 

 

Mikhail Perepletchikov 

School of Computer Science and Information Technology, RMIT University 



III  

Acknowledgements 

First and foremost, I would like to thank my senior supervisor Dr Caspar Ryan for his unlim-

ited support throughout the whole candidature. Dr Ryan helped me to stay on track during the 

difficult moments, always suggesting valuable research directions, and at the same time giv-

ing me enough freedom to pursue research areas of my interest. This was greatly appreciated. 

 

I am very grateful to my second supervisor Dr Keith Frampton, whose vast industrial experi-

ence and knowledge in the software engineering and architecture areas was invaluable in the 

context of this software engineering related thesis.  

 

Special thank you to Professor Zahir Tari who provided all necessary assistance as the head 

of my research discipline. More importantly, Prof Tari provided me with financial support 

throughout the candidature (as part of the research project funded by the Australian Research 

Council under Linkage scheme no. LP0455234). 

 

I would like to offer my gratitude to the software practitioners, and post-graduate students 

from the School of Computer Science and Information Technology, RMIT University who 

participated in the empirical study conducted to evaluate the findings of this thesis. 

 

Last but not least, thank you to my wife Svetlana and our children Anthony and Julia for their 

constant support, patience and understanding throughout my candidature.  

 



IV  

Credits 

Portions of the material in this thesis have previously appeared in the following publications: 

 

M. Perepletchikov, C. Ryan, K. Frampton, and H. Schmidt, "Formalising Service-Oriented 

Design," Journal of Software (JSW), vol. 3 (2), pp. 1-14, 2008. 

 

M. Perepletchikov, C. Ryan, and K. Frampton, "Cohesion Metrics for Predicting Maintain-

ability of Service-Oriented Software," in 7th International Conference on Quality Software 

(QSIC2007), Portland, USA, 2007. 

 

M. Perepletchikov, C. Ryan, K. Frampton, and Z. Tari, "Coupling Metrics for Predicting 

Maintainability in Service-Oriented Designs," in 18th Australian Conference on Software 

Engineering (ASWEC 2007), Melbourne, Australia, 2007. 

 

M. Perepletchikov, C. Ryan, K. Frampton, and H. Schmidt, "A Formal Model of Service-

Oriented Design Structure," in 18th Australian Conference on Software Engineering (ASWEC 

2007), Melbourne, Australia, 2007. 

 

M. Perepletchikov, C. Ryan, and K. Frampton, "Towards the Definition and Validation of 

Coupling Metrics for Predicting Maintainability in Service-Oriented Designs," in 8th Interna-

tional Symposium on Distributed Objects and Applications (DOA) ï Workshops, Montpellier, 

France, 2006. 

 

M. Perepletchikov, C. Ryan, and K. Frampton, "Comparing the Impact of Service-Oriented 

and Object-Oriented Paradigms on the Structural Properties of Software," in 2nd Interna-

tional Workshop on Modeling Inter-Organizational Systems (MIOS'05), Ayia Napa, Cyprus, 

2005. 

 

M. Perepletchikov, C. Ryan, and Z. Tari, "The Impact of Software Development Strategies 

on Project and Structural Software Attributes in SOA.," in 2nd INTEROP Network of Excel-

lence Dissemination Workshop (INTEROP'05, Ayia Napa, Cyprus, 2005. 

 

 

 



V 

Contents 

DECLARATION ..................................................................................................................... II  

ACKNOWLEDGEMENTS  ................................................................................................. III  

CREDITS ............................................................................................................................... IV  

CONTENTS............................................................................................................................. V 

LIST OF FIGURES .............................................................................................................. XI  

LIST OF TABLES  ............................................................................................................... XII  

ABSTRACT .............................................................................................................................. 1 

CHAPTER 1. INTRODUCTION ........................................................................................ 2 

1.1 RATIONALE  ................................................................................................................. 2 

1.1.1 The Significance of SOA ....................................................................................... 3 

1.1.2 The Importance of Software Maintainability ......................................................... 4 

1.1.3 Measuring Structural Properties of Software Designs ........................................... 5 

1.2 RESEARCH QUESTIONS ............................................................................................... 6 

1.3 RESEARCH METHODOLOGY ........................................................................................ 7 

1.3.1 Define Formal Model of Service-Oriented System Design ................................... 8 

1.3.2 Derive Metrics ....................................................................................................... 9 

1.3.3 Empirical Evaluation of Metrics .......................................................................... 10 

1.3.4 Practical Applicability Analysis .......................................................................... 10 

1.4 CONTRIBUTION ......................................................................................................... 11 

1.4.1 Coupling and Cohesion Metrics........................................................................... 11 

1.4.2 Formal Model of SO Designs .............................................................................. 12 

1.4.3 Initial Design Guidelines ..................................................................................... 12 

1.4.4 Summary of Contribution .................................................................................... 12 

1.5 THESIS STRUCTURE ................................................................................................... 13 



VI 

CHAPTER 2. LITERATURE REVIEW  ......................................................................... 14 

2.1 OVERVIEW AND PURPOSE ......................................................................................... 14 

2.1.1 Review Structure .................................................................................................. 14 

2.2 SERVICE-ORIENTED ARCHITECTURE (SOA) AND SERVICE-ORIENTED COMPUTING 

(SOC) 16 

2.2.1 Service-Oriented Architecture (SOA) - Concepts and Definitions ...................... 16 

2.2.1.1 Conceptual and Architectural Views of SOA ............................................................... 18 

2.2.1.2 Business Processes Modelling ..................................................................................... 20 

2.2.2 Service-Oriented Computing (SOC) - Key Concepts and Definitions ................ 21 

2.2.2.1 Development Strategies ................................................................................................ 22 

2.2.2.2 Existing Development Methodologies .......................................................................... 24 

2.2.2.3 Service-Oriented Design Considerations ..................................................................... 25 

2.2.3 Key Terms ............................................................................................................ 27 

2.3 SOFTWARE PRODUCT QUALITY - MAINTAINABILITY  ................................................ 27 

2.3.1 Quality Model - ISO/IEC 9126 ............................................................................ 29 

2.3.2 Software Maintenance ......................................................................................... 31 

2.3.2.1 Measuring Maintainability ........................................................................................... 33 

2.3.2.2 Predicting Maintainability ........................................................................................... 33 

2.4 STRUCTURAL PROPERTIES OF SOFTWARE DESIGNS .................................................. 35 

2.4.1 Overview .............................................................................................................. 35 

2.4.2 Coupling ............................................................................................................... 38 

2.4.3 Cohesion .............................................................................................................. 40 

2.4.4 Discussion ............................................................................................................ 42 

2.5 SOFTWARE METRICS ................................................................................................. 43 

2.5.1 Key Concepts and Definitions ............................................................................. 44 

2.5.2 Theoretical Basis and Validation Approaches ..................................................... 47 

2.5.2.1 Principles of Measurement Theory .............................................................................. 48 



VII  

2.5.2.2 Validation Approaches ................................................................................................. 49 

2.5.3 Empirical Evaluation of Metrics .......................................................................... 53 

2.5.4 Existing Metrics ................................................................................................... 56 

2.5.4.1 Coupling Metrics .......................................................................................................... 56 

2.5.4.2 Cohesion Metrics ......................................................................................................... 58 

2.5.5 Discussion ............................................................................................................ 60 

CHAPTER 3. FORMAL MODEL OF SERV ICE-ORIENTED SYSTEM DESIGN .. 63 

3.1 MODELING SOFTWARE DESIGNS ............................................................................... 63 

3.1.1 Related Work ....................................................................................................... 64 

3.2 FUNDAMENTAL CHARACTERISTICS OF SO SYSTEM DESIGNS ................................... 66 

3.3 MODEL DEFINITIONS ................................................................................................ 67 

3.3.1 System Structure .................................................................................................. 68 

3.3.2 Relationships ........................................................................................................ 72 

3.3.2.1 Service-Oriented Static Relationship Types ................................................................. 74 

3.3.2.2 Service-Oriented Dynamic Relationship Types ............................................................ 77 

3.3.3 Combined Structure and Relationships ................................................................ 78 

3.3.4 Different Types of SO Systems ........................................................................... 79 

3.4 DEFINITIONS LISTING ................................................................................................ 82 

3.5 DISCUSSION .............................................................................................................. 83 

CHAPTER 4. SERVICE-ORIENTED COUPLING ME TRICS ................................... 85 

4.1 OVERVIEW ................................................................................................................ 85 

4.2 COUPLING ASSUMPTIONS AND METRIC WEIGHTS ..................................................... 87 

4.3 METRICS DEFINITIONS .............................................................................................. 93 

4.3.1 Metric Naming and Organisation......................................................................... 93 

4.3.2 Primary Metrics ................................................................................................... 95 

4.3.3 Aggregation Metrics .......................................................................................... 111 



VIII  

4.4 THEORETICAL VALIDATION SUMMARY  .................................................................. 115 

4.5 SUMMARY  ............................................................................................................... 115 

CHAPTER 5. SERVICE-ORIENTED COHESION ME TRICS ................................. 119 

5.1 OVERVIEW .............................................................................................................. 119 

5.2 SERVICE-ORIENTED COHESION - DEFINITION AND TAXONOMY  .............................. 120 

5.2.1 Summary of the Cohesion Categories................................................................ 129 

5.3 METRICS DEFINITIONS ............................................................................................ 131 

5.4 COHESION ASSUMPTIONS ........................................................................................ 146 

5.5 SUMMARY  ............................................................................................................... 147 

CHAPTER 6. EMPIRICAL EVALUATION  OF METRICS  ...................................... 148 

6.1 OVERVIEW .............................................................................................................. 148 

6.2 EXPERIMENTAL PROTOCOL ..................................................................................... 150 

6.2.1 Goals .................................................................................................................. 150 

6.2.2 Participants ......................................................................................................... 152 

6.2.3 Dependent Variables .......................................................................................... 154 

6.2.3.1 Maintainability Metrics .............................................................................................. 154 

6.2.3.2 Subjective Cohesion Ranks ........................................................................................ 155 

6.2.4 Hypotheses and Independent Variables ............................................................. 155 

6.2.4.1 Scope of the Study (Independent Variables) .............................................................. 155 

6.2.4.2 Coupling Hypotheses ................................................................................................. 156 

6.2.4.3 Cohesion Hypotheses ................................................................................................. 159 

6.2.5 Experimental Material ....................................................................................... 159 

6.2.5.1 Coupling System (SYS-COUP) ................................................................................... 160 

6.2.5.2 Cohesion System (SYS-COH) ..................................................................................... 162 

6.2.6 Experimental Tasks ............................................................................................ 164 

6.2.6.1 Coupling (SYS-COUP) Related Tasks ........................................................................ 164 



IX  

6.2.6.2 Cohesion (SYS-COH) Related Tasks .......................................................................... 165 

6.2.7 Experimental Design .......................................................................................... 165 

6.2.7.1 Counterbalancing Approach ...................................................................................... 166 

6.2.8 Experimental Procedure ..................................................................................... 167 

6.2.8.1 Pilot Study .................................................................................................................. 169 

6.2.9 Data Collection Procedure ................................................................................. 169 

6.2.10 Analysis Procedure ............................................................................................ 171 

6.2.10.1 Statistical Tests......................................................................................................... 172 

6.3 ANALYSIS OF THE RESULTS ï COUPLING HYPOTHESES ........................................... 172 

6.3.1 Descriptive Statistics .......................................................................................... 174 

6.3.2 Hypothesis Testing............................................................................................. 177 

6.3.2.1 Hypotheses Hcoup1.1 ï Hcoup1.6: Maintainability Impact ................................................ 177 

6.3.2.2 Hypotheses Hcoup2.1 ï Hcoup2.6: Strength of Coupling Relationships ............................. 178 

6.4 ANALYSIS OF THE RESULTS ï COHESION HYPOTHESES ........................................... 184 

6.4.1 Descriptive Statistics .......................................................................................... 184 

6.4.2 Hypothesis Testing............................................................................................. 185 

6.4.2.1 Hypothesis Hcoh1: Analysability Impact ...................................................................... 186 

6.4.2.2 Hypothesis Hcoh2: Cohesion Indication ...................................................................... 186 

6.4.3 Linear Regression Analysis ............................................................................... 187 

6.4.3.1 Hypothesis Hcoh1: Analysability Impact ...................................................................... 188 

6.4.3.2 Hypothesis Hcoh2 : Cohesion Indication ...................................................................... 189 

6.5 SUMMARY  ............................................................................................................... 190 

6.5.1 Threats to Validity ............................................................................................. 191 

6.5.1.1 Construct Validity ...................................................................................................... 191 

6.5.1.2 Internal Validity ......................................................................................................... 191 

6.5.1.3 External Validity ........................................................................................................ 194 

 



X 

CHAPTER 7. SUMMARY AND CONCLUSI ON ........................................................ 195 

7.1 SUMMARY  ............................................................................................................... 195 

7.2 PRACTICAL APPLICABILITY  .................................................................................... 197 

7.2.1 Metrics Application in the SO Design Process .................................................. 197 

7.3 FUTURE WORK ....................................................................................................... 199 

7.3.1 Metrics ............................................................................................................... 199 

7.3.2 Empirical Studies ............................................................................................... 200 

7.3.3 Tool Support for Metrics Collection .................................................................. 202 

APPENDIX A. LITERATU RE REVIEW RESOURCES ............................................... 205 

APPENDIX B. MEASUREM ENT THEORY CONCEPTS AND APPLICATION  ..... 207 

APPENDIX C. MODEL NO TATION  ............................................................................... 209 

APPENDIX D. USER PROFILE QUESTIONNAIRE A ND PRE-TEST TASK 

DESCRIPTION .................................................................................................................... 210 

APPENDIX E. EXPERIME NTAL SOFTWARE SYSTEM S - DOCUMENTATION  . 213 

1. AMS - SOFTWARE REQUIREMENTS SPECIFICATION (SRS) .............................................. 213 

2. AMS (SYS-COUP) ï UML  CLASS DIAGRAMS .............................................................. 218 

3. AMS (SYS-COH) ï UML CLASS DIAGRAMS................................................................. 222 

APPENDIX F. EXPERIME NTAL TASKS  ....................................................................... 228 

1. COUPLING (SYS-COUP) TASK ....................................................................................... 228 

2. COHESION (SYS-COH) TASK ......................................................................................... 231 

REFERENCES ..................................................................................................................... 234 

 



XI 

List of Figures 

FIGURE 1-1. RESEARCH ACTIVITIES ......................................................................................................... 8 

FIGURE 2-1. LOGICAL VIEW OF SOA ...................................................................................................... 19 

FIGURE 2-2. ARCHITECTURAL VIEW OF SOA (MODIFIED FROM [12])................................................... 19 

FIGURE 2-3. DESIGN VIEW OF SERVICE-ORIENTED SYSTEMS ............................................................... 22 

FIGURE 2-4. ISO/IEC 9126-1 QUALITY MODEL [14] ς MAINTAINABILITY .............................................. 30 

FIGURE 2-5. BALANCE OF MAINTENANCE ACTIVITIES [109] ................................................................. 32 

FIGURE 2-6. A SIMPLE MAINTAINABILITY PREDICTION MODEL USED IN THIS RESEARCH ................... 34 

FIGURE 2-7. MAINTAINABILITY MODEL USED IN THIS RESEARCH (UPDATED VERSION) ...................... 62 

FIGURE 3-1. DESIGN OF A MODULAR SOFTWARE SYSTEM (MODIFIED FROM ([30], P.71)) ................. 65 

FIGURE 3-2. EXAMPLE DESIGN REPRESENTING SO SYSTEM (SOS) ....................................................... 69 

FIGURE 3-3. STATIC ALLOCATION OF IMPLEMENTATION ELEMENTS TO SERVICES ............................. 71 

FIGURE 3-4. DYNAMIC ALLOCATION OF IMPLEMENTATION ELEMENTS TO SERVICES ........................ 71 

FIGURE 3-5. DEFINITION OF A SERVICE-ORIENTED DESIGN RELATIONSHIP ......................................... 73 

FIGURE 3-6. EXAMPLE SO DESIGN (INCLUDING DIFFERENT RELATIONSHIP TYPES) ............................. 76 

FIGURE 3-7. EXAMPLE PARTITIONED SERVICE-ORIENTED SYSTEM (PARSOS) ...................................... 81 

FIGURE 3-8. EXAMPLE PURE SERVICE-ORIENTED SYSTEM (PURSOS) ................................................... 81 

FIGURE 4-1. EXAMPLE SO DESIGN INCLUDING DIFFERENT RELATIONSHIP TYPES AS CAPTURED BY THE 

FORMAL MODEL OF SERVICE-ORIENTED SYSTEM DESIGN (MODIFIED FROM SECTION 3.3.2) ... 89 

FIGURE 4-2. EXAMPLE SERVICE-ORIENTED SYSTEM DESIGN ................................................................ 94 

FIGURE 5-1. GENERAL DEFINITION OF SERVICE COHESION ................................................................ 122 

FIGURE 6-1. TASK-COUP1 - FAILURE ANALYSIS EFFICIENCY (FAE) ...................................................... 175 

FIGURE 6-2. TASK-COUP2 - MODIFICATION COMPLEXITY (MC) ς INCOMING COUPLING ................. 176 

FIGURE 6-3. TASK-COUP2 - MODIFICATION COMPLEXITY (MC) ς OUTGOING COUPLING ................. 177 

FIGURE 6-4. GRAPHICAL REPRESENTATION OF THE REGRESSION RESULTS ς TICS/FAE .................... 188 

FIGURE 6-5. GRAPHICAL REPRESENTATION OF THE REGRESSION RESULTS ς TICS/CR ...................... 189 

 



XII  

List of Tables 

TABLE 1-1. THESIS CONTRIBUTION ....................................................................................................... 13 

TABLE 2-1. RESEARCH AREAS COVERED IN THE LITERATURE REVIEW ................................................. 15 

TABLE 2-2. SO TERMINOLOGY USED IN THIS THESIS ............................................................................ 27 

TABLE 2-3. INFLUENCE OF THE STRUCTURAL PROPERTIES OF COUPLING AND COHESION ON 

SOFTWARE MAINTAINABILITY (S - STRONG; A - AVERAGE; W ς WEAK; U - UNKNOWN) ............ 43 

TABLE 2-4. COUPLING AND COHESION PROPERTIES FROM PROPERTY-BASED SOFTWARE 

ENGINEERING MEASUREMENT FRAMEWORK ([30] P.76-79) ...................................................... 52 

TABLE 3-1. FORMAL MODEL OF SO SYSTEM - DEFINITIONS ................................................................. 83 

TABLE 4-1. RELATIONSHIPS BETWEEN COUPLING ASSUMPTIONS AND SOFTWARE MAINTAINABILITY 

AND REUSABILITY ......................................................................................................................... 92 

TABLE 4-2. WEIGHTED SERVICE-ORIENTED DESIGN RELATIONSHIPS ................................................... 92 

TABLE 4-3. COUP-M1: WEIGHTED INTRA-SERVICE COUPLING BETWEEN ELEMENTS (WISCE) ............ 96 

TABLE 4-4. COUP-M2: SERVICE INTERFACE TO INTRA ELEMENT COUPLING (SIIEC) ............................ 98 

TABLE 4-5. COUP-M3: EXTRA-SERVICE INCOMING COUPLING OF SERVICE INTERFACE (ESICSI) ......... 99 

TABLE 4-6. COUP-M4: ELEMENT TO EXTRA SERVICE INTERFACE OUTGOING COUPLING (EESIOC) ... 100 

TABLE 4-7. COUP-M5: WEIGHTED EXTRA-SERVICE INCOMING COUPLING OF AN ELEMENT (WESICE)

 .................................................................................................................................................... 102 

TABLE 4-8. COUP-M6: WEIGHTED EXTRA-SERVICE OUTGOING COUPLING OF AN ELEMENT (WESOCE)

 .................................................................................................................................................... 103 

TABLE 4-9. COUP-M7: NUMBER OF COUPLED INCOMING SERVICES (NCIS) ...................................... 105 

TABLE 4-10. COUP-M8: NUMBER OF COUPLED OUTGOING SERVICES (NCOS) .................................. 106 

TABLE 4-11. COUP-M9: SYSTEM PARTITIONING FACTOR (SPARF) ..................................................... 107 

TABLE 4-12. COUP-M10: SYSTEM PURITY FACTOR (SPURF) ............................................................... 108 

TABLE 4-13. COUP-M11: RESPONSE FOR OPERATION (RFO) .............................................................. 110 

TABLE 4-14. COUP-AM1: TOTAL WEIGHTED INTRA-SERVICE COUPLING OF A SERVICE (TWISC) ....... 112 

TABLE 4-15. COUP-AM2: TOTAL WEIGHTED INCOMING EXTRA-SERVICE COUPLING OF A SERVICE 

(TWIESC) ..................................................................................................................................... 112 

TABLE 4-16. COUP-AM3: TOTAL WEIGHTED OUTGOING EXTRA-SERVICE COUPLING OF A SERVICE 

(TWOESC) ................................................................................................................................... 113 



XIII  

TABLE 4-17. COUP-AM4: TOTAL WEIGHTED COUPLING OF A SERVICE (TWCS) ................................. 114 

TABLE 4-18. COUP-AM5: RESPONSE FOR SERVICE (RFS) .................................................................... 114 

TABLE 4-19. RESULTS OF THE THEORETICAL VALIDATION .................................................................. 116 

TABLE 4-20. SUMMARY OF THE COUPLING METRICS ......................................................................... 117 

TABLE 5-1. COH-CAT1: COINCIDENTAL CATEGORY OF SO COHESION ................................................ 123 

TABLE 5-2. COH-CAT2: LOGICAL CATEGORY OF SO COHESION .......................................................... 124 

TABLE 5-3. COH-CAT3: TEMPORAL CATEGORY OF SO COHESION ...................................................... 125 

TABLE 5-4. COH-CAT4: COMMUNICATIONAL CATEGORY OF SO COHESION ...................................... 125 

TABLE 5-5. COH-CAT5: EXTERNAL CATEGORY OF SO COHESION ....................................................... 126 

TABLE 5-6. COH-CAT6: IMPLEMENTATION CATEGORY OF SO COHESION .......................................... 127 

TABLE 5-7. COH-CAT7: SEQUENTIAL CATEGORY OF SO COHESION .................................................... 128 

TABLE 5-8. COH-CAT8: CONCEPTUAL CATEGORY OF SO COHESION .................................................. 129 

TABLE 5-9. CATEGORIES OF SERVICE-ORIENTED COHESION ς SUMMARY ......................................... 131 

TABLE 5-10. COH-M1: SERVICE INTERFACE DATA COHESION (SIDC) .................................................. 135 

TABLE 5-11. COH-M2: SERVICE INTERFACE USAGE COHESION (SIUC) ............................................... 138 

TABLE 5-12. COH-M3: SERVICE INTERFACE IMPLEMENTATION COHESION (SIIC) .............................. 140 

TABLE 5-13. COH-M4: SERVICE INTERFACE SEQUENTIAL COHESION (SISC) ....................................... 143 

TABLE 5-14. COH-M5: TOTAL INTERFACE COHESION OF A SERVICE (TICS) ........................................ 145 

TABLE 6-1. EXPERIMENTAL GOAL (GOAL-COUP1) ς COUPLING METRICS .......................................... 151 

TABLE 6-2. EXPERIMENTAL GOAL (GOAL-COUP2) ς COUPLING METRICS .......................................... 151 

TABLE 6-3. EXPERIMENTAL GOAL (GOAL-COH1) ς COHESION METRICS ............................................ 152 

TABLE 6-4. EXPERIMENTAL GOAL (GOAL-COH2) ς COHESION METRICS ............................................ 152 

TABLE 6-5. ANSWERS TO THE USER PROFILE QUESTIONNAIRE AND RESULTS OF THE PRE-TEST TASK

 .................................................................................................................................................... 153 

TABLE 6-6. EXPERIMENTAL SYSTEM (SYS-COH) OVERVIEW ς COHESION VALUES PER SERVICE ........ 163 

TABLE 6-7. THE SELECTIVE ORDERS OF THE EXPERIMENTAL TASKS - COUPLING ............................... 167 

TABLE 6-8. THE SELECTIVE ORDERS OF THE EXPERIMENTAL TASKS ς COHESION .............................. 167 

TABLE 6-9. SUMMARY OF THE STATISTICAL ANALYSIS TECHNIQUES USED IN THE STUDY ................ 173 

TABLE 6-10. DESCRIPTIVE STATISTICS: TASK-COUP1 (FAE VALUES ς OUTGOING COUPLING) ........... 175 

TABLE 6-11. DESCRIPTIVE STATISTICS: TASK-COUP2 (MC VALUES - INCOMING COUPLING) ............. 176 



XIV  

TABLE 6-12. DESCRIPTIVE STATISTICS: TASK-COUP2 (MODIFICATION COMPLEXITY (MC) VALUES - 

OUTGOING COUPLING) .............................................................................................................. 176 

TABLE 6-13. PAIRED T-TEST RESULTS (TWO-TAILED P-VALUES) FOR HYPOTHESIS HCOUP1.1 - HCOUP1.6 

(N=10) ......................................................................................................................................... 178 

TABLE 6-14. ONE-WAY ANOVA RESULTS FOR MC VALUES (TASK-COUP2) ς INCOMING COUPLING 

(N=30) ......................................................................................................................................... 181 

TABLE 6-15. LSD GROUPS COMPARISON OF ONE-WAY ANOVA RESULTS FOR MC VALUES ς 

INCOMING COUPLING (N=30) .................................................................................................... 182 

TABLE 6-16. ONE-WAY ANOVA RESULTS FOR FAE VALUES (TASK-COUP1) ς OUTGOING COUPLING 

(N=30) ......................................................................................................................................... 183 

TABLE 6-17. ONE-WAY ANOVA RESULTS FOR MC VALUES (TASK-COUP2) ς OUTGOING COUPLING 

(N=30) ......................................................................................................................................... 184 

TABLE 6-18. LSD GROUPS COMPARISON OF ONE-WAY ANOVA RESULTS FOR MC VALUES ς 

OUTGOING COUPLING (N=30) ................................................................................................... 184 

TABLE 6-19. DESCRIPTIVE STATISTICS ς FAILURE ANALYSIS EFFICIENCY (FAE) VALUES ..................... 185 

TABLE 6-20. DESCRIPTIVE STATISTICS - COHESION RANK (CR) VALUES.............................................. 185 

TABLE 6-21. ONE-WAY ANOVA RESULTS FOR THE HYPOTHESIS HCOH1 (N=50).................................... 186 

TABLE 6-22. ONE-WAY ANOVA RESULTS FOR THE HYPOTHESIS HCOH2 (N=50).................................... 187 

TABLE 6-23. REGRESSION STATISTICS FOR TICS AND FAE VALUES (N = 5) ......................................... 189 

TABLE 6-24. REGRESSION STATISTICS FOR TICS AND CR VALUES (N = 5) ........................................... 190 

TABLE 6-25. SUMMARY OF THE EMPIRICAL EVALUATION RESULTS (LEGEND: STATISTICALLY 

SIGNIFICANT (V), NOT SIGNIFICANT (U), NOT RELATED (NR)) .................................................. 193 

 



1 

(February, 2009) 

Abstract 

As the pace of business change increases, service-oriented (SO) solutions should facilitate 

easier maintainability as underlying business logic and rules change. To date, little effort has 

been dedicated to considering how the structural properties of coupling and cohesion may 

impact on the maintainability of SO software products. Moreover, due to the unique design 

characteristics of Service-Oriented Computing (SOC), existing Procedural and Object-

Oriented (OO) software metrics are not sufficient for the accurate measurement of service-

oriented design structures. 

This thesis makes a contribution to the field of SOC, and Software Engineering in gen-

eral, by proposing and evaluating a suite of design-level coupling and cohesion metrics for 

predicting the maintainability of service-oriented software products early in the Software De-

velopment LifeCycle (SDLC). The proposed metrics can provide the following benefits: i) 

facilitate design decisions that could lead to the specification of quality SO designs that can 

be maintained more easily; ii) identify design problems that can potentially have a negative 

effect on the maintainability of existing service-oriented design structures; and iii) support 

more effective control of maintainability in the earlier stages of SDLC. 

More specifically, the following research was conducted as part of this thesis: 

- A formal mathematical model covering the structural and behavioural properties of 

service-oriented system design was specified.  

- Software metrics were defined in a precise, unambiguous, and formal manner using 

the above model. 

- The metrics were theoretically validated and empirically evaluated in order to deter-

mine the success of this thesis as follows:  

a. Theoretical validation was based on the property-based software engineering 

measurement framework. All the proposed metrics were deemed as theoretically valid. 

b. Empirical evaluation employed a controlled experimental study involving ten par-

ticipants who performed a range of maintenance tasks on two SO systems developed (and 

measured using the proposed metrics) specifically for this study. The majority of the ex-

perimental outcomes compared favourably with our expectations and hypotheses. More 

specifically, the results indicated that most of the proposed metrics can be used to predict 

the maintainability of service-oriented software products early in the Software Develop-

ment LifeCycle (SDLC), thereby providing evidence for the validity and potential useful-

ness of the derived metrics. Nevertheless, a broader range of industrial scale experiments 

and analyses are required to fully demonstrate the practical applicability of the metrics. 

This has been left to future work. 
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Chapter 1.  Introduction  

Service-Oriented Computing (SOC) is an emerging software development paradigm, which is 

based on the principle of encapsulating application and business logic within independent, 

reusable, and business-oriented software services. Presently, li ttle research effort has been 

dedicated to considering how the structural properties of service-oriented software designs 

may influence the maintainability of final software products. More significantly, software 

metrics for measuring service-oriented design properties in an automated and objective man-

ner do not exist. 

This thesis makes a contribution to the field of SOC by presenting a suite of theoretically 

validated and empirically evaluated software metrics for measuring structural properties of 

coupling and cohesion of service-oriented designs. The metrics can be used as early predic-

tors of the maintainability quality characteristic of service-oriented software systems. Main-

taining software products is a resource-intensive process; therefore developing software that 

can be more easily maintained should be a key objective of any software engineering process. 

To this end, the derived metrics will allow identification and thus mitigation of potential 

maintainability problems early in the Software Development LifeCycle. 

This introductory chapter serves four purposes. Firstly, Section 1.1 discusses the rationale 

behind this research. Secondly, Section 1.2 presents the research questions. The methodology 

followed in this research in order to answer the research questions is then described in Sec-

tion 1.3. Finally, Section 1.4 summarises the contributions made by this thesis. 

1.1 Rationale 

Service-Oriented Computing (or Service-Oriented Architecture (SOA))1 has recently emerged 

as a major paradigm for developing software systems [64, 66, 186, 219]. Systems created 

within the SOC approach, that is Service-Oriented (SO) systems, aim to exhibit high flexibil-

ity and agility, facilitating rapid business changes and promoting software reuse [68, 187, 

215].  

The fundamental concepts of service-orientation have been described in the research and 

industry literature [12, 57, 118, 183] and software tools for assisting in the development of 

SO applications are becoming more widely used. Nonetheless, guidelines for designing high-

quality service-oriented software that can be easily maintained are yet to be fully established, 

                                                      

1 Note that for the remainder of this thesis, the term SOC will be used to represent the development paradigm used to de-

velop applications conforming to a specific type of system architecture, a Service-Oriented Architecture (SOA). 
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and formal mechanisms for assessing and estimating the maintainability of SO applications 

do not yet exist.  

In previous paradigms such as Procedural and Object-Oriented (OO) development, it was 

shown that various quality characteristics (such as maintainability) can be predicted, and con-

sequently improved, early in the Software Development Lifecycle (SDLC) by examining the 

structural properties of software designs, such as coupling and cohesion2 [35, 45, 76]. To ef-

fectively quantify these properties, a number of software metrics were proposed and em-

ployed to assist in the identification of the design problems and early prediction of software 

quality attributes [32, 44, 53, 146]. Early prediction of maintainability is of utmost impor-

tance given that the maintenance activities are resource intensive; therefore, it is crucial to 

identify and fix the potential problems as early as possible. 

At present, little research effort has been dedicated to considering how the coupling be-

tween services and cohesiveness of individual services in service-oriented systems may im-

pact on the maintainability of software products. Moreover, due to the unique characteristics 

of SOC described in Section 2.2, the existing Procedural and OO metrics are not sufficient 

for the accurate measurement of the service-oriented design structures [189]. Therefore, this 

thesis formally defines, and theoretically and empirically evaluates a suite of SOA-specific 

design-level metrics. The metrics support rigorous assessment of structural properties (cou-

pling and cohesion) of service-oriented design artefacts, thereby assisting in the detection of 

the design deficiencies and facilitating prediction of maintainability early in the development 

process. 

1.1.1 The Significance of SOA 

Enterprise information systems are becoming increasingly large and complex requiring more 

precise mechanisms for managing software complexity and, more importantly, meeting the 

demands of highly-dynamic business environments. In order to efficiently support these ob-

jectives, the SOC paradigm [12, 64, 66, 186, 230] was introduced as an extension to the exist-

ing development approaches (such as Procedural and OO development). 

SOC provides a flexible and agile development model by introducing an additional layer 

of software abstraction ï a service layer. Service-oriented applications are structured as a col-

lection of independent, business-aligned software services, which can be composed into ex-

ecutable business processes. The business processes encapsulate business logic and rules, 

separating them from the software implementation of services, thus promoting higher reus-

ability of the individual services and facilitating rapid propagation of business changes and 

reduction of maintenance efforts [18, 220, 241]. 

                                                      
2 Note that the key terms and concepts related to this research will be highlighted in italic font throughout the remainder of 

the thesis. 
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SOA is becoming an increasingly popular choice of system architecture. For example, ac-

cording to a market survey from Forrester Research [96]:  

- 21% of North American and European (NA-EU) enterprises said that they plan to 

adopt SOA by the end of 2007, which should bring an overall SOA penetration in 

NA-EU enterprise markets to 62%;  

- 22% of Asia-Pacific enterprises and 14% of NA-EU small-and-medium businesses 

planned to adopt SOA in 2007, bringing total projected penetration in these markets to 

59% and 40% respectively.  

The recently released follow-up report indicates that the above adoption targets have been 

largely met by the companies participating in the survey in terms of transforming the underly-

ing IT infrastructures into well-planned service-oriented solutions, and that SOA will con-

tinue its strong market momentum in 2008 and beyond [97].  

Additionally, this rapid uptake of SOA has been strongly supported by major software 

vendors who offer a number of service-oriented middleware platforms and development envi-

ronments and tools. Moreover, the Object Management Group (OMG) has recently set up 

óThe SOA Consortiumô [227] with the support from IBM, Sun, Cisco, SAP, and SoftwareAG 

in order to achieve the following objectives by 2010: i) 75% of the Global 1000 companies 

self-proclaim SOA Success; ii) 75% of Major Government Agencies self-proclaim SOA Suc-

cess; iii) 50% of mid-size businesses self-proclaim SOA Success; where SOA Success is de-

fined in terms of value generation, and increase in business and IT agility [227]. 

To summarise, SOC is becoming an important software development paradigm, shifting 

focus from monolithic software to composite applications consisting of autonomous, and re-

usable and maintainable software services that can be easily composed into executable busi-

ness processes [52, 184, 241]. The key concepts of SOC will be described in greater detail in 

Section 2.2. 

1.1.2 The Importance of Software Maintainability 

Developing quality software should be the key target of any software engineering process, 

with software maintainability being one of the most important quality characteristics, repre-

senting the capability of the software product to be modified [231]. According to the ISO/IEC 

9126-1:2001 standard, software maintainability can be subdivided into four sub-

characteristics: analysability, changeability, stability, and testability  [111]. These sub-

characteristics can be directly measured using standardised metrics prescribed by ISO/IEC 

[112, 113]. 

The Software Development LifeCycle (SDLC) consists of a number of typically iterative 

and interleaving development phases [132]. One of these phases is software maintenance, 
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which is resource intensive given that the bulk of the project effort is consumed by the con-

tinuous perfection, correction, and adaptation of existing software resources [135, 147]. Al-

though the reported numbers vary, it has been estimated by various researchers that the main-

tenance phase of the SDLC consumes more than 60% of the overall project resources [49, 

103, 123, 205]. Therefore, developing software that is difficult to maintain can contribute to 

project failures due to the cost and time overruns [123, 231]. 

More importantly, creating highly maintainable software is especially crucial for an 

emerging generation of constantly-evolving service-oriented enterprise applications. As the 

pace of business change increases due to globalisation and e-commerce, SOA-based systems 

should be able to rapidly adapt to customersô needs by seamlessly integrating changes to the 

underlying business logic and rules [173]. This can be more readily achieved when the soft-

ware is highly maintainable. Moreover, the time needed to complete software maintenance 

activities can play a major role when determining the capability of enterprises to adjust to 

changing market conditions and to implement innovative products and services in order to 

stay competitive. At present, given that service-oriented solutions are typically new and are 

yet to undergo major software changes, it is not clear whether the desired behaviour will be 

exhibited when modifications are made. Maintainability is discussed further in Section 2.3. 

1.1.3 Measuring Structural Properties of Software Designs 

The maintainability of any software product can only be directly measured when the product 

has been developed and released, and subsequent changes are made. Although assessing the 

maintainability of the finished products will result in the most precise measurements, this ap-

proach has a considerable disadvantage since any discovered problems will be more costly to 

fix at the post-production stage [135, 231].  

Therefore, various research initiatives have been focused on establishing predictive mod-

els that support estimation of software maintainability early in the SDLC [49, 177]. Estimat-

ing the maintainability of software prior to its release could result in the loss of measurement 

accuracy and is potentially a tedious task to perform. Nonetheless, such early estimation can 

decrease the cost of fixing any potential problems given that the preventive and corrective 

actions can be performed more efficiently during the earlier stages of development [54].  

One of the key factors in these predictive models is the structure of software as repre-

sented by its structural design properties (refer to Section 2.4), namely size, complexity, cou-

pling, and cohesion [1, 7, 146]. Consequently, a large number of metrics have been proposed 

for measuring the structural properties of designs in a quantitative and automated manner [34, 

44, 98, 102]. The existing structural metrics were defined for software systems developed us-

ing the OO [33, 43, 44, 98, 146] or Procedural [72, 156] development approaches; therefore, 

they are not necessary applicable to the key principles of SOC as described in Section 2.5. 
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Previous studies indicate that structural coupling and cohesion (measured using various 

metrics) can have a strong causal impact on maintainability [5, 35, 79, 85, 86, 214]. Conse-

quently, there is a need to define a suite of metrics for measuring coupling and cohesion of 

service-oriented software designs. Such metrics can provide the following benefits: 

Á Identify problems in existing service-oriented design structures; 

Á Justify key trade-offs in design decisions;  

Á Allow for more effective control of maintainability [1, 7]. 

Moreover, such metrics can provide a foundation for a comprehensive design methodol-

ogy. This is because the metrics will encapsulate key principles of service-oriented design, 

thereby providing support for eliciting initial service-oriented design guidelines and rules.  

Note that software designs also exhibit additional structural properties that could influ-

ence the maintainability of software, such as complexity and size. These properties are not 

investigated in this work since the decision was made to focus on the properties that were 

deemed to be most important, based on the analysis of the problem domain and measurement 

objectives as explained in Section 2.4.1. In brief:  

i) design-level complexity can be viewed as the combination of coupling and cohesion 

[55]; therefore, the proposed metrics can be adapted to indirectly measure complexity;  

ii) the size of software is not dependent on any particular development paradigm. As a re-

sult, existing metrics (such as SLOC/LOC [76] or FPA [224]) can be readily used to measure 

the size of service-oriented software. 

1.2 Research Questions 

The primary goal of this research is to derive a suite of software metrics for quantifying the 

structural properties of coupling and cohesion of SO designs in order to predict software 

maintainability. In doing so, this thesis addresses the following five research questions: 

1. What are the distinguishing characteristics of SO designs? 

This is answered in Chapters 2 and 3 of this thesis, with fundamental characteristics of 

service-oriented software being identified and documented in Chapter 2, and then formally 

captured by the model presented in Chapter 3. 

2. Can existing Procedural and OO metrics correctly measure structural properties 

(such as coupling and cohesion) of SO designs? 

Answered by the findings of a case-study that empirically evaluated the applicability of 

existing metrics to service-oriented designs. The results of the case-study, summarised in 

Section 2.5.5, indicated that the existing metrics are not sufficient for SO designs.  
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3. Which metrics should be used to measure coupling and cohesion in SO designs? 

A new suite of metrics for measuring structural properties of coupling and cohesion in 

service-oriented designs is formally defined and theoretically validated in Chapter 4 (cou-

pling metrics) and Chapter 5 (cohesion metrics). 

4. Can measures of design-level coupling and cohesion be used as useful predictors of 

maintainability of SO software products? 

This is answered in Chapter 6 where the derived metrics have been evaluated empirically 

in order to statistically test the correlation between the derived measures of coupling and co-

hesion, and the maintainability of service-oriented software products. 

5. Can measurement of service-oriented design coupling and cohesion be conducted 

in an automated manner? 

This is discussed in Chapter 7 where the derived metrics are shown to fulfil  the desirable 

pragmatic properties since they are technology independent and can be collected in an auto-

mated manner using a dedicated software tool. Note that developing a metric collection tool 

was considered to be outside of the research scope and is part of future work. 

1.3 Research Methodology 

This section presents the overall methodology followed in this research in order to derive and 

theoretically and empirically evaluate a suite of SO design metrics, thereby answering the 

research questions defined in the previous section.  

A critical analysis and comprehensive review of existing work in the areas of SOC, soft-

ware maintainability, and software metrics was conducted in order to gain knowledge and 

expertise required to effectively perform research activities described in this section. The re-

sults of this analysis/review (Chapter 2) contribute to answering Research Question 1.  

Furthermore, an initial case-study has been conducted in order to empirically determine 

whether some of the widely-used Procedural and OO metrics can correctly measure the struc-

ture of service-oriented designs. The study, presented in [190], demonstrated that the metrics 

under investigation cannot quantitatively distinguish between SO designs that were consid-

ered qualitatively different, thus providing an answer to Research Question 2. 

The actual metric derivation process uses the approaches proposed by Shepperd and Ince 

[218] and Briand et al. [37]. Such approaches provide systematic guidance for the metric 

derivation process, thereby insuring that the metrics conform to the following widely-

accepted validity criteria [71, 213]: i) represent accurately the entities and attributes they pur-

port to quantify; ii) possess a óface valueô; iii) be practically applicable.  
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Evaluate Metrics Empirically  

Derive Metrics  

Establish assumptions linking design 

properties to software quality 

Define Formal Model 

of SO System Design 

Establish measurement goals 

Analyse Practical Applicability  

Validate Metrics Theoretically 

CHAPTER 3 

(Q3) 

CHAPTERS 4 AND 5 

(Q3) 

CHAPTER 6 

(Q4) 

CHAPTER 7 

(Q5) 

 

Figure 1-1. Research Activities 

The metrics derivation process is outlined in Figure 1-1 together with the corresponding 

thesis chapters and research questions, with each research activity described in greater detail 

in the following sub-sections. 

1.3.1 Define Formal Model of Service-Oriented System Design 

As a prerequisite to the measurement of any software property, it is necessary to formally 

model the entity under investigation (service-oriented design3), thereby establishing a mecha-

nism for defining metrics in an unambiguous and formal manner making sure that the derived 

metrics accurately represent the entities and attributes they purport to quantify. 

A formal model of service-oriented design will capture an understanding of the core de-

sign principles and characteristics of SOC, as elicited through: i) detailed critical review of 

previous work; ii) informal face-to-face or correspondence-based discussions with experts in 

the area; and iii) skills and development experience of the present author. The model will also 

indirectly assist in answering Research Question 1. 

                                                      
3 Note that the terminology used in this thesis to describe different concepts of service-orientation (including óservice-

oriented designô and óSOCô) can be found in Section 2.2.3 ï Table 2-2. 
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1.3.2 Derive Metrics 

The overall metrics derivation process consists of the following steps: 

1. Establish measurement goals. 

The measurement goals should be defined in line with the research objectives, with the 

ñGoal/Question/Metricò (GQM) method [19], being commonly used as a guide for defining 

goals along the following dimensions: 

i) Object of study that defines the entities and attributes under investigation; 

ii)  Purpose of measurement that shows the potential use of the metrics; 

iii)  Quality focus that assists in selecting the dependent attributes used in the assumptions and 

experimental hypotheses; 

iv) A viewpoint that specifies who is affected by the results of measurements; 

v) A description of the environment that provides context of the obtained results.  

For example, the key measurement goal of this research can be formulated according to 

the above template as: 

i) Analyse the coupling and cohesion of service-oriented designs, 

ii)   for the purpose of evaluation and prediction, 

iii)  with respect to software maintainability, 

iv) from the point of view of software engineers, 

v) in the context of experimental SO software systems. 

2. Establish informal assumptions and experimental hypotheses. 

The assumptions assist in the metrics derivation and validation process by establishing in-

formal connections between structural design properties of coupling and cohesion, and soft-

ware maintainability as captured by its sub-characteristics (analysability, changeability, sta-

bility, and testability) based on an understanding of the problem domain and the review of 

existing literature. Note that the sub-characteristics of maintainability are discussed in detail 

in Section 2.3.1. Furthermore, the formally redefined assumptions will serve as experimental 

hypotheses to be tested during the empirical evaluation of metrics (in Chapter 6). 

3. Metrics definition and theoretical validation. 

Rigorous and precise mathematical notations and techniques should be used during the 

derivation and subsequent theoretical validation of the metrics. To this end, the definitions 

captured by the formal model of service-oriented software design will allow defining metrics 

in a precise, unambiguous, and formal manner. Moreover, the evaluation of the completeness 
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of the proposed metrics can be performed based on the coverage of structural and behavioural 

aspects captured by the model.  

Additionally, in order to derive metrics that are valid from the measurement theory [204] 

perspective, it is important to clearly specify the following characteristics [111]: 

i) Metric type (direct/indirect) - the metrics derived in this research are direct measures 

since they do not involve other design properties in their measurement activities.  

ii) Metric scale ïthe derived metrics are defined on ratio and absolute scale, which are 

the most informative type of measurement scale. 

iii) Measurement unit ï the derived metrics use count as the measurement unit. 

Note that as with the formal model of SO design, the metrics are based on an intuitive un-

derstanding of the core principles of SOC, thereby insuring that the derived metrics possess a 

óface valueô. Finally, it is important to demonstrate the theoretical validity of metrics. There-

fore, the derived metrics were theoretically validated using the property-based software engi-

neering measurement framework [30] described in Section 2.5.2.  

The above-described metric derivation process will allow answering Research Question 3. 

1.3.3 Empirical  Evaluation of Metrics 

Empirical evaluation shows the usefulness of metrics in practice, thus being the crucial activ-

ity in establishing the overall validity of a given metric. The empirical evaluation of the met-

rics derived in this thesis involves experienced software engineers and post-graduate students 

performing maintenance tasks on two service-oriented systems exhibiting different structural 

properties. Statistical methods are then used to test the correlation between design coupling 

and cohesion, as measured by the derived metrics and encapsulated by the experimental hy-

potheses, and maintenance efforts measured using existing ISO/IEC metrics [112, 113]. Note 

that established experimental techniques for collecting data and analysing the results are used 

during the empirical evaluation. For example in this thesis, the correlation and regression 

analysis techniques were used since they provide a robust method suitable for exploratory 

research [34]. The empirical evaluation addresses Research Question 4. 

1.3.4 Practical Applicability Analysis  

It is not enough to simply validate metrics theoretically and empirically, the metrics should 

also be practically applicable. To be useful in real projects the metrics should exhibit the fol-

lowing pragmatic characteristics [98]:  

1) The metrics can be easily collected in an automated manner ï otherwise it will be dif-

ficult to efficiently apply metrics to large-scale projects. 
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2) The metrics should be technology independent ï otherwise they will have a limited 

scope of use, and comparison across products developed using different technologies will be 

difficult . 

3) The metrics should be integrated into the software process to support the decision 

making during the design and implementation phases of SDLC. 

Applicability analysis will allow answering Research Question 5. 

1.4 Contribution  

This section outlines the contributions of this thesis, with the main contribution being a suite 

of software metrics for measuring structural properties of service-oriented design artefacts as 

described in Section 1.4.1. Secondary contribution is a formal model covering the structural 

and behavioural properties of service-oriented system designs as described in Section 1.4.2. 

Additionally, the metrics and a formal model can lay a foundation for the derivation of SOA-

specific design methodology as briefly discussed in Section 1.4.3. Finally, the summary of 

the contribution is shown in Section 1.4.4. 

1.4.1 Coupling and Cohesion Metrics 

The main contribution of this thesis is the derivation of a suite of design-level metrics for 

measuring coupling [191, 194] and cohesion [192] in service-oriented systems (Chapters 4 

and 5 respectively). The metrics can be used as early predictors of quality characteristics of 

service-oriented software, with this work being particularly concerned with the quality char-

acteristic of maintainability, thus allowing organisations to identify potential quality prob-

lems in the early stages of the SDLC.  

The proposed metrics are theoretically valid since they are shown to exhibit mathematical 

properties of coupling and cohesion as defined in the property-based software engineering 

measurement framework of Briand et al. [30]. More importantly, the metrics have been 

evaluated empirically and the results indicate a correlation between the coupling and cohe-

sion of service-oriented designs (as measured by the metrics) and the maintenance efforts. 

The empirical evaluation consisted of a number of experiments, where participants were 

asked to perform maintenance activities on two software systems that exhibited different 

structural characteristics as reflected by the metrics. The relationship between the coupling 

and cohesion metrics, and measures of maintainability was then analysed, showing statisti-

cally significant correlation for a number of the metrics derived in this research (as described 

further in Chapter 6). Therefore, we can conclude that the derived metrics can be considered 

as theoretically valid and potentially useful predictors of software maintainability. 
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1.4.2 Formal Model of SO Designs 

The secondary contribution of this thesis is the definition of a formal mathematical model 

covering the structural and behavioural properties of service-oriented system design [193, 

195] (Chapter 3). This model captures the design structure of service-oriented systems as a 

bi-directional graph expressed using set-theoretic notation [80]. Vertices in the graph symbol-

ise design artefacts representing logical and physical software entities found in service-

oriented systems. Edges correspond to the relationships between these design artefacts, repre-

senting both structural and behavioural dependencies. 

There are two major benefits of this model. Firstly, the model formalises the fundamental 

design concepts of SOC, thus supporting a better understanding of the issues related to ser-

vice-oriented development. Secondly, and more importantly in the context of this thesis, the 

model provides means for defining and theoretically validating software metrics in a precise, 

unambiguous, formal manner.  

Note that the proposed model was designed to be as generic and technology agnostic as 

possible in order to facilitate wide applicability. Nonetheless, the model can be readily spe-

cialised to cover the constraints imposed by a specific implementation technology [193]. 

1.4.3 Initial Design Guidelines 

Although it is not one of the immediate goals of this research, the derived metrics can lay a 

foundation for a service-oriented design methodology by providing means of identifying ini-

tial design-level guidelines and patterns. For example, specific design guidelines can be for-

mulated in terms of concrete metric values. Additionally, the proposed formal model enforces 

constraints on the overall design structure and possible relationships between design artefacts, 

thus providing means to evaluate the conformance of a given system design to the fundamen-

tal characteristics of SOC. Such constraints should be captured by the development method-

ology. Note that the derivation of the complete service-oriented design methodology is be-

yond scope of this thesis and is part of future work. 

1.4.4 Summary of Contribution 

CONTRIBUTION ACADEMIC BENEFITS  INDUSTRY BENEFITS 

 

METRICS 

- Extending the concepts of cou-

pling and cohesion for service-

oriented (SO) software systems. 

- Replicating (and specialising) 

the repeatable process of deriv-

 - Allowing comparison and se-

lection of alternative SO design 

structures, and supporting justifi-

cation of key trade-off design 

decisions in SOC. 
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ing metrics for a specific devel-

opment paradigm (SOC). 

- Establishing link between ser-

vice-oriented coupling and cohe-

sion, and the maintainability of 

SO software products. 

- Providing a basic foundation 

for specifying methodological 

design guidelines for SOC. 

 

- Supporting detection and miti-

gation of maintainability prob-

lems early in the Software De-

velopment LifeCycle (SDLC). 

 

MODEL 

 

- Promoting a better understand-

ing of the SOC paradigm, by 

encapsulating the major struc-

tural and behavioural design 

properties of SO software. 

- Demonstrating the process of 

extending the generic model of a 

software design [30] for a spe-

cific paradigm (SOC). 

- Providing means for defining 

and theoretically validating ser-

vice-oriented design metrics in a 

precise and formal manner. 

 - The model can provide a theo-

retical support for various soft-

ware tools. More specifically, the 

model can be used to support: 

1) automated design consis-

tency checks and metric collec-

tion; 

2) creation of architectural 

and design diagrams using 

graphical representation (the 

specification of which is part of 

future work) of the artefacts and 

relationships captured by the 

model. 

Table 1-1. Thesis Contribution 

1.5 Thesis Structure 

The remainder of this thesis is separated into six chapters. Chapter 2 reviews and critically 

analyses existing work in the areas related to this research, thereby providing a foundation for 

the remaining chapters. Chapters 3-6 cover the metrics derivation process and associated ac-

tivities (as shown in Figure 1-1). More specifically, Chapter 3 presents a formal model of SO 

software designs, which in turn provides the formalism for the definition of coupling and co-

hesion metrics in Chapters 4 and 5. The metrics are then empirically evaluated in Chapter 6. 

Finally, Chapter 7 presents concluding remarks (including the analysis of the practical appli-

cability of the derived metrics) and outlines some future research directions. 
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Chapter 2.  Literature Review 

This chapter reviews and analyses existing work in the areas of Service-Oriented Architecture 

and Computing, software maintainability, and software design properties and metrics. The 

review provides the necessary background for the work presented in this thesis, and assists in 

formulating answers for the research questions defined in the previous chapter.  

2.1 Overview and Purpose 

The review process was based on the guidelines proposed by Kitchenham [127] and evalu-

ated by Brereton et al. [26], which incorporate the procedures for performing a systematic 

literature review in the context of software engineering. The major review activities, the 

search strategy employed for selecting appropriate review material, and the specific review 

sources are described in Appendix A. 

The purpose of this literature review is twofold. Firstly, it was designed to investigate 

various research topics related to this thesis in order to provide answers to Research Ques-

tions Q1 and Q2 described in Section 1.2. Secondly, it provides background needed to under-

stand the intended contribution of this research (namely a suite of software metrics for meas-

uring coupling and cohesion of service-oriented designs), thereby indirectly assisting in an-

swering Research Questions Q3, Q4, and Q5 (Section 1.2).  

More specifically, a number of research topics have been identified and reviewed. These 

topics are listed in Table 2-1 together with the corresponding section numbers, with the major 

research areas highlighted in bold font. Note that the order of the presentation of research top-

ics is not consistent with the order of corresponding research questions since all effort was 

made to produce a structurally sound chapter where the topics are grouped into sections based 

on their conceptual relevance. Additionally, some of the reviewed topics are presented in 

multiple chapters in order to improve the readability of the thesis, and also make it easier to 

compare the contribution of this research to that of the existing work. 

2.1.1 Review Structure 

The literature review is documented in four separate sections. Each section comprises a 

grouping of related research topics (from Table 2-1) as follows: Section 2.2 discusses the 

fundamental characteristics and design principles of Service-Oriented Computing (SOC) and 

Service-Oriented Architecture (SOA). Section 2.3 overviews the areas of software quality in 

general and software maintainability in particular. Section 2.4 examines the structural proper-

ties of software designs. Finally, Section 2.5 describes the area of software metrics.  
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RESEARCH 

QUESTION 

TOPICS OF INTEREST SECTION 

NUMBER 

Q1 Á SOC (and SOA), including: 

o key concepts and definitions 

o conceptual and architectural structure 

o technological aspects (for example, web services and 

Business Process Modelling (BPM) approaches) 

o software engineering principles 

Á development strategies and methodologies 

Á design principles and characteristics  

2.2 

2.2.1-2.2.3 

2.2.1 

2.2.1 

 

2.2.2 

2.2.2 

2.2.2 

Q2 Á software design properties in general 

o design properties of coupling and cohesion 

Á software metrics in general 

o existing metrics for measuring coupling and cohesion 

2.4, 2.4.1 

2.4.2, 2.4.3 

2.5, 2.5.1 

2.5.4, 4.1, 5.1 

Q3 Á measurement theory, and metrics derivation and theoretical 

validation approaches 

Á formal models of software 

2.5.2 

 

2.5.2, 3.1 

Q4 Á software product quality  in general 

Á quality characteristic of maintainability and its various 

sub-characteristics 

Á maintainability prediction factors 

Á empirical validation of metrics 

2.3 

2.3.1, 2.3.2 

 

2.3.3 

2.5.3, 6.1 

Q5 Á practical applicability and tool support 7.2 

Table 2-1. Research areas covered in the literature review 
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2.2 Service-Oriented Architecture  (SOA) and Service-Oriented 

Computing (SOC) 

This section describes the fundamental characteristics of Service-Oriented Architecture 

(SOA) and Service-Oriented Computing (SOC). Additionally, given that the main focus of 

this research is the design of service-oriented (SO) systems (in particular its structural proper-

ties); this section reviews and discusses the major principles of SO design. It is important to 

note at this stage that the concepts of SOA and SOC are relatively new and the related re-

search is still in its infancy, lagging behind the industry initiatives in the area [104]. Although 

all effort was made to produce an objective and well-supported overview of SOA and SOC, 

some of the presented concepts and definitions are based on the experience of the present au-

thor and on informal discussions with the software practitioners and researchers in the area 

[60, 99, 141, 182, 206, 248]. 

Note that the terms SOA and SOC are often used interchangeably in the existing litera-

ture. In this thesis, SOA and SOC are treated as related, but at the same time distinct concepts 

as reflected by the structure of this section, where SOA and SOC are described independently 

from one another. More specifically, SOA represents an abstract high-level architectural 

model that covers all aspects of provisioning, consumption, and management of software ser-

vices (or systems comprised of such services) [159]; whereas SOC is the development para-

digm used to analyse, design and implement the individual SO systems that can be integrated 

into SOA. 

2.2.1 Service-Oriented Architecture (SOA) - Concepts and Definitions 

Service-Oriented Architecture (SOA) represents an abstract model of system architecture that 

employs business-aligned software services, which can be composed and orchestrated using 

executable business processes to fulfil  a specific domain or business requirement. Papazoglou 

et al. define services as ñautonomous, platform-independent entities that can be described, 

published, discovered, and loosely coupled in novel waysò [184, p. 64]. Services in SOA are 

commonly treated as óblack-boxesô from the architectural perspective, where the correspond-

ing service interfaces constitute the only visible part to the rest of the architecture [67]. 

Numerous definitions of SOA have been proposed in the research and industry literature, 

including: i) a business-centric architectural approach enabling organisations to integrate sys-

tems and processes as repeatable services [11]; ii) a consistent approach for defining services 

in the IT systems that align with business functions and processes [173]; iii) a logical way of 

designing software systems to provide services to end-user applications or other services dis-

tributed in a network [184]; and iv) an architectural model that aims to enhance the agility 
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and productivity of an enterprise by using services as the primary means through which solu-

tion logic is represented [68]. Moreover, the notion of SOA has been extended in recent pub-

lications to cover the specific application domains. For example, Woods and Mattern [241] 

introduce the concept of ESA (Enterprise Services Architecture), which is the framework for 

enabling easier evolution of IT resources using the combination of business semantics and 

core principles of SOA. 

It has been suggested that SOA can provide a number of advantages over the other archi-

tectural models in terms of the reusability, business agility, and interoperability of the pro-

duced software [18, 66, 130, 173, 208]. Such characteristics constitute the fundamentals of 

SOA. 

Services in SOA are highly reusable because they are independent self-contained entities 

that do not depend on the state or context of other services in the system, and thus can be re-

used in the context not known at the design time. Additionally, services are typically com-

posed into business processes represented in terms of business concepts rather than system 

level implementation details [245]. Such processes can be designed by business analysts with 

the aid of software tool support and then transformed into executable modules or business 

process scripts, which are deployed and executed using middleware. Encapsulating business 

logic and rules in the business processes, thereby separating them from the actual software 

implementation, promotes reusability and increases the business agility of software. More-

over, the business processes can be easily modified by business analysts without a need for 

implementation-level changes, again increasing the business agility of software and facilitat-

ing rapid business change and reduction of maintenance efforts [18, 187, 241].  

Interoperability is supported by the technological aspects of SOA. At present, services in 

SOA are typically implemented as platform-independent Web Services that communicate via 

XML -based SOAP protocol and are described using WSDL 1.1 (or recently standardised 

WSDL 2.0) interfaces [4, 94]. This allows for seamless interoperability between different 

platforms and programming languages. To this end, SOA treats individual software systems 

as independent services geared for integration, and uses them to build agile networks of col-

laborating service applications.  

Note however that the implementation of Web Services is not restricted to the SOAP 

stack of protocols given that SOA is technology agnostic. For example, Richardson and Ruby 

[203] suggested recently that Web Services can benefit from the RESTful4 implementations 

on top of HTTP, in which services are defined in a resource-oriented fashion instead of a 

more conventional function-oriented manner. The process of modelling applications as a col-

lection of RESTful services is simpler than SOAP-based Web Services because the number 

                                                      
4 Representational State Transfer (REST) is the generic architectural style for modelling web-based applications and re-

sources. According to Fielding, the foundation of REST is said to be directly interleaved with that of the Web itself [78]. 
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of architectural decisions associated with REST is relatively smaller (as reflected by the 

smaller number of alternative technologies and standards) [188]. Nevertheless, the core de-

sign elements of REST are not readily suited for the process of service composition, due to 

the lack of conceptual and technological support for the integration with the current Business 

Process Modelling approaches (refer to Section 2.2.1.2) that constitute an integral part of 

SOA [188].  

Given the desire to conduct worldwide business and other collaboration in a uniform in-

teroperable manner, as well as the need to efficiently compose, leverage and reuse existing 

business resources, Service-Oriented Architecture utilising web services and various WS-* 

specifications [236] appears to be a highly suitable solution. Note that it is not an objective of 

this thesis to champion SOA; indeed this is not needed since SOA is already a popular archi-

tectural choice, with many organisations having adopted (or are planning to adopt) SOA [96].  

2.2.1.1 Conceptual and Architectural Views of SOA 

At a conceptual (or logical) level, SOA consists of three primary components: i) service pro-

viders, who publish service descriptions and realise software services; ii) service consumers, 

who discover a service description, and invoke a service; and iii) service registries or reposi-

tories (such as UDDI [246]) that maintain a directory of services to be discovered by the con-

sumers [64, 67]. This high-level conceptual model is illustrated in Figure 2-1.  

Additionally, the conceptual model of SOA introduces another fundamental characteristic 

of service-orientation ï loose-coupling. This is because the service consumers and providers 

are separated from one another via service registries, meaning that there is no need for ex-

plicit relationships between both parties. That is, the service consumers can select (or dis-

cover dynamically at run-time [173]) required services from the registry without depending 

on a particular service provider. Moreover, one of the primary motivations for using Web 

Services, is that they are accessed through language and location independent interfaces, 

which also promotes loose-coupling from the integration perspective [4].  

Note however that it is possible to design SOAP-based Web Services in a tightly-coupled 

manner. For example, Web Services Resource Framework (OASIS WS-RF), which has been 

recently standardised by OASIS [175], defines specification for modelling and accessing 

stateful resources using Web services. Specifically, OASIS WS-RF provides support for the 

management of application state through properties associated with Web Services. Such 

óforcefulô injection of a state into Web Services, which are meant to be stateless according to 

the core principles of SOA [68], could result in tightly-coupled applications.  
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Figure 2-1. Logical view of SOA5 

 

 

Figure 2-2. Architectural view of SOA (modified from [12]) 

The architectural-level view of SOA is shown in Figure 2-2. At the architectural level, 

SOA implementations consists of: i) the major services (1) in the system (the design and im-

plementation of which is treated as ñblack-boxò at the architectural level); ii) associated busi-

ness processes (2) that are used to compose6 individual services in order to provide extended 

functionality to the consumers (3); and iii) various integration (4) and managementïrelated 

(5) aspects.  

                                                      
5 This high-level logical structure is commonly referred to as ófind-bind-executeô model [104].  

6 The compositional aspect introduced by business processes is another fundamental characteristic of SOA [241] 
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The business processes themselves are typically exposed using standardised service inter-

faces (for example, WSDL-based interfaces [4, 94]), and as such can be included in service 

registries as common services.  

The integration architecture is typically covered by the Enterprise Service Bus (ESB) [40] 

implementations that provide middleware-level support for the integration of disperse ser-

vice-oriented applications in terms of message and event-based interactions, and seamless 

data integration [161]. From the architectural perspective, an ESB provides an abstraction 

layer on the top of existing enterprise messaging systems in order to minimise direct depend-

encies between the provided services and their potential consumers. Moreover, an ESB can 

provide support for business process choreography and orchestration implementations [40] 

described in the following sub-section. 

The management-related aspects, such as service monitoring and Quality of Service 

(QoS) enforcement, are also supported by the middleware-based solutions or dedicated soft-

ware components (for example, intelligent agents [219]). 

2.2.1.2 Business Processes Modelling 

Business processes reflect workflows within and between organisations. Business process 

modelling (BPM) describes activities that interact with various intra/inter organisational ele-

ments while supporting the operation of the business [187]. Specifically, the purpose of busi-

ness process modelling is to provide a mechanism for composing software services together 

in order to provide some well-defined business functionality. This includes two distinct com-

positional approaches: orchestration and choreography [17].  

Orchestration specifications incorporate a local view of the business interactions, where 

one centralised business process entity controls the flow of the process execution, and invo-

cation of the required services. In contrast, choreography specifications capture the global 

perspective of the business interactions across different enterprises or organisational divisions 

without imposing the need for a centralised control insofar as each participant in a choreogra-

phy interacts with other participants via peer-to-peer message exchanges on [200]. It is im-

portant to note that the orchestration specifications can be directly mapped to the executable 

business process scripts, whereas the choreography specifications are not directly executable 

since they are designed to capture the overall high-level messaging behaviour and associated 

business rules of a workflow without considering low-level details such as the specific format 

of message exchanges. 

There are a large number of techniques proposed for business process modelling ranging 

from flow charts to UML and Petri Nets, each having various supporting business process 

languages. Such languages allow business process models to be designed, and in the case of 

orchestrations, directly executed via middleware support. For example: 

 

http://en.wikipedia.org/wiki/Abstraction_layer
http://en.wikipedia.org/wiki/Abstraction_layer
http://en.wikipedia.org/wiki/Abstraction_layer
http://en.wikipedia.org/wiki/Enterprise_messaging_system
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Á Business Process Modeling Notation (BPMN 1.2) [238] is a standard for modelling 

and specifying business process choreographies based on a flowcharting techniques. The 

BPMN specification relies on a number of supporting standards such as XML  Process Defini-

tion Language (XPDL) which is a file format used to store various aspects of BPMN dia-

grams [17]; and Web Services Choreography Description Language (WS-CDL) which pro-

vides a formalism for describing peer-to-peer collaborations between workflow participants 

using pi-calculus [233]. 

Á Web Services Business Process Execution Language (WS-BPEL 2.0) [176] is the lat-

est in the series of orchestration languages, uniting the ideas from the XLANG [226] and 

WSFL [144] languages, and extending the original Business Process Execution Language for 

Web Services (BPEL4WS [8]) specification. WS-BPEL 2.0 is arguably the most widely used 

orchestration language since it was developed by a consortium of major software vendors 

(namely IBM, Microsoft, and BEA) and has been recently standardised by OASIS [176].  

Business processes are an integral part of SOA, constituting one of the fundamental de-

sign and implementation constructs in service-oriented systems. As such, they will be treated 

as distinct service implementation artefacts in the formal model of SO system design pre-

sented in Chapter 37. 

2.2.2 Service-Oriented Computing (SOC) - Key Concepts and Definitions 

While SOA represents a conceptual and architectural model without enforcing any con-

straints on the actual design and implementation of services (that is, services in SOA are 

treated as óblack boxesô) and the individual service-oriented systems, Service-Oriented Com-

puting (SOC) is the concrete software development paradigm based on the concept of encap-

sulating application logic within autonomous, stateless services exposed via well-defined ser-

vice interfaces [67, 104, 181, 186]. Services in SOC are autonomous and stateless insofar as  

they do not depend on the context or state of other services in the system [183]. 

SOC covers all development phases of the Software Development Lifecycle (SDLC), in-

cluding requirements engineering, system analysis and design, software implementation, test-

ing, and maintenance of the final products. As such, SOC can be considered as synonymous 

to Service-Oriented Software Engineering (SOSE). Note that the term SOSE is not com-

monly used in the existing literature, although Papazoglou et al. [184] recently defined SOSE 

as one of the major research areas that requires attention of the research community. Also, the 

main focus of this research is the design of service-oriented systems; therefore, the other de-

velopment phases are only covered briefly in this review.  

                                                      
7 Note that the underlined font will be used in the remainder of this chapter to indicate that the discussed material is directly 

related to the contribution and outputs of this research. 

http://en.wikipedia.org/wiki/Business_process_modeling
http://en.wikipedia.org/wiki/Business_process
http://en.wikipedia.org/wiki/XML
http://en.wikipedia.org/wiki/Peer-to-peer
http://en.wikipedia.org/wiki/Pi-calculus
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Figure 2-3. Design view of service-oriented systems 

Figure 2-3 illustrates the design-level view of service-oriented system, where the design 

and implementation of the individual services is taken into consideration. For example, De-

sign1 consists of three services, s1, s2, and s3, where each service consists of two distinct 

fundamental design artefacts: service interfaces and service implementation elements. As was 

described previously, services can be implemented using a range of different technologies 

and development paradigms. Similarly, there are no technological constraints on the lan-

guages and description formats used to describe service interfaces (although WSDL is com-

monly used to describe service interfaces in present implementations). To this end, services 

in SOC are somewhat similar to components in Component-Based Development (CBD) [11, 

212], but they are typically more coarse-grained and business-related then components and 

implementation inheritance and its complications (common to components in CBD) are not 

present in SOC [145]. 

2.2.2.1 Development Strategies 

There are three main strategies that can be used to develop service-oriented solutions: top-

down, bottom-up, and meet-in-the-middle [12]. Such strategies are typically complementary 

and iterative and can be integrated into existing widely-accepted development processes 

(such as, for example, Rational Unified Process (RUP) [133]). 
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Top-down strategy starts with the functional and non-functional requirements and business 

process models and refines them in a stepwise fashion down to a software implementation. 

The top-down development is often referred to as domain decomposition, which consists of 

the decomposition of the business domain into its functional areas and subsystems [11, 139]. 

The crucial task of a top-down strategy is to identify the units of software (atomic services) of 

órightô granularity that can be reused in different contexts. Atomic services can then be com-

posed into coarser-grained composite services or business processes. The issue of service 

granularity is important to this research since we consider the identification of service inter-

faces as important SO design activities as discussed further in Section 2.2.2.3.  

Bottom-up strategy is mainly related to the existing (legacy) systems, where the developers 

work upwards to the requirements and business process models by building services on top of 

existing systems. A bottom-up strategy includes two different techniques. Firstly, the devel-

opers can add a layer of service interfaces on top of existing systems, without changing the 

internal structure of such systems. Secondly, legacy systems can be refactored in such a way 

that the internal structure of the software system becomes service-oriented [142, 145]. To this 

end, examining the structural properties of software designs (using software metrics derived 

in this research) can assist software engineers in making an informed decision regarding 

whether it is best to refactor the system, or simply add a layer of service interfaces to it.  

Meet-in-the-middle strategy is a combination of top-down and bottom-up approaches. At 

present, the only well-described meet-in-the-middle technique is a goal-service modelling 

(GSM) approach initially proposed by Levi and Arsanjani [12, 139], and recently elaborated 

by Arsanjani et al. [13] as part of the IBMôs Service-Oriented Modelling and Architecture 

(SOMA) [106] development methodology. GSM aligns existing software assets with business 

goals, by combining the top-down and bottom-up strategies, so that all services in the system 

can be traced back to some well-defined business goal. 

Note that a top-down development strategy is arguably more interoperable than a bottom-

up approach since avoiding language-specific types and starting with interface and message 

definitions can lead to a much higher likelihood of interoperability [138]. The drawback of 

top-down approach is that, in its full generality, it can only be applied to systems developed 

entirely from scratch [4]. 

Also note that there are conflicting opinions as to which general strategy should be used 

when developing service-oriented systems. For example, according to Spencer [221] and 

Fowler et al. [81], developers should not try to design an application into disparate Web ser-

vices that talk to each other. Rather, they should build the application and expose various 

parts of it as Web Services (treating them as Remote Facades [82]). In contrast, Barry [18] 

and Singh et al. [219] indicate that simply adding Web Services to an existing application 

will not produce a service-oriented solution. They argue that the system should be composed 

http://www.ibm.com/developerworks/webservices/library/ws-soa-design1/
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from discrete internal and external services. The former view advocates a bottom-up ap-

proach, where developers build the application, add web services to it, and then combine ser-

vices into business processes. Conversely, the latter view prescribes a top-down approach 

based on business domain decomposition.  

2.2.2.2 Existing Development Methodologies 

Although methodological support for the development of SO software applications is in its 

infancy, there are a number of approaches that cover various aspects of SO development: 

- IBMôs Service-Oriented Modelling and Architecture (SOMA) [13, 105] and the 

ñMethodology for Service Architectures 1.0ò from OASIS [118] provide support for the iden-

tification and specification of services at the business level, as well as the composition of ser-

vices into executable business processes. However, neither approach addresses design and 

implementation issues beyond the definition of service interfaces and identification of main 

service components that realise the services. Additionally, SOMA is a proprietary methodol-

ogy available only by purchasing consultancy services from IBM (although, the detailed 

summary of the approach has been recently published in IBMôs Systems Journal [13]). 

- IBM Redbook ñPatterns: Service-Oriented Architecture and Web Servicesò [65] con-

cerns various Web Service related technologies (such as SOAP, WSDL, UDDI), however, 

rather than containing abstract methodological processes or patterns, the redbook is more a 

technology specific developers manual. Same can be said about the IBMôs SOA Program-

ming Model [77] which aims to simplify the creation and use of business services by making 

(IBM specific) middleware functions more accessible to the developers.  

- The most complete SO development methodology to date is defined by the industry 

practitioner Erl [66-68]. Although this methodology offers principles of service design, and 

briefly discusses the structural properties and non-functional characteristics of service-

oriented software, it lacks formal foundations and metrics, which can lead to ambiguity and 

lack of design verifiability. Furthermore, the methodology is not supported by empirical 

evaluation and thus is based more on Erlôs subjective judgement than a carefully constructed 

scientific approach. Nonetheless, Erlôs contribution is valuable since it provides detailed 

guidance for software practitioners. It is also regarded as useful academic text on SOA and 

SOC. For example, one of Erlôs books [66] is currently used as a reference text for the óWeb 

Servicesô subject taught at RMIT University, School of Computer Science and IT. 

As for research contributions, the work of Papazoglou et al. [183, 184, 186] includes the 

most comprehensive support in terms of scope and coverage, describing the entire ñWeb Ser-

vices Development Life Cycleò [183] including: Planning; Analysis and Design; Construc-

tion and Testing; Provisioning; Execution and Monitoring phases. Nonetheless, their method-

ology is still evolving, and as such, is not mature enough for the wide adoption in the indus-

try. 

http://www.ibm.com/developerworks/webservices/library/ws-soa-design1/
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The above methodological approaches can, either individually or in combination, be read-

ily used to develop SO applications. Nonetheless, they do not provide any guidance in terms 

of the structural properties8 of service-oriented designs (such as coupling between services 

and cohesion of individual services). This can have a significant impact on the quality of the 

produced SO software products since it was shown in previous paradigms that structural 

properties of software have direct influence on software quality, especially in terms of the 

maintainability of software. To this end, the structural design metrics derived in this research 

can: i) enhance the existing approaches by providing formal and quantitative means for 

evaluating the quality of produced software designs; ii) form a foundation for a new meth-

odological design approach. 

2.2.2.3 Service-Oriented Design Considerations 

Software design is the artefact produced in the design phase of the SDLC, which can be cap-

tured in the form of a physical document or other kinds of representation9 that articulate the 

intent of the software engineer [107]. According to Erl [68], Service-Oriented design incorpo-

rates principles for creating services with distinct design characteristics that support the over-

all vision of SOA. To this end, the major goal of the service-oriented design process is to 

provide a methodological support for the software practitioners facing a task of designing 

service-oriented solutions that can be integrated into an overall SOA. Such support must take 

into consideration the fundamental characteristics of SOA described in the previous section, 

namely reusability, business agility, interoperability, loose-coupling, and composability.  

Note that the influence of the design process on the above characteristics varies. For ex-

ample, interoperability refers to the platform-agnostic nature of Web Services, and as such, it 

is restricted by specific technological implementation and cannot be directly influenced at the 

design stage. Similarly, business agility is somewhat restricted by the need to include busi-

ness processes in the system design, which can also be considered as technological constraint. 

Although, such restriction can be loosened by replacing the business process scripts with 

dedicated software components (such as services), as long as these components encapsulate 

all business logic and rules, and serve as the orchestrators of other services in the system. 

Moreover, loose-coupling in the context of SOA typically refers to the integration aspects 

(including separation of service consumers from service providers via the service registries) 

rather than the actual structural property of software design or implementation. Again, such 

integration related coupling cannot be directly influenced at the design stage.  

The remaining two characteristics (reusability and composability) are highly dependent 

on the structure of service-oriented system designs. More specifically, they are related to two 

                                                      
8 The structural properties of software are discussed in detail in Section 2.4. 

9 Presently, there is no standardised language or notation for expressing SO design artefacts.  
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imperative features of SO design (and SOC in general) ï service autonomy and granularity 

and relatedness of service operations [67, 134, 247]. 

Service autonomy means that all design elements in a given software system are clearly 

separated into distinct, stateless, and self-contained services that communicate with each oth-

er strictly via the service interfaces. That is, there are no direct inter-service relationships be-

tween services in the system. For example, Design1 shown in Figure 2-3 conforms to the 

principle of service autonomy, whereas Design2 does not conform to this principle. Note that 

from the architectural (SOA) perspective, both services will look exactly the same since they 

have identical service interfaces. The reusability of a given service will depend largely on its 

autonomy. This is because it would be difficult to óextractô a service from one system and 

reuse it in another if the implementation of this service is linked directly to the implementa-

tion of other services.  

We refer to this direct linkage as one of the most important aspects of structural coupling. 

The notion of autonomy is then directly related to the structural property of coupling, which 

is investigated in this thesis.  

Note that some researchers and practitioners question the idea of structuring software sys-

tems as collection of services [221]. This is because there is a common misconception in the 

research and industry communities that services in SOC have to be implemented as Web Ser-

vices. Given that Web Services are resource intensive due to the XML marshalling, structur-

ing the whole system as a collection of Web Services may have a negative impact on its per-

formance. In this research, we view SOC purely as the development paradigm, and as such 

we do not restrict service implementations to Web Services.  

Service granularity and relatedness of its operations is another key design consideration 

in SOC. That is, service-orientation highlights the challenge of granularity, where services 

are typically categorised into fine-grained and coarse-grained types [67, 219]. A fine-grained 

service addresses a small unit of business functionality. In contrast, a coarse-grained service 

abstracts larger chunks of business capability within a single interaction. To date, there is no 

agreed criterion for determining the right granularity of services. 

The concept of granularity is important because it has direct impact on the composability 

and reusability of services. For example, fine-grained services should conceptually be easier 

to reuse and composed into more complex composite services compared to the coarse-grained 

services [68]. Another important characteristic of SOC is the relatedness of the operations 

exposed in a service interface. Such órelatednessô can be considered as major indicator of ser-

vice cohesion. To our knowledge, the concept of service cohesion is yet to be investigated or 

even discussed in the existing literature. This is surprising given that cohesion has been long 

recognised as one of the most important structural properties of software. 
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The fundamental concepts of SOC described in this section, will be discussed further and 

formalised in Chapter 3. The metrics for measuring the coupling and cohesion of service-

oriented software designs are presented in Chapters 4 and 5. 

2.2.3 Key Terms  

The terminology used in the rest of this thesis is shown in Table 2-2.  

 

TERM DEFINITION 

SOA High-level architectural model covering logical and architectural 

aspects of service-orientation.  

SOC / or 

SO DEVELOPMENT 

PARADIGM 

The actual development paradigm covering the process of develop-

ing software applications structured in terms of autonomic services. 

SOC covers all phases of the software development lifecycle 

(SDLC) ranging from requirements specification and analysis to the 

maintenance and other post-release activities.  

SO SOFTWARE 

SYSTEM/ or PRODUCT 

Fully implemented and released software system. The system can 

contain a number of different artefacts including (SRS, analysis and 

design documents, executable source code, and other related docu-

mentation) 

SO SOFTWARE DESIGN i) The design of the SO software system (product); or ii) the activi-

ties undertaken when designing SO software system (process) 

Table 2-2. SO terminology used in this thesis 

 

 

2.3 Software Product Quality - Maintainability  

Developing high quality software products is of prime importance and should be a key target 

of any software engineering process independent of the development paradigms or techno-

logical platforms in use [111]. One early definition of software quality was proposed by Ru-

bey and Hartwick [209], where quality was considered as synonymous with óprogram good-

nessô and characterised as ñhow easy the program should be to run production with and how 

easily it can be modifiedò [209, p. 671]. The authors reasoned that for a software program to 

be of high quality, it must possess the applicable quality attributes as assessed by quantitative 

measurements.  
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Software quality was later recognised to be a somewhat ambiguous and multidimensional 

concept where different views are expected to exist [89]. For example, most of the existing 

definitions of quality can be generally classified into three different, and sometimes contra-

dicting, perspectives: i) the conformance of software products to the functional requirements 

[89, 199, 231]; ii) the user satisfaction [160, 232]; and iii) the lack of errors or unexpected 

behaviour [39, 89, 169]. 

To support software engineers in performing a systematic and rigorous assessment of 

software quality, several highly-referenced models of software product quality have been in-

troduced by Boehm et al. [25], McCall [157], Kitchenham [125], and Dromey [62]. These 

models are structured in a hierarchical, top-down manner, where the concept of software 

quality is divided into a number of quality attributes which in turn are further decomposed 

into sub-attributes. The system quality is then evaluated in a bottom-up fashion, where the 

degree to which each of the quality sub-attributes is present in the product reflects the overall 

quality of the software. Such models can provide a valuable insight into the area of software 

quality by covering important quality concepts and dimensions. Nonetheless, the existing re-

search work on quality modelling is considered to be somewhat subjective, incomplete and 

not strong enough to gain wide acceptance [122].  

In order to provide a unified and comprehensive framework for specifying and evaluating 

the quality of software products, the Joint Technical Committee of the International Stan-

dards Organisation (ISO) and the International Electrotechnical Commission (IEC) defined 

the international standard for software product evaluation, ISO-9126:1991 [110], which com-

bined and extended the concepts and guidelines originally proposed by Boehm et al. [25] and 

McCall [157] into one generic model for characterising quality. This standard was recently 

replaced by the widely-used set of four standards, ISO/IEC 9126:1-4 [111-114] that incorpo-

rate a more prescriptive software quality model including a comprehensive set of metrics. 

In this thesis, the decision was made to use the quality model and metrics defined in 

ISO/IEC 9126:1-4 standards when investigating and measuring the maintainability of ser-

vice-oriented software so to be consistent with the current industry practices. Note that we 

acknowledge the concerns of some researchers in relation to Software Engineering (SE) stan-

dards in general [196]; and ISO/IEC 9126:1-4 in particular. For example, Al -Kilidar et al. [2] 

demonstrated two weaknesses of ISO/IEC 9126 standards in terms of overlapping between 

some of the measured properties and ambiguity in the definition of one of the quality attrib-

utes (software usability). Nonetheless, we believe that application of established international 

standards should be encouraged in both SE research and industry communities. This is be-

cause standards encapsulate uniform approaches for solving problems by concretising the 

common informal practices and development concepts [229], and therefore used extensively 

in all other engineering disciplines. Moreover, the quality model described in ISO/IEC 
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9126:1 standard has been additionally evaluated by Jung et al. [120] using a survey-based 

study. Although the results of the study again reveal possible ambiguities in the way the 

model defines its quality attributes and sub-attributes, they show direct evidence of the over-

all validity of the model. 

2.3.1 Quality Model - ISO/IEC 9126 

The set of ISO/IEC 9126 standards consists of four parts that address the following areas:  

¶ Quality model - ISO/IEC 9126-1:2001 [111] 

¶ External metrics - ISO/IEC 9126-2:2003 [112] 

¶ Internal metrics - ISO/IEC 9126-3:2003 [113] 

¶ Quality in use metrics - ISO/IEC 9126-4:2004 [114]. 

The quality model prescribed in ISO/IEC 9126-1 is summarised in this section. The met-

rics for measuring software maintainability (from the ISO/IEC 9126-[2-3]:2003 standards) 

are briefly discussed in Section 2.3.2.1. These metrics have been used as dependent variables 

in the empirical evaluation of the coupling and cohesion metrics derived in this thesis, and 

will be described in more detail in Chapter 6. 

The ISO/IEC 9126 quality model captures software product quality as a multidimensional 

concept comprised of six characteristics which are further subdivided into sub-

characteristics10 that can be measured directly by various internal or external quality metrics. 

The model was designed to be as generic as possible, and as such, it does not target any par-

ticular development paradigm or technological implementation [111]. For example, this 

model can be used effectively in its present state to assess the external quality of service-

oriented software products, as was done in this thesis for the particular case of software main-

tainability.  

Figure 2-4 illustrates the ISO/IEC quality model. It also provides the definitions for the 

maintainability quality characteristic and its four sub-characteristics: analysability, stability, 

changeability, and testability that can be directly measured using the internal and external 

ISO/IEC metrics. The analysability, stability, and changeability sub-characteristics of main-

tainability will be explicitly mapped to the metrics derived in this work in order to establish 

experimental hypotheses for the empirical study described in Chapter 6. The testability sub-

characteristic is not investigated since it refers to the general capability of any software prod-

uct to be tested, and as such, is not dependent on a particular development paradigm. Also, 

the investigation of other quality characteristics was considered outside of the research scope, 

but could be conducted in future work as discussed in Chapter 7.  

                                                      

10 The ISO/IEC 9126 standard substituted the terms [quality] attributes and sub-attributes, as commonly used in prior work, 

with [quality] characteristics and sub-characteristics respectively. 
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Figure 2-4. ISO/IEC 9126-1 quality model [14] ï maintainability 
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2.3.2 Software Maintenance 

The ISO/IEC 9126-1 standard does not provide the description of the actual software mainte-

nance phase including its various activities and associated issues; therefore the area of soft-

ware maintenance is discussed in detail in this sub-section in order to provide further ration-

ale and additional background for this research. 

Maintenance is the phase of the Software Development LifeCycle [131] that deals with 

the post-production modifications of a software product, and has long been regarded as one 

of the most resource-consuming development phases. For example, Boehm et al. [25, p.593] 

suggest that major benefit of the improved capability to deal with software quality considera-

tions for any software development organisation would be an improvement in software main-

tenance cost-effectiveness.  

It has been suggested that maintenance activities consume more than half of the overall 

project resources [103, 137, 148, 205]. More specifically, Page-Jones [180] notes that 60% of 

the whole lifetime cost of the system is spent on maintenance, while Pressman [199] states 

that most software development companies spend between 60% and 70% of the project re-

sources on correcting, adapting, enhancing and reengineering existing software, and Zuse 

[251] writes that over 70% of the overall development effort is spent on testing and maintain-

ing software products. This shows that developing software that is difficult to maintain (that 

is software exhibiting low maintainability) could result in project failures due to the time and 

cost overruns [153, 199, 231]. 

Interestingly, Holgeida et al. note that the amount of time spent on maintenance activities 

is shown to be stable on 60% (versus 40% spent on the development activities) in many em-

pirical studies conducted over the last thirty years, ñand not increasing to take up a larger 

and larger part of the work [due to software óageingô and increases in size], which many 

claimed would happenò [103, p. 690]. Although the authors do not deliberate on this point, it 

is reasonable to assume that the improved understanding of software development practices, 

and more recently the introduction of new development paradigms such as OO, allowed to 

manage effectively this supposed explosion of maintenance efforts. This could also be con-

sidered as one of the main reasons for considering a wide adoption of SOC since as the soft-

ware products continue to become increasingly large and complex, SOC can facilitate more 

efficient development process and easier implementation of maintenance tasks. For example, 

properly designed service-oriented solutions should exhibit a high degree of reusability, and 

according to Mari [151, p. 25], reusability can have a positive effect on maintainability due to 

the reduction of development costs. 
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Figure 2-5. Balance of Maintenance Activities [109] 

There are four widely-accepted types of maintenance activities originally defined by 

Lientz and Swanson [147] and later supported by other researchers and practitioners [153, 

197, 199, 225, 231]: 

¶ Corrective: fixing software faults (or defects), where a fault can result from errors in-

troduced during the requirements, design or implementation development phases; 

¶ Preventive: various activities aimed at increasing the maintainability of a product and 

preventing software faults before they occur by, for example, including additional 

documentation and improving the design structure; 

¶ Adaptive: adapting software to changes in the environment, where environment can 

include hardware, middleware, operating systems and other technology related fac-

tors; 

¶ Perfective: functional modifications to the system performed in order to accommodate 

for new or changed user requirements or to enhance the existing functionality. 

These activity types are consistent with the ISO/IEC 9126 standard, where maintainability 

is characterised in terms of corrections, improvements (preventive or perfective) or adapta-

tion of software. 

Most of the maintenance efforts are typically spent on the perfective activities: Lientz and 

Swanson [147] demonstrate that at least half of the maintenance efforts can be considered as 

perfective, and Pigoski [197] notes that about 55% of all software change requests are related 

to new or changed requirements (perfective maintenance). More recently, the International 

Software Benchmarking Standards Group (ISBSG) investigated the maintenance patterns of 

54 commercial software systems [109] from the communications, finance, and manufacturing 

domains in order to determine percentage of time spent on the individual types of mainte-

nance activities. The results of the study are shown in Figure 2-5, where perfective mainte-

nance was again shown to be the predominant activity.  
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The perfective maintenance is highly relevant to the service-oriented software products 

which typically include a large number of business rules and associated business processes as 

discussed in Section 2.2. Such business processes are shown to be the most unstable part of 

software applications [234]. This suggests the potential increase of the rate and number of 

perfective maintenance tasks required to keep up with the rapidly changing business require-

ments. To this end, developing service-oriented software products that exhibit high maintain-

ability is one of the key challenges of SOC. Note that developing highly maintainable soft-

ware implies increasing development costs; therefore, the best practical level of maintainabil-

ity is typically the accepted (or stakeholder agreed) level [83]. 

2.3.2.1 Measuring Maintainability 

A number of quantitative measures have been proposed to directly assess the maintainability 

of software mainly based on the cost and effect of the modification activities [1, 83, 147, 

231]. To measure the maintainability of service-oriented software products in this research, 

we used maintainability metrics defined in ISO/IEC 9126-(2-3) standards [112, 113] so as to 

be consistent with the earlier decision to utilise these standards. These metrics are used to di-

rectly measure the sub-characteristics of maintainability (refer to Figure 2-4) and are sepa-

rated into external and internal metric types. They are summarised below with the detailed 

description of all metrics presented in Section 6.3 (as was mentioned previously, these met-

rics will be used as dependent variables in the empirical study described in Chapter 6). 

- ISO/IEC 9126-2:2003 External metrics: The external metrics are computed by observing 

the behaviour of the maintainer or user when the software is maintained. For example, the 

external metric for measuring the changeability sub-characteristic of maintainability is the 

Modification Complexity (MC) metric defined as: MC = Sum (A) / N, where A is the work time 

spent to change; and N is the total number of changes. 

- ISO/IEC 9126-3:2003 Internal metrics: The internal metrics are computed by measuring 

the effect of modifications on the product itself. For example, one of the internal metrics for 

measuring the stability sub-characteristic of maintainability is the Modification Impact Local-

isation (MIL) metric defined as: MIL = A / B, where A is the number of emerged adverse im-

pacts in the system after modifications; and B is the total number of modifications made. 

2.3.2.2 Predicting Maintainability 

Quality characteristics of software, such as maintainability, should be estimated as early in 

the Software Development Lifecycle (SDLC) as possible in order to allow timely identifica-

tion and correction of the potential quality problems prior to the release of the software prod-

uct if required. For example, the early prediction of maintainability can allow software practi-

tioners to optimise future maintenance costs [164, 205]. To this end, a number of quality pre-

diction models [16, 62, 73, 74, 148, 177, 197] have been established in the form of:    
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Quality Characteristic = f (influencing factor/s), where a given quality characteristic is con-

sidered to be a function (f) of relevant factors that can influence the quality characteristic in 

question.  

In terms of the maintainability prediction, the influencing factors can be generally catego-

rised into: documentation-related factors and the structural properties of software designs.  

Example documentation-related factors include: i) readability of source code (the per-

centage of comment lines in total code), documentation contents quality, and understandabil-

ity of software (the correlation between documentation and source code) [1]; ii) documented 

preconditions and post-conditions for all functions in source-code, comments for all source-

code blocks, and self-descriptive identifiers [62]; and iii) overall quality of the documentation 

[153] (for example, the thoroughness of the activity logs [113]). 

The completeness and quality of the product documentation can have a considerable im-

pact on the analysability sub-characteristic of maintainability given that it is directly related 

to the important and time-consuming cognitive task of program comprehension [223], which 

takes up approximately half of all maintenance efforts [137]. Nevertheless, the documenta-

tion-related aspects cannot be used effectively to predict the other sub-characteristics of 

maintainability that are of interest to this research, namely changeability, and stability.  

In contrast, the structural properties of software designs (such as size, complexity, cou-

pling, and cohesion) are shown to influence all aspects of software maintainability [83, 170, 

225]. According to Zuse, ñgood software design causes lower maintenance costsò [251, p.7].  

This is because maintenance activities can be performed efficiently only if  the earlier devel-

opment phases (such as design phase) are done correctly [205].  

The structural properties of software designs constitute the fundamental construct in the 

simple maintainability causal model used in this research. Figure 2-6 provides a schematic 

view of this model, which is loosely based on the quality model proposed by Bansiya [16] 
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Figure 2-6. A simple maintainability prediction model used in this research 
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where the quality of OO software designs was modelled based on the corresponding struc-

tural properties. The structural design properties themself are discussed further in Section 2.4. 

Note that the presented model is incomplete, showing only these aspects that have already 

been covered in this review. The model will be augmented with additional constructs at the 

end of this chapter after all the relevant concepts have been covered. 

Finally, it also important to mention that in addition to the software product-related fac-

tors discussed above, there are a number of process-related external factors that can also in-

fluence the maintainability of software. The process-related factors do not consider the soft-

ware product itself; instead, they cover various issues related to the development process 

practices and other project related considerations. Such factors can include: i) social aspects 

related to program comprehension [223]; ii) user knowledge and maintainer effectiveness 

[148]; iii) the quality of the maintenance processes and practices (based on, for example, 

Software Maintenance Maturity Model [9]); and iv) the thoroughness of software inspections 

during the design and implementation phases of SDLC [243]. These factors are not investi-

gated in this thesis because: i) they are difficult to control prior to the software release; and 

iii) the investigation of project-related factors is out of scope of this research. 

2.4 Structural Properties of Software Designs 

The design of any software product possesses a number of properties that can be assessed by 

measuring the structure of the design artefacts using software metrics. Such structural proper-

ties are said to capture the (internal) quality of software and are commonly referred to as in-

ternal quality characteristics [16, 35, 62, 71, 74, 98, 251] since they do not describe the visi-

ble quality of a product, rather, they have a causal impact on the (external) quality characte-

ristics such as maintainability, reliability, and performance. According to Samoladas et al. 

[211, p. 84], the external quality characteristics should always be correlated to internal quality 

characteristics. 

2.4.1 Overview 

There are four major structural properties that are commonly used to represent the quality of 

any software design irrespective of the development paradigm in use: size, complexity, cou-

pling, and cohesion. These properties can be broadly defined [16, 34, 63, 84, 222] as:  

Á Size: a number of design artefacts in the system design; or the amount of functionality 

a software system provides to a user; 

Á Complexity: degree of difficulty in understanding the structure of design artefacts; or 

the amount of the internal work (algorithmic complexity) performed by a design artefact; 
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Á Coupling: a number of relationships between design artefacts; or the strength of a re-

lationship established by a connection from one artefact to another; 

Á Cohesion: degree to which the elements of a design artefact belong together according 

to some defined criteria. 

An interesting observation can be made in relation to the above definitions: they all in-

clude measurement-related keywords, such as number, amount, degree, and strength, suggest-

ing that the definitions are precise and unambiguous. This is misleading since the definitions 

of structural properties are typically semantic and are subject to different interpretations. For 

example, the strength of coupling relationships can be interpreted in a number of ways. Ac-

cording to Briand et al. [34, p. 724], the properties of size, complexity, cohesion, and cou-

pling are hardly ever defined in a precise and unambiguous way. This ambiguity in the defini-

tion of structural properties is mainly due to the following reasons: 

1) Multi -dimensional nature of properties 

Structural properties of software typically incorporate multi-dimensional aspects [24], that 

is, the properties can be conceptually separated into a number of sub-properties or influencing 

factors. From the measurement perspective, the properties can be considered as the complex 

attributes [98]. For example, some of the influencing factors of coupling can include: types of 

the relationship, interface complexity, and the direction of communication [33]. To this end, 

the correlation between external and internal quality can be characterised as: external quality 

attribute (for example, software maintainability) is reflected by the internal quality attrib-

utes/structural properties (for example, coupling) which in turn are reflected by the internal 

quality sub-attributes (for example, direction of coupling communication). Furthermore, to 

constrain the definition of the structural properties, it is necessary to identify the common in-

fluencing factors based on the specific technological and conceptual viewpoints [71]. 

2) Level of abstraction 

The structural properties of software can be measured at different levels of abstraction, 

ranging from requirements specifications through to executable implementations, with the 

target level of abstraction influencing the definition and consequent measurement of struc-

tural properties. For example, the property of size can be applicable to requirements specifi-

cation documents, software designs, and software implementations. The other three proper-

ties of coupling, cohesion, and complexity are typically investigated at the design and imple-

mentation level. The level of program abstraction has a significant influence on the definition 

of structural properties. For example, complexity is commonly defined in terms of the algo-

rithmic complexity of software modules [99, 156, 237]. The information required to measure 

the algorithmic complexity sometimes not available at the design stage, and thus, such defini-
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tions would be restricted to software implementation (with the exception of atypical cases 

where this information has been defined in the requirements specification itself and propa-

gated throughout the design). 

 

It has been recommended that structural properties should be evaluated as early as possi-

ble since the sooner problems in the software structure can be identified, the lesser the effort 

required to correct them [10, 15, 34]. Moreover, measuring structural properties late in the 

development process (after the implementation phase) defeats the purpose of such attributes 

being used as predictors of external quality attributes. This is because the external quality at-

tributes can be measured directly if the system is already implemented.  

The quantification of structural properties is more difficult at the design stage compared 

to the implementation stage because data available during the design stage is usually limited. 

Most of the previous work in the software quality area examined the structural properties at 

the implementation level, but more recent research suggests that such properties should be 

examined as early in the development lifecycle as possible [16, 36, 179]. In this research, the 

structural properties are investigated at the design level so to provide mechanism for the ear-

liest possible evaluation of software maintainability.  

3) Different design paradigms 

Previous research has shown that the use of different development paradigms, such as 

Procedural design and OO, will result in systems with different structural properties [63, 

102]. This is because structural properties have more dimensions, and as such, are more diff i-

cult to measure in OO systems compared to procedural ones due to the existence of many ad-

ditional design constructs and mechanisms. For example, OO introduced additional design 

concepts of: object abstraction, inheritance, polymorphism, and class hierarchies that can im-

pact the structural properties of software. Similar can be said about SOC, where the introduc-

tion of additional level of design abstraction, namely a service, and associated design prin-

ciples of service autonomy and service granularity (discussed in Section 2.2.3 and formalised 

in Chapter 3) can influence the design structure of software.  

Note that this thesis investigates the impact of service-orientation on coupling and cohe-

sion properties only. The properties of size and complexity are not investigated due to the fol-

lowing reasons: 

Á Size should be directly dependent on the functional requirements of the software sys-

tem; therefore little can be done from the software engineering perspective to óimproveô the 

size of the system. Additionally, size is independent from the development strategy in use and 

existing approaches for measuring size [76] [224] should be directly applicable to SOC. 

Á Complexity can only be fully quantified after the implementation of software is con-
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cluded; it cannot be directly measured during the design phase. This is because typical ap-

proaches for investigating complexity are based on examining the algorithmic complexity (or 

internal complexity) of implemented software modules as described by Henderson-Sellers 

[98] and McCabe [156]. 

Á Complexity is commonly viewed as the combination of coupling and cohesion when 

investigated at the design level. For example, Chidamber and Kemerer [44] define OO com-

plexity as the complex attribute that is influenced by many factors including system coupling 

and class cohesion, and Briand et al. suggest that all aspects of software design properties can 

be related to the complexity [27, p. 69]. To this end, investigating the coupling and cohesion 

in this research allows us to óindirectlyô cover design complexity. 

The following sub-sections describe the properties of coupling and cohesion in more de-

tails. Note that the existing metrics for measuring these properties in Procedural and OO de-

velopment are presented in a separate section (Section 2.5.4) to improve thesis readability. 

2.4.2 Coupling 

The concept of coupling was originally defined for procedural systems by Stevens et al. as 

ñthe measure of the strength of association established by a connection from one module to 

anotherò [222, p. 233], where coupling was classified based on the type of connection ï data 

or control. The authors had later extended their definition [242] in order to characterise four 

major factors that influence coupling: i) type of connection between modules; ii) complexity 

of the interface; iii) type of information flow; and iv) binding time of connection.  

The notion of coupling was then extended for object-oriented (OO) systems due to the ex-

istence of additional mechanisms that can influence coupling, such as polymorphic relation-

ships [44, 63, 102, 146]. Also, there are two main subjects of interest (or design constructs) in 

OO design, namely classes and methods, as opposed to procedural systems where the proce-

dure (a module consisting of code statements) is the main subject of interest. To this end, 

coupling in OO systems is defined as ñthe interdependency of an object on other objects in a 

design representing the count of other objects that would have to be accessed by a given ob-

ject in order for that object to function correctlyò [16, p.7]. Currently, there are four major 

frameworks characterising various dimensions of OO coupling: 

Á Eder et al. [63] describe coupling in terms of three different types of relationships in-

cluding: i) interaction relationships between methods; ii) component relationships between 

classes; and iii) inheritance between classes. These relationships are then used to derive three 

dimensions of coupling: interaction; component; and inheritance. For each dimension of 

coupling, the different strengths of coupling are identified. For example, the strengths of inte-

raction coupling are listed below from strongest to weakest: Content, Common, External, 
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Control, Stamp, Data, No direct coupling. Note that a complete software implementation is 

required to determine the component and inheritance dimensions of coupling; however, the 

interaction coupling in which a method invokes another method (of a different class) can be 

examined at the design stage. 

Á Hitz and Montazeri [101, 102] propose two different types of coupling: class level 

coupling (CLC) and object level coupling (OLC). CLC captures i) relationships between a 

method of a given class with a method of another class via direct call; and ii) references from 

a method of a given class to the attributes of another class. OLC captures coupling based on 

the state dependencies between two objects during run-time. CLC is considered to be impor-

tant when investigating software maintainability  because changes in one class may lead to 

changes in other classes which use it. OLC on the other hand, influences various run-time 

activities such as testing and debugging. As with the Eder et al. [63] framework, a number of 

general factors determining the strength of a particular coupling type are identified. Note that 

both types of coupling are difficult to examine at design time, with the only exception being 

method-to-method interactions as part of CLC which can be obtained from UML sequence 

diagrams and can be considered as similar to the interaction coupling of Eder et al. [63]. 

Á Hall et al. [95] categorise coupling into four different aspects: i) size of interface 

(amount of data passed to the module); ii) type of information flow (control or data); iii) type 

of passed data (simple data or entire structures); and iv) type of connection (information 

passed is global or in parameter lists). Additionally, three coupling domains that cover the 

above aspects are proposed: i) in-coupling representing the complexity (size) of the interface; 

ii) out-coupling representing the interactions between a module and other modules; and iii) 

global connection representing the complexity of global variable usage in a program. The 

out-coupling is conceptually similar to the interaction coupling of Eder et al. [63] and CLC of 

Hitz and Montazeri [101, 102]. 

Á Briand et al. [33] consider coupling to be representative of the interactions between 

classes. In contrast to the previous three frameworks which mainly focus on the implementa-

tion-level coupling, this framework examines coupling based on the information available 

during the high-level design phase. According to the authors ñeliminating design flaws and 

errors early before they can propagate to subsequent phases can save substantial amounts of 

moneyò [33, p. 97]. Given our goal of measuring coupling at the design level, the definition 

of service-oriented design coupling in this thesis generally follows the framework of Briand 

et al. This framework concentrates on coupling caused by interactions that occur between 

classes. Three coupling aspects are identified that determine the overall strength of coupling 

of a given design artefact: 
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1) Type of interaction. Defines the mechanism by which two classes c and d are coupled:  

i) Class-attribute: class c is the type of an attribute of class d; 

ii)  Class-method: class c is the type of a parameter of method md; or class c is the return 

type of method md; 

iii)  Method-method: method md directly invokes method mc; or md receives via parameter 

a pointer to mc thus invoking it indirectly. 

2) Coupling relationship. Two classes can be connected via one of the three common rela-

tionships: inheritance, friendship, and other. Note that Briand et al. targeted C++ based sys-

tems in their framework, and as such the friendship relationship type is language dependent. 

Nevertheless, Briand et al. suggest that the relationship types can be easily redefined based on 

the technological constraints.  

3) Locus of impact of an interaction. Can be export (class c is the used class) in the interac-

tion), or import (class c is the using class) in the interaction. 

In this thesis, the types of interaction and coupling relationships from Briand et al. 

framework [33] are redefined according to the fundamental principles of service-orientation. 

Also, the locus of impact of an interaction is considered when investigating coupling. For ex-

ample, service-oriented design coupling relationships cover: i) types of service design arte-

facts involved in interactions; and ii) locality aspects of the relationships in respect to the 

service boundary, that is, whether the relationship is inter- or intra-service. The redefined 

types of interactions and associated relationships are formalised in Chapter 3. Additionally, a 

new dimension of coupling is proposed in Chapter 4, service autonomy, which cannot be di-

rectly mapped to the above framework. 

2.4.3 Cohesion 

The notion of cohesion has been widely discussed in the context of the OO and procedural 

paradigms with various qualitative classification schemes being proposed to describe differ-

ent levels of cohesion [63, 222, 242]. For procedural systems, cohesion was originally de-

fined by Stevens et al. as a ñmeasure of the degree to which the elements of a module belong 

togetherò [222]. It was also suggested that in a highly cohesive procedural module, all ele-

ments should be related to the performance of a single function. Additionally, the authors 

proposed six semantic categories of module cohesion that were later elaborated and extended 

by Yourdon and Constantine [242]. The seven resultant categories are defined below ranging 

from the weakest to the strongest types of module cohesiveness:  

Á Coincidental: the elements of a module have nothing in common besides being within 

the same module; 
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Á Logical: elements with similar functionality such as input/output handling are col-

lected in one module; 

Á Temporal: the elements of a module have logical cohesion and are performed within 

the same time period; 

Á Procedural (added in [242]): the elements of a module are connected by some control 

flow; 

Á Communicational: the elements of a module are connected by some control flow and 

operate on the same set of data; 

Á Sequential: the elements of a module have communicational cohesion and are con-

nected by a sequential control flow; 

Á Functional: the elements of a module have sequential cohesion, and all elements con-

tribute to a single task in the problem domain, thus potentially minimising maintenance ef-

forts [31]. 

The notion of cohesion was later extended for the OO paradigm in a framework proposed 

by Eder et al. [63], where cohesion was redefined as the ñdegree to which the methods and 

attributes of a class belong togetherò in order to cover for the additional design constructs 

introduced by the OO paradigm. More specifically, Eder et al. adopted the original cohesion 

categories of Stevens et al. [222] when investigating the cohesiveness of individual class 

methods, at the same time introducing five new qualitative categories of OO class cohesion: 

Á Separable (weakest): the objects of a class represent multiple unrelated data abstrac-

tions. For instance, the cohesion of a class is separable, if the methods and attributes can 

be grouped into two sets such that any method of one set invokes no methods and refer-

ences no attributes of the other set; 

Á Multifaceted: the objects of a class represent multiple related data abstractions. The 

relation is caused by at least one method of the class which uses all the data abstractions; 

Á Non-delegated: there exist attributes which do not describe the whole data abstraction 

represented by a class, but only a component of it. That is, the attributes of the class inter-

preted as relation schema violate third normal form; 

Á Concealed: there exists some useful data abstraction concealed in the data abstraction 

represented by the class. Consequently, the class includes some attributes and methods 

which might make another class; 

Á Model (strongest): the class represents a single, semantically meaningful concept. 

Similar class-level categories of cohesion have been also suggested by Bieman and Kang 

(ñrelatedness of module componentsò [23, p. 259]).  
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It is important to note that the process of assigning design artefacts to a particular cohe-

sion category has a subjective nature, and thus cannot be automated. As such, the above clas-

sifications have limited practical applicability. Nevertheless, they can provide strong concep-

tual premises for establishing practical approaches for characterising and quantifying cohe-

sion using software metrics. The existing cohesion metrics are overviewed in Section 2.5.4. 

In this thesis, the conceptual categories of cohesion introduced by Stevens et al. [222] and 

Eder et al. [63] are extended and modified in order to account for the unique characteristics of 

service-oriented designs. Additionally, two service-oriented categories of cohesion, external 

and implementation have been introduced. The conceptual categories are then used to drive 

the definition of measurable characteristics and derivation of service-oriented cohesion met-

rics in a systematic manner consistent with the principles of measurement theory. The catego-

ries and associated metrics are presented in Chapter 5. 

2.4.4 Discussion 

The structural properties of coupling and cohesion of software designs are yet to be thor-

oughly investigated in the context of SOC. For example, a commonly used term loose-

coupling refers to the technological and integration based aspects of SOA, rather than the ac-

tual design principles incorporated by SOC as described in Section 2.2.2. This is unfortunate 

since it has been suggested that high quality software should be underpinned by a properly 

structured software design that exhibits low coupling and high cohesion in any development 

paradigm [32, 44, 72].  

More specifically, the structural properties can be used as a guide for choosing alternative 

design approaches and artefacts. For instance, a design approach may be preferred over an-

other because it produces designs consisting of loosely-coupled artefacts, or a design artefact 

may be preferred over another because it is more cohesive [30]. Such application of structural 

properties is important to the emerging field of SOC given a lack of mature design method-

ologies. More importantly in the context of this research, the properties are shown to be valu-

able early predictors of external quality characteristics (such as maintainability) in both Pro-

cedural and OO paradigms. For example, Table 2-3 shows the perceived influence of coupl-

ing and cohesion on the sub-characteristics of maintainability.  

Note that coupling and cohesion are commonly considered to be conflicting factors. This 

is because coupling is reduced when the relationships among modules are minimised. To this 

end, the simplest way to achieve best possible coupling is to develop a system consisting of 

one (large) module only. This approach would be considered as bad design practice since the 

resultant module will be unnecessary large and difficult to analyse, which can potentially re-

sult in the decreased cohesion.  
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 ANALYSABILITY CHANGEABILITY STABILITY 

COUPLING 

S 

[146] [170] 

S  

[121] [170] [55] 

S 

[170] [55] 

COHESION 

S 

[146] [55] 

W  

[121] [53] 

U 

 

Table 2-3. Influence of the structural properties of coupling and cohesion on software maintai-
nability (S - strong; A - average; W ï weak; U - unknown) 

Most of the existing work in quality estimation and prediction based on the structural 

properties of software investigates coupling and cohesion in isolation [32, 53, 244]. Never-

theless, some recent empirical results suggest that coupling and cohesion should be examined 

in combination when predicting the maintainability of software products [55]. 

In this research, the decision was made to study and measure coupling and cohesion in 

isolation so to be consistent with previous studies in which it was demonstrated that coupling 

and cohesion can have a distinct causal impact on external quality attributes such as main-

tainability or fault-proneness in both Procedural [100] and OO [7, 38, 45, 49, 92, 164, 177] 

software. As such, a derived suite of design-level SO coupling and cohesion metrics, which is 

the central contribution of this thesis, can be separated into the coupling and cohesion metric 

types because it was designed to measure these concepts in isolation. The following section 

provides a detailed overview of the software metrics area. 

2.5 Software Metrics 

The need to develop high quality software products has led to an increasingly large body of 

work being performed in the area of software measurement [87], where measuring software 

quality involves the use of metrics to assign a value to the attributes under investigation [112-

114]. Note that although the ISO/IEC 9126 standards define metric as a measurement scale 

and a method used for measurement, in Software Engineering the term metric is sometimes 

considered synonymous to measure [72]. In this thesis, we follow the ISO/IEC 9126 defini-

tions where measure indicates the actual number or category obtained by making a measure-

ment. Therefore, there is a clear distinction between both terms. 

A correctly implemented measurement process can provide software development organi-

sations with concrete mechanisms for controlling the quality of software products in an effec-

tive and systematic manner [160]. Additionally, a significant challenge to software engineers 

is to avoid neglecting proper development process while advancing among the technology 
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dimension [75]. To this end, metrics can provide mechanisms for quantifying the ways in 

which processes, products, and technologies relate to one another [158]. 

It has been argued that software engineering is fundamentally an empirical subject, and as 

such, metrics should play a pivotal role within it [76]. In fact, there is a large number of soft-

ware engineering metrics being proposed in the research and industry literature. For example, 

Zuse [251] estimated in 1998 that there are approximately 1500 different metrics being pro-

posed for measuring various aspects of software products and processes. Furthermore, the 

area of software measurement has been recognised as one of the most crucial software engi-

neering disciplines in SEIôs Capability Maturity Model Integration (CMMI) process im-

provement methodology [46].  

Nonetheless, according to Fenton ñmetrics continue to lie at the margins of software en-

gineeringò [76]. This is mainly due to the large gap between the theory and practice in the 

software metrics area as discussed by Glass [90, p. 221]. Moreover, in the past, software 

measurement has typically suffered from a lack of: i) standardised terminology; and ii) a for-

malism for expressing metrics in an unambiguous and fully operational manner (that is, a 

manner in which no additional interpretation is required on behalf of the user of the measure) 

[37]. Section 2.5.1 describes key concepts and definitions related to software metrics.  

There are two general types of criticism applicable to current software metrics: 

i) Various researchers in the metrics field [34, 72, 98, 207, 237] have noted that most 

existing software metrics were derived without any theoretical foundation, and as such, they 

lack appropriate mathematical properties. This suggests that software metrics should be 

created and validated with theoretical and mathematical rigor. Section 2.5.2 discusses the key 

principles of measurement theory that was used to derive theoretically sound metrics in this 

thesis, and also overviews existing approaches for theoretical validation of metrics 

ii)  Although some of the existing well-known metrics are theoretically sound, they lack 

empirical evaluation [42, 228], which is arguably the most important validation of any metric 

since it allows establishing models for predicting (external) quality of software. Section 2.5.3 

describes existing approaches for empirical evaluation of metrics, and also presents some 

empirical studies related to this research. 

Finally, Section 2.5.4 describes the existing Procedural and OO coupling and cohesion 

metrics in order to provide necessary background for this research. 

2.5.1 Key Concepts and Definitions 

The software measurement framework proposed by Fenton [71, 72, 76] is widely considered 

to provide the most complete conceptual model and terminology for reasoning about software 

metrics. This framework has been adopted by a number of prominent researchers in the met-
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rics area [27, 160, 251], and more importantly, it is consistent with the concepts and defini-

tions prescribed by the ISO/IEC 9126 family of quality standards used in this research. The 

measurement framework revolves around three fundamental measurement constructs: enti-

ties, attributes, and measurement: 

1) Entities. A key task of any software measurement is to identify and characterise the enti-

ties that we intend to measure. Three separate classifications types of entities have been pro-

posed: 

¶ Process ï a collection of related software engineering activities, methods, and prac-

tices employed when developing or maintaining the products; 

¶ Product ï an artefact that is the output of the process activities, including documenta-

tion, software design, or the actual code of a software program; 

¶ Resource ï an input used by the process activities to produce and maintain products, 

including hardware resources and personnel available throughout the SDLC. 

Note that these types of entities are inter-dependent. For example, product deficiencies 

can imply the existence of a problem in the actual process used to develop this product [251].  

The entity investigated in this research is the service-oriented software design, which can 

be classified into product entity type according to the above. Therefore, the rest of the defini-

tions and concepts presented in this section target the metrics for measuring product type en-

tities.  

2) Attributes.  An attribute of a given entity represents any measurable feature or property of 

this entity where there is a fundamental distinction between external and internal attributes. 

External attributes are characteristics or features of the software product that are externally 

visible. For example, software quality characteristics, such as maintainability, defined in 

ISO/IEC 9126 standard (described in Section 2.3.1) are examples of external attributes. In 

contrast, internal attributes such as structural properties of software designs (described in 

Section 2.4.1) can be measured in terms of the product itself.  

The attributes investigated in this thesis are the structural properties (or internal attributes) 

of coupling and cohesion of service-oriented software designs. 

3) Measurement. Measuring software involves direct or indirect quantification of the attrib-

utes of entities. Direct measurement of an attribute does not depend on the measurement of 

other attributes. In contrast, indirect (or derived) measurement of a given attribute involves 

the measurement of other attributes. Additionally, there are two typical measurement applica-

tions of metrics, assessment and prediction. Measurement for assessment is applicable to the 

attributes of existing entities, whereas predictive measurement of an attribute is based on a 

predictive model and associated hypotheses that link the measures of the attributes of existing 
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entities (such as properties of software designs) to external attributes of some future entity 

(such as maintainability of final software products). 

The metrics derived in this research are direct metrics for the assessment of coupling and 

cohesion of service-oriented software designs and subsequent prediction of analysability, 

stability, and changeability sub-characteristics of maintainability of software products. 

Additionally, there are two fundamental measurement constructs that have to be clearly 

defined for all metrics in order to support the objective interpretation of the obtained metric 

values and identification of the applicable statistical analysis techniques [14, 75, 235]. These 

constructs are measurement scale and types of measures: 

Measurement Scale. There are five possible types of measurement scale with each scale type 

covering a set of values, continuous or discrete, or a set of categories to which an attribute is 

mapped. More specifically, each scale type can be formally captured in the form of aΩҐ Ŧόaύ, 

where f is the admissible function (or admissible transformation [27]) indicating a possible 

mapping from metric M to metric MΩ. The scale types play a pivotal role in determining the 

theoretical soundness of the metrics by constituting a key construct of the measurement the-

ory described in Section 2.5.2. The scale types are defined below from the least informative 

type to the most informative type: 

- Nominal: aΩ Ґ Ŧόaύ, where f is any one-to-one mapping 

The nominal scale indicates some form of classification. There is only one possible em-

pirical relation defined for nominal scale, equality, which can be mapped to the formal rela-

tions ó=ô and óÍô. For example, classifying software designs into ñOO-basedò and ñSOA-

basedò leads to nominal scale metrics. 

- Ordinal: aΩ Ґ Ŧόaύ, where f is any monotonic increasing mapping 

The ordinal scale indicates some form of classification and ordering. The possible empiri-

cal relations are related to equality and order (formal relations ó<ô and ó>ô). For example, 

assigning values ñhighò, ñmediumò, and ñlowò to the quality of software designs leads to an 

ordinal scale of metrics. 

- Interval: aΩ Ґ f(M), where f(M) is in the form of aM + b, a>0 

The interval scale represents an ordered rating scale where the difference between two 

metric values has an empirical meaning. However, the ratio of two measures may not have 

the same empirical meaning because a zero position of aΩ does not indicate the absence of 

the quantity. The empirical relations possible are related to equality, order, and difference 

(formal relations ó+ô and ó-ô). For example, the temperature measured using the degrees (Cel-

sius) is defined on an interval scale. 

- Ratio: aΩ Ґ f(M), where f(M) is in the form of aM, a>0 

The ratio scale is an interval scale with the additional property that its zero position indi-

cates the absence of the quantity being measured. This implies that in addition to the differ-
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ence between two measures, the proportion of two measures have the same empirical mean-

ing. The empirical relations possible are equality, order, difference, and relative difference 

(formal relations ó/ô and ó*ô). For example, measuring the coupling of a system by counting 

the number of relationships between its design artefacts leads to a ratio scale metric. The 

coupling metrics derived in this work are defined on a ratio scale as discussed in Chapter 4. 

- Absolute: aΩ Ґ M since they can be measured only in one way 

The absolute scale implies that any empirical and formal statement relating to measures is 

meaningful. Typically, the measure is considered to be defined on the absolute scale when it 

represents the result of dividing one ratio scale type measure by another ratio scale type 

measure where the unit of measurement is the same [111]. For example, dividing LOC by the 

number of comment lines in the code will result in an absolute scale measure. Note that most 

of the existing literature only defines the former four scale types [71, 89, 218] since absolute 

scale can be considered as a specialised case of a ratio scale. The absolute scale type is intro-

duced in this thesis in order to be consistent with the definitions of scale types from the 

ISO/IEC 9126 standards. The cohesion metrics derived in this work are defined on ratio and 

absolute scales as described in Chapter 5. 

Types of measures. In order to concretise the procedures for collecting metrics data, inter-

preting the results of measurement, and normalising measures for comparison, it is important 

to identify the type of measurement (and a corresponding measurement unit) employed by a 

metric. For example, only measures of the same type can be directly compared or combined 

into more complex metrics. There are three main types of measurement commonly used in 

software engineering: size (e.g. function size), time (e.g. elapsed time), and count (e.g. num-

ber of relationships between design artefacts). The metrics derived in this work use count as 

the measurement type as described in Chapters 4 and 5. 

2.5.2 Theoretical Basis and Validation Approaches 

The process of measuring software attributes should follow a well-defined theoretical ap-

proach, where software metrics adhere to the fundamental principles of measurement. The 

theory used commonly to guide the measurement of software products is the representational 

theory of measurement, or measurement theory [204]. Measurement theory serves as the ba-

sis for developing, reasoning about, and applying metrics [27, 72, 237, 251]. More specifi-

cally, it prescribes the important mathematical properties to the metrics ensuring that: i) met-

rics are categorised into distinct scale types; ii) statistical techniques are applied appropriately 

based on the scale types of metrics (for example, parametric statistics cannot be applied to the 

metrics defined on a lower than interval scale); and iii)  transformations that are not permissi-

ble for some scale types are avoided [27].  
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The use of measurement theory is especially relevant to the area of software design met-

rics given a lack of accepted definitions of the structural design properties as described in 

Section 2.4.1. The following brief overview of the measurement theory combines descrip-

tions provided by Briand [27], Fenton [75], Melton [160], and Zuse [251]. 

2.5.2.1 Principles of Measurement Theory 

The fundamental principle of measurement theory is that if in a given problem domain there 

exists an empirical understanding11 of relationships of objects within this domain, then such 

relationships could be formalised mathematically. Moreover, there could be some common 

understanding of one or more binary operations that can be applied to these objects. This 

principle can be formally captured using three key constructs: empirical relational system, 

formal (or numerical) relational system, and a mapping between the empirical and formal 

systems that represents specific metrics.  

The empirical relational system (E) is a model of the problem domain representing the 

common knowledge about the phenomenon to be measured. The empirical system needs to 

be mapped to a formal relational system, or a formal model, (F) which formalises the intui-

tive understanding of the relationships between attributes in a precise mathematical way. The 

formal model of service-oriented design is presented in Chapter 3.  

A theoretically valid metric (µ) should then demonstrate the equivalence between the em-

pirical and formal systems, where the mapping from one relational system to another that 

preserves all relations and defines all admissible transformations is called a homomorphism. 

According to Zuse [250], the homomorphism is the fundamental notion of measurement that 

leads to the definition and classification of measurement scales. The formal definitions of the 

measurement theory constructs (E, F, µ) can be found in Appendix B, which also illustrates 

an example application of measurement theory to the measurement the height of a human. 

 

Software artefacts and their properties are not physical objects and their relations are not 

well understood compared to the physical properties, such as height. To this end, there is a 

need to constrain and validate software metrics using axioms that prescribe required mathe-

matical characteristics to the metrics based on the intuitive understanding of the problem do-

main as explained in the Subsection 2.5.2.2. The axiomatic metric validation approach is used 

in this research to validate the derived metrics.  

Note that there is a common understanding that software attributes in general should be 

measurable on at least an ordinal scale [158]. In our opinion, when measuring structural 

properties of software designs, it is advisable to define metrics on a ratio scale in order to 

support more complete reasoning about properties in question. It is not sufficient to state that 

                                                      
11 In the context of measurement theory, empirical understanding reflects the intuition about some part of the ñreal worldò. 
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ñservice S1 is more cohesive than service S2ò (implies ordinal scale). Software engineers 

should be able to reason about cohesion in terms of, for example, ñservice S1 is N times more 

cohesive than service S2ò (implies ratio scale). This is also consistent with the view of Briand 

et al. [27, 30] who suggest that all structural properties of software should be defined on a 

ratio scale. As described previously, the metrics derived in this work are defined on ratio and 

absolute scales. 

2.5.2.2 Validation Approaches 

There are a number of approaches for the validation of metrics. Some of them are informal 

and primarily subjective in nature, whilst others have theoretical and axiomatic bases. Axio-

matic approaches provide a formal objective framework for comprehensive metrics valida-

tion. In contrast, the informal approaches describe some desirable properties of metrics that 

should also be taken into consideration so as to demonstrate the overall usefulness of the met-

rics, but they are difficult to validate and are typically subjective.  

The notion of usefulness is important in the context of software engineering where some 

well-known metrics fail to satisfy the basic requirements of measurement theory, but are still 

considered to be useful [32]. For example, the original classification of design cohesion pro-

posed by Stevens et al. [222] (described in Section 2.4.3) was meant to be examined on an 

ordinal scale, but Eder et al. [63] show that the categories are actually defined as the mixture 

of nominal and ordinal scale types. Therefore, such classification of cohesion should be con-

sidered invalid from the measurement theory perspective. However, this classification is 

widely-accepted since it captures well the intuitive understanding of cohesion in (procedural) 

software designs. Similar can be said about some of the quantitative OO metrics. For exam-

ple, an influential and commonly-used suite of OO metrics proposed by Chidamber and 

Kemerer (CK suite of metrics) [44] has been criticised in terms of its validity from the meas-

urement theory perspective [101, 124]. 

The following describes some of the major validation approaches and associated validity 

criteria. The informal approaches are only briefly summarised here since they are not strictly 

used in this research due to our objective to derive the most formal and unambiguous metrics 

possible. The axiomatic approaches, on the other hand, are discussed in greater detail since 

they provide foundation for the complete theoretical validation of the derived metrics. 

 

Informal approaches. There are a number of informal approaches for examining the general 

validity of metrics. Among those that are widely referenced are: Schneidewindôs metrics 

validation methodology [213], Henderson-Sellersô [98] approach, and the ISO/IEC 9126 met-

rics validity criteria. These approaches define general validity criteria (or desirable proper-

ties) for any software metric, with some commonly specified criteria include: i) consistency; 

ii) discriminative power; iii) repeatability; iv) reproducibility; and v) objectivity (the metrics 
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should be computed in a precise manner). Additionally, it is suggested that a measure might 

not be useful when it is used for assessment purposes only, that is, software metrics should be 

used in predictive models similar to the maintainability prediction model used in this re-

search.  

Axiomatic (formal) approaches. Axiomatic approaches assist in determining the theoretical 

and mathematical soundness of a given metric based on its conformance to the formalised 

intuitive understanding of the attributes under study. More specifically, such approaches de-

fine various axioms that are used to validate the homomorphism between the empirical and 

formal relational systems. That is, the axioms can demonstrate that a given metric really 

measures the software characteristic it is supposed to measure at the same time conforming to 

the general principles of measurement theory. For example, any theoretically valid metric 

should be able to distinguish between two dissimilar entities [204]. 

A seminal work on the axiomatic validation of software metrics is Weyukerôs Axiomatic 

Approach [237] that defines nine axioms for the validation of software complexity measures. 

Given that only the structural properties of coupling and cohesion are investigated in this the-

sis, Weyuknerôs axioms are not covered in this review. There are a number of established ap-

proaches for the formal axiomatic validation of metrics that extend the work of Weyukner 

[237] and can be applied to the coupling and cohesion metrics, including:  

Á distance-based software measurement framework proposed by Poels and Dedene [198]. 

In this framework, the authors examine the validity of software metrics using the fundamental 

principles of mathematics, where all metrics are defined as measures of distance. According 

to this purely mathematical definition of a metric, there are four important properties that 

must be satisfied by the metrics: i) non-negativity; ii) identity; iii)  symmetry; and iv) triangle 

inequality. This framework can be considered not suitable for the purpose of detailed and 

comprehensive validation of the structural software metrics since it does not specify proper-

ties for the concrete structural attributes of software (such as coupling and cohesion). 

Á coupling axioms proposed by Fenton and Melton [70]. The authors introduce two generic 

axioms that should hold for coupling measures. Both axioms assume that coupling is a meas-

ure of pair-wise connectivity between modules. The first axiom states that if the only differ-

ence between two module structure charts S and {Ω is an extra interconnection in {Ω, then the 

coupling of {Ω is higher than the coupling of S. The second axiom states that system coupling 

should be independent from the number of connected modules in the system. For example, if 

a module is added to the system and the resultant system shows the same level of pair-wise 

coupling, then the coupling of the system remains the same. The second property is arguable 

and has been criticised by other researchers since coupling is typically considered to be de-

pendent on the number of connections between modules [33, 102]. Therefore, the decision 

was made not to use the axioms proposed by Fenton and Melton [70] in this research. 
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Á property-based software engineering measurement framework proposed by Briand et al. 

[30, 32, 34], which is a generic framework that extends the common principles of measure-

ment theory by defining precise mathematical properties that characterise the specific struc-

tural attributes of software designs, where design can be viewed as a collection of elements, 

relations, and binary operations. The framework is unique in a sense that it prescribes mathe-

matical characteristics12 (or axioms) for all structural properties of software including coupl-

ing and cohesion. Additionally, the proposed mathematical characteristics can be applicable 

to the artefacts defined at the design level as opposed to other frameworks which target im-

plementation level metrics. 

The property-based software engineering measurement framework of Briand et al. [30, 

32, 34] was chosen for the validation of metrics derived in this research since it is generic and 

comprehensive allowing the precise characterisation of the structural properties of software 

designs independently of a specific development paradigm. The generality is supported by 

the definitions of mathematical characteristics and measurement entities using generic design 

constructs of modules m and modular systems MS. Such constructs can be easily redefined 

for a particular development paradigm as shown in Chapter 3 of this thesis. The comprehen-

siveness is supported by the definition of mathematical characteristics for all structural prop-

erties of software, and also the applicability of properties to the design-level metrics. Fur-

thermore, the framework has been successfully used by other researchers when validating 

newly derived metrics [168, 207]. 

The specific mathematical characteristics from the property-based software engineering 

measurement framework that relate to coupling and cohesion are shown in Table 2-4. The 

characteristics are used as the basis for the validation of the metrics derived in this research 

where a given metric can be deemed valid if it conforms to the prescribed characteristics for 

the corresponding structural property as shown in Chapters 4 and 5. 

Note that the characteristics proposed by Briand et al. [30] hold only when applying the 

admissible transformations on the ratio scale. This decision to constrain the metrics to a ratio 

scale was criticised by some leading researchers in the area [126, 250] because such a con-

straint could be considered as over-restrictive given that it automatically invalidates a large 

number of existing metrics (Briand et al. [30] demonstrated that most of the existing OO met-

rics violate the prescribed characteristics). For example, Kitchenham et al. [126] suggest that 

mathematical characteristics used to define measures should not constrain the scale type of 

measures. Although Kitchenham et al. use Weyukerôs [237] axioms as the example, the same 

argument can be applied to the mathematical characteristics proposed by Briand et al. [30].  

                                                      
12 Note that Briand et al. refer to the mathematical characteristics (or axioms) as properties. Given that in this thesis the term 

property refers to the structural properties of software (coupling and cohesion), the term mathematical characteristic is 

used instead to represent properties of Briand et al. so to avoid any confusion. 



CHAPTER 2. LITERATURE REVIEW 

52 

(February, 2009) 

CHARACTERISTIC DESCRIPTION 

COUPLING.1   Non-negativity the coupling of module m | modular system MS is non-

negative 

COUPLING.2   Null Value the coupling of m | MS is null if there are no outgoing or 

incoming relationships 

COUPLING.3   Monotonicity adding inter module relationships does not decrease cou-

pling of a module 

COUPLING.4   Merging of 

Modules 

the coupling of m | MS obtained by merging two modules 

is not greater than the sum of the couplings of the two 

original modules /systems since the two modules may 

have common inter module relationships [that may disap-

pear after the merge] 

COUPLING.5 

Disjoint Module Additivity 

the coupling of m | MS obtained by merging two disjoint 

modules is equal to the sum of the couplings of the two 

original modules /systems 

 
COHESION.1   Non-negativity 

and Normalisation 

the cohesion of m | MS belongs to a specified interval [0, 

MAX]. Normalisation allows meaningful comparisons 

between the cohesion values obtained for different mod-

ules/systems since they all belong to the same interval 

COHESION.2   Null Value the cohesion of m | MS is null if there is no intra-module 

relationship/s among the elements of a (all) module(s) 

since there is no evidence that the elements should be en-

capsulated together 

COHESION.3   Monotonicity adding intra-module relationship/s does not decrease co-

hesion since such relationships are supposed to provide 

additional evidence of the relatedness of system elements 

COHESION.4    Cohesive 

Modules 

the cohesion of m | MS obtained by putting together two 

unrelated modules is not greater than the maximum cohe-

sion of the two original modules/systems 

Table 2-4. Coupling and Cohesion properties from property-based software engineering mea-
surement framework ([30] p.76-79) 
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Additionally, it was suggested that mathematical characteristics cannot be used to ade-

quately define abstract and usually semantic attributes such as coupling and cohesion. 

- Moraska, Briand, Weyuker, and Zelkowitz responded [167]: ñwithout such characteristics, 

we end up abstracting away all relevant structure from our model, limiting our ability to say 

anything of interestò p. 187. Furthermore, the authors [167] state that ñan important purpose 

of using properties (or characteristics) as a means of defining measures is to help codify intui-

tion and make underlying assumptions explicitò p. 188. 

As discussed earlier, we believe that the definition of structural software metrics should 

be done on a ratio (or absolute) scale in order to allow for more comprehensive and detailed 

examination of the design structure, therefore this óratio-scale constraintô can be considered 

beneficial for the purpose of this research.  

2.5.3 Empirical Evaluation of Metrics 

Theoretical validation alone does not imply the overall validity of the metrics. This is because 

the measurement theory only covers the direct measurement of attributes for the assessment 

purposes; it does not prescribe rules or axioms for the predictive metrics. To validate the pre-

dictive power of metrics, it is also imperative to establish empirically the relationship be-

tween the metrics and the quality characteristics they purport to predict [34, 98, 213]. The 

common way to do so is to establish and statistically test the experimental hypotheses that 

formalise the relationships between the structural properties of software, as measured by me-

trics, and the quality characteristics in question. The choice of statistical techniques for ana-

lysing the empirical data largely depends on the measurement goals, and more importantly, 

the mathematical properties of metrics such as the underlying measurement scale. For exam-

ple, a metric should be defined on at least an interval scale in order to allow for effective use 

of parametric techniques such as ANOVA test (extension of the t-test), Pearson coefficient, 

or linear regression. 

A number of comprehensive empirical studies have been conducted in order to establish 

the correlation between OO structural metrics (including coupling and cohesion metrics) and 

the maintainability of OO software products [20, 29, 53, 146, 170]. The experimental design 

and associated methods and activities of these studies can be readily replicated when evaluat-

ing metrics defined for different development paradigms such as SOC. This is because the 

study structure and objectives are independent of the particular technology or development 

paradigm in use, only the independent variables will differ (for example, OO metrics can be 

substituted with SO metrics). 

There are a number of commonalities that can be found in the existing empirical studies: 
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- All studies show correlation between OO design properties, as measured by metrics, and 

quality of software products in terms of their maintainability, which is consistent with the re-

sults of other similar studies conducted in the context of Procedural and OO software to 

evaluate various quality characteristics (such as software reliability and reusability) [7, 38, 

45, 49, 92, 164, 177]. This suggests that such correlation can also be established for the ser-

vice-oriented software products, thereby providing rationale for this thesis. Moreover, some 

of the OO metrics which are shown to influence software maintainability can be used for ini-

tial benchmarking and comparison with service-oriented metrics as is done in Chapter 6 of 

this thesis. 

- Two major statistical approaches are commonly used: a standard significance testing of 

variance (t-test and ANOVA test), and correlation and regression [166]. These approaches are 

well suited for exploratory research and are commonly used in Software Engineering [35]. 

Note that correlation analysis allows assessing the degree to which one variable is related to 

another; whereas regression analysis provides the basis for forecasting the values of a vari-

able from the values of one (simple or univariate regression) or more (multiple or multivari-

ate regression) variables by estimating the parameters of the equation linking them. The sig-

nificance testing, and correlation and simple linear regression techniques and associated indi-

cators (such as the Pearson coefficient r which reflects the degree of linear relationship be-

tween two variables), are used in this thesis to empirically evaluate the newly derived met-

rics. The specific techniques are described in more detail in Chapter 6. 

- All studies are subject to various threats to validity that limit the generalisation and in-

terpretation of the results. For example, most software systems used in the studies were re-

search prototype systems, which are commonly smaller and less complex then real-life indus-

try systems. Also, the data sets in some of the studies contained small sample sizes, thereby 

reducing the statistical power and reliability of the results. Such threats to validity are com-

mon to most empirical studies in software engineering [116]. The study conducted in this re-

search is also subject to validity threats as discussed further in Chapter 6.  

Given that the existing empirical studies are largely ótechnology independentô, some parts 

of the associated experimental designs have been adopted in this thesis. The following sum-

marises the related experimental aspects (based on the measurement goals): 

Briand et al. [29] investigated the effects of the Procedural and OO design techniques and 

associated design principles perceived to be ógoodô and óbadô practices, on the maintainability 

of software designs. The study design was based on a standard within-subjects model [165], 

with the experimental material consisting of four different software designs developed with 

permutation of the design techniques and principles. The within-subjects design was em-

ployed in this research since it requires fewer participants (the empirical study presented in 

this thesis consisted of ten participants only) as discussed further in Chapter 6. 
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Basili et al. [20] evaluated Chidamber and Kemerer (CK) suite of OO metrics [44] (discussed 

in Section 2.5.4) using a controlled, group-based study. To counterbalance the differences in 

skills and experience among the participants when allocating them to study groups: i) the 

level of experience of each student was characterised at the beginning of the study based on 

questionnaires and interviews; and ii) the ñblockingò procedure [119] was employed to 

minimise any potential learning effects. The participantsô development experience with vari-

ous paradigms and general understanding of the principles of SOC was evaluated prior to 

conducting the empirical study in this research. Furthermore, the initial pre-test programming 

exercise was completed by the participants as described further in Chapter 6. Finally, a ñse-

lective ordersò procedure [217] was employed in order to objectively allocate the study par-

ticipants to the experimental tasks (refer to Section 6.2.4). 

Dagpinar et al. [53] investigated which object-oriented metrics can be used as significant 

predictors of the maintainability of software products by analysing the historical data of 

maintenance activities collected from the logs of sample OO systems. The maintenance activ-

ities were categorised into distinct categories: perfective/adaptive and corrective. The main-

tenance activities conducted in this research were also categorised into the perfective and cor-

rective types following the typical distribution of maintenance activities described in Section 

2.3.2. As with the study of Dagpinar et al. [53] this was done in order to simulate real-life in-

dustrial settings.  

Finally, note that several researchers have criticised the standards of performing and re-

porting empirical studies in software engineering [116, 128]. The presentation of the empiri-

cal study performed in this research follows a well-defined template for reporting controlled 

experiments in software engineering proposed by Jedlitschka et al. [116, 117]. The template 

and associated activities support a systematic and well-structured presentation of empirical 

experiments, making it easier for the reader to understand the structure of the experiments, 

and assess the validity of the experimental results. Note that the original template proposed in 

[116] had some inconsistencies in the review sections as highlighted by Kitchenham et al. 

[128, 129]. The updated version of the template [117], as used in this thesis, has been restruc-

tured by the authors in order to address the identified problems. This template consists of four 

major sections that will be used as the foundation for the structure of Chapter 6. They are: 

Á Experiment planning: i) Goals; ii) Subjects; iii) Hypotheses and Variables; iv) Expe-

rimental material; v) Tasks; vi) Experimental Design; and vii) Execution procedure. 

Á Analysis: i) Analysis procedure; ii) Descriptive statistics; and iii) Hypothesis testing. 

Á Discussion: i) Evaluations of results; ii) Threats to validity; and iii) Future directions. 
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2.5.4 Existing Metrics 

There is a large number of metrics proposed for quantifying various aspects of the structural 

properties of software in Procedural and OO development [33, 44, 63, 95, 102, 201]. Some of 

the widely-referenced coupling and cohesion metrics are overviewed in this section. Such 

metrics can complement the proposed SO metrics since they can be readily used to measure 

the structural properties of individual service implementation elements (such as OO classes 

and interfaces) in isolation. The additional analysis of metrics directly related to this research, 

insofar they contribute to the definitions of some of the metrics proposed in this thesis, is 

provided in Sections 4.2 and 5.2. 

2.5.4.1 Coupling Metrics 

In the Procedural paradigm, the well-known approach for quantifying coupling is based on 

the broad categorisation proposed by Stevens et al. [222] (Section 2.4.2). The process of as-

signing design artefacts to particular coupling categories has a subjective nature, and thus 

cannot be automated. In contrast, the common approach to quantify the coupling in OO para-

digm is to use objective quantitative metrics that can be easily collected in an automated fa-

shion [32, 44, 102, 146]. Note that existing OO metrics are often expressed in an ambiguous 

manner which makes it difficult to understand how different metrics relate to one another 

[33]. Moreover, only selected metrics have been validated theoretically and empirically. Nev-

ertheless, there are a number of well-established OO metrics addressing various aspects of 

coupling: 

Á Chidamber and Kemerer proposed Coupling Between Objects (CBO) metric (as part 

of their highly-referenced suite of OO metrics ï CK metrics [43, 44]), which is a count of the 

number of non-inheritance related couples (interactions) with other classes. An object of a 

class is said to be coupled to another, if methods of one class use methods or attributes of 

another class. The direction of the interactions between classes was not considered. In later 

publication [36], a revised definition was proposed in order to include inheritance-based inte-

ractions. Theoretically validated: Yes (using Weyknerôs axioms); Empirically evaluated: Yes. 

Á Chidamber and Kemerer [43, 44] also proposed Response for Class (RFC) metric, 

which represents a set of methods that can potentially be executed in response to a message 

received by an object of that class. More specifically, RFC = |RS| where RS is the response set 

for the class, which can be formally defined as RS={M} Çall i {Ri}, where {Ri} is the set of all me-

thods called by method i; and {M} is the set of all methods in the class. Refer to the original 

publications [43, 44] for the explanation of the above formalism. Also note that RFC can be 

considered as the measure of a dynamic coupling. Theoretically validated: Yes (using 

Weyknerôs axioms); Empirically evaluated: Yes. 
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Á Li and Henry [146] derived Data Abstraction Coupling (DAC) metric, which counts 

the number of abstract data types (or classes) defined in a given class. An abstract data type is 

considered to be defined in a class c, if it is the type of an attribute of class c. More specifical-

ly, DAC is the number of not inherited attributes that have a class as their type. The authors 

reasoned that the number of variables having an abstract data type indicates the number of 

data structures dependent on the other classes, which could potentially influence the maintai-

nability of the system. Theoretically validated: No; Empirically evaluated: Yes. 

Á Martin [154] proposed two coupling metrics: efferent coupling (Ce) and afferent 

coupling (Ca). The metrics are related to the categories of classes, where a category is a set of 

classes that belong together because they achieve some common goal (in this sense, a service 

can be considered as a category of design elements). Ce is defined as the number of classes 

inside a given category that depend upon classes outside this category. In contrast, Ca is de-

fined as the number of classes outside the category that depend upon classes within a given 

category. Martin fails to specify precisely what constitutes dependencies between classes and 

categories. Theoretically validated: No; Empirically evaluated: Partially. 

Á Chen and Torngren [41] derived a suite of metrics that are counted based on a number 

of weighted characteristics, including i) the topology and multiplicity of class interactions; ii) 

the replication and frequency of interactions; and iii) the accuracy of component properties 

that appear in a relationship (interaction). Additionally, the authors described a technique for 

combining coupling of individual classes into an overall system coupling, where domain spe-

cific heuristics and technology constraints are used to determine the weighting. Theoretically 

validated: No; Empirically evaluated: Partially. 

 

Finally note that a number of metrics have been proposed to quantify various dimensions 

and types of coupling according to the coupling frameworks discussed in Section 2.4.2. For 

example, Hall et al. [95] derived metrics for measuring ñIn couplingò, ñOut couplingò, and 

ñGlobal Connectionò coupling categories. Similarly, Hitz and Montazeri [101, 102] and Bri-

and et al. [33] propose metrics for quantifying different aspects of coupling according to their 

frameworks (refer to Section 2.4.2). Furthermore, there are a number of coupling metrics 

proposed for highly-specialised areas such as Object Constraint Language (OCL) expressions 

[202] which are shown to influence the analysability of UML-based models. These metrics 

are not directly related to this research since they are specific to a particular technological 

concept (namely OCL) and thus not generic enough to be applicable in the context of differ-

ent development paradigms such as SOC. 
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2.5.4.2 Cohesion Metrics 

In the Procedural paradigm, the well-known approach for quantifying cohesion is based on 

the taxonomy of cohesion categories defined by Stevens et al. [222] (refer to Section 2.4.3). 

The process of assigning design artefacts to particular cohesion categories has a subjective 

nature (similarly to coupling categorisation described previously), and thus cannot be auto-

mated. Therefore, more recent research initiatives have focussed on the definition of quantita-

tive cohesion metrics that support an entirely automated measurement process. The existing 

OO cohesion metrics can be grouped into different categories based on the underlying meas-

urement procedure as follows: 

1) Method->Attribute  Accesses 

The attribute access related metrics, which represent the most common type of cohesion 

metrics, are based on the supposition that a given OO class is cohesive if  all its attributes are 

used by all the methods of this class. Such metrics can be applied only at the implementation 

level because class internals are typically not known at the design stage. 

Á Chidamber and Kemerer derived Lack of Cohesion in Methods (LCOM) metric [43, 

44], which is the most often used and referenced OO cohesion metric to date. LCOM is the 

number of pairs of methods in a class having no common attribute references (Q), reduced by 

the number of method pairs referencing at least one shared class attribute (P). LCOM will be 

set to zero in case |Q| < |P| , where zero indicates good cohesion (LCOM is an inverse 

measure). This artificial reduction of LCOM to zero has been criticised in the research litera-

ture [20, 24, 146]. Theoretically validated: Yes (using Weyknerôs axioms); Empirically eva-

luated: Yes. 

Á Li and Henry [146] and Hitz and Montazeri [101, 102] redefined the LCOM metric 

since it was shown that LCOM can be overly-dependent on the total number of methods: i) Li 

and Henry proposed new definition of LCOM (commonly referred to as LCOM1) defined as 

the number of disjoint sets of local methods in the class, where no two sets intersect and any 

two methods in the same set sharing at least one class attribute; and ii) Hitz and Montazeri 

proposed another extension to LCOM (commonly referred to as LCOM2) in order to include 

method invocations as the additional indication of cohesiveness. That is, LCOM2 assigns lo-

cal methods to a given set not only based on the attribute accesses, but also based on the in-

vocation of other methods of the same class. Theoretically validated: No; Empirically eva-

luated: Yes. 

Á Bieman and Kang [24] proposed two metrics, Tight Class Cohesion (TCC) and Loose 

Class Cohesion (LCC), which are related to LCOM and its variations since TCC and LCC 

also evaluate pairs of methods which use common class attributes. However, indirectly used 
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attributes are also considered, where method m uses attribute a indirectly, if m directly or in-

directly invokes a method ƳΩ which uses attribute a. TCC is defined as the percentage of 

pairs of methods of the class which are directly connected. LCC is defined as the percentage 

of pairs of methods of the class which are connected both directly and indirectly. The values 

for both TCC and LCC will range from 0 (worst cohesion) to 1 (best cohesion). Theoretically 

validated: Partially; Empirically evaluated: Yes. 

Á Gui and Scott [93] proposed class cohesion metric that is similar to the LCOM-related 

metrics, but also takes into consideration the strength of cohesion between methods by as-

signing a value to each pair of related methods based on the number of instance variables 

common to these methods. Class cohesion is calculated by dividing the sum of all similarities 

between methods by the total number of pairs of related methods. System-level cohesion is 

defined as the mean cohesion of all classes in the system. The authors also present some em-

pirical evidence that the proposed metric was a better predictor of class reusability than the 

LCOM, LCOM1, LCOM2, and TCC/LCC metrics. Theoretically validated: No; Empirically 

evaluated: Partially. 

2) Method Parameters 

The parameters-related metrics are based on the supposition that a class is cohesive when 

all the methods in this class use the same set of parameter types. Such metrics are applicable 

to software designs since method interfaces are typically known at the design stage. 

Á Bansiya et al. [15] propose Cohesion Among Methods in a Class (CAMC) metric that 

measures the degree of correspondence between the parameter types across each of the me-

thods in an OO class. To compute CAMC for a class with n methods, the union of parameter 

types in the method signatures of a class T is constructed; and a set M of all parameter object 

types for each method is constructed. An intersection set IS of M with the union set T is then 

calculated. Finally, the summed cardinality of all the intersection sets is divided by T multip-

lied by n to derive a final value of CAMC. Theoretically validated: No; Empirically vali-

dated: Yes. 

Á Counsell et al. [50, 51] propose Normalised Hamming Distance (NHD) metric which 

can be considered as extension of CAMC. NHD quantifies the disagreement between rows in 

a binary matrix constructed based on the parameter types used by the methods of a class. To 

calculate NHD, the sum of the disagreements between methods over all parameters is com-

puted and then subtracted from 1. It was empirically shown that both CAMC and NHD corre-

late strongly with LCOM metric, thereby providing a useful alternative for measuring OO 

cohesion since they can be computed at the design stage. Theoretically validated: No; Empir-

ically validated: Yes. 
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3) Program Slices 

Á Bieman and Ott [22] proposed a set of functional cohesion metrics based on program 

slices, where slicing represents a method for examining the implementation of software and 

removing code statements that do not effect a computation of interest. The resulting smaller 

programs (or slices) can be used to assess the attribute usage patterns and the dependency be-

tween parts of code and attributes used. Such approach is implementation dependent and can-

not be used to measure design cohesion as was noted by Bieman in his later publication [23]. 

Theoretically validated: No; Empirically validated: Partially. 

Additionally, there are a number of recent and fundamentally different approaches for 

measuring cohesion. For example, Marcus and Poshyvanyk [150] proposed Conceptual Co-

hesion of Classes (C3) metric, which measures cohesion based on both structural and syntac-

tic aspects by using natural language processing techniques to extract information from the 

source code identifiers and comments in order to analyse semantics of the problem domain. 

2.5.5 Discussion 

As was discussed in Section 2.4.4, the structural properties of software can be measured at 

different levels of abstraction, ranging from high-level design through to executable imple-

mentations, with the target level of abstraction influencing the metrics definition and meas-

urement process. Measuring structural properties of software implementation can result in 

more accurate measurements compared to measuring properties of designs since more de-

tailed data is available. Nonetheless, the metrics should be collected as early as possible since 

the sooner problems in the software structure can be identified, the smaller the effort required 

to correct them. Thus, it is beneficial to use metrics that can be applied early in the SDLC to 

ensure that software design have favourable structural properties, thereby decreasing the 

number of software errors (or faults) and allowing the developers to fix problems and remove 

irregularities in an efficient manner [16, p.4]. The suite of service-oriented coupling and co-

hesion metrics presented in Chapters 4 and 5 respectively is applicable to low-level designs. 

Numerous metrics have been proposed to measure coupling and cohesion of OO software, 

but as Fenton and Pfleeger [75, p.319] note, there is as yet no common agreement on what 

should be measured in OO systems and which metrics are appropriate. Furthermore, most of 

the existing metrics lack formal theoretical validation. As discussed in Section 2.5.2, a metric 

can be deemed theoretically valid if it has been demonstrated that this metric is indeed meas-

uring the attribute it is purported to measure based on the conformance to the accepted axi-

oms. Such axioms support methodical definition of metrics based on the principles of meas-

urement theory. The derived service-oriented metrics were theoretically validated using 

property-based software engineering measurement framework proposed by Briand et al. [30]. 
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Although many software metrics have been defined for OO development model, only 

very few have been proposed for service-oriented systems. Previous research has shown that 

the use of different development paradigms, such as Procedural design and OO, will result in 

systems with different structural properties [63, 102] as discussed briefly in Section 2.4.1 and 

elaborated further in Chapter 3. Accordingly, the existing Procedural and OO metrics are not 

immediately applicable to the structure of service-oriented designs and development princi-

ples introduced by service-orientation as was the case with Procedural metrics being insuffi-

cient for the principles of OO [44, 63, 146]. The design of service-oriented systems including 

various structural characteristics and service-specific relationships is formalised in Chapter 3. 

Additionally, Chapter 3 discusses the major distinct characteristics of SO designs that differ-

entiate them from previous development models (such as Procedural and OO development). 

Furthermore, Perepletchikov et al. [189] conducted an exploratory empirical study in 

which some of the existing Procedural and OO metrics [44, 156] were unable to differentiate 

between two Service-Oriented designs that were qualitatively different in terms of logical and 

physical structure. The systems were developed using two contrasting approaches, where one 

of the approaches employed coarse-grained services, structured using the principles of OO; 

and another approach was based on embedding business logic into executable BPEL4WS 

scripts with the system constructed in terms of fine-grained services. Note that the study only 

investigated a limited number of metrics, namely six metrics from Chidamber and Kemerer 

(CK) suite [43, 44], and McCabeôs cyclomatic complexity metric [156] which is one of the 

most used complexity metric for both Procedural and OO software. As such, it cannot be 

considered as representative and comprehensive.  

Nevertheless, it provided initial empirical evidence suggesting that some of the existing 

metrics cannot be readily applied to SO systems. The designs used in the study and the resul-

tant metric values are described in [189]. 

To conclude, there is a need to derive and theoretically validate metrics specific to SOC 

paradigm. Such metrics should also be evaluated empirically to establish the correlation be-

tween service-oriented coupling and cohesion and the maintainability of final software prod-

ucts. To this end, the Maintainability model established in Section 2.3.2 (Figure 2-6) can be 

extended with the additional constructs as shown in Figure 2-7. 
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Chapter 3.  Formal Model of Service-Oriented 

System Design 

This chapter presents a formal model of service-oriented design covering structural and be-

havioural properties of the design artefacts in a service-oriented system. The model extends 

the generic graph-based model of a software system [30] with the core design characteristics 

of service-orientation. The main purpose of the model is to allow software metrics related to 

the structural properties of service-oriented software designs to be: 

Á Defined in a precise unambiguous manner since the entity under study, service-

oriented software design, is specified in a formal way. 

Á Theoretically validated using the property-based software engineering measurement 

framework [30] described in Section 2.5.2 which requires software to be modelled us-

ing graph-based abstractions. 

Additionally, by formalising various types of service-oriented design relationships, the 

model simplifies the definition of coupling metrics as described further in Chapter 4. 

This chapter is organised as follows. Section 3.1 overviews related work on design mod-

elling. Section 3.2 describes the core design characteristics of service-oriented software that 

should be captured by the model definitions. The model definitions are then presented and 

discussed in Section 3.3; and listed in a table in Section 3.4 to enable easier referencing in 

later chapters. Finally, Section 3.5 summarises the derived model. 

3.1 Modeling Software Designs 

In order to define software metrics in an unambiguous and precise manner, the intuitive un-

derstanding of the principles of service-oriented design should be consolidated into a formal 

model. This is because the abstraction of an entity, such as software design, should be as 

formal as possible in order to objectively measure its attributes [76]. 

As described in Section 2.5.1 measurement can be defined as the process by which num-

bers or symbols are assigned to attributes of entities. Such assignment must preserve any em-

pirical observations about the entities and their attributes, thereby maintaining the homo-

morphism between the empirical and relational systems as prescribed by the rules of meas-

urement theory. To illustrate the key concepts of measurement theory a simple example of 

measuring height of a human is shown in Appendix B, where it is discussed that when meas-

uring a height (attribute) of a human (entity), the bigger values must be assigned to the taller 

humans so to be consistent with our intuitive understanding of the attribute of height. The 

problem is that an attribute may have a dissimilar intuitive meaning for different people, 
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making it difficult to establish empirical relationships between the entities. Therefore, there is 

a need to define a formal model of an entity that will reflect a specific viewpoint [72]. For 

example, a model of a human might specify a particular type of posture. Once such a model 

is defined, the consensus can be established regarding empirical and formal relations applica-

ble to humans with respect to their height.  

The need for formal modelling is particularly relevant in the area of software measure-

ment, where the structural properties of software are not fully understood or consistently de-

fined. For example, even a presumably well-understood property of size and its associated 

metrics, such as for example Lines-of-Code (LOC), can have different interpretations, 

thereby requiring a well defined formal model of software in order to avoid ambiguity [72]. 

Also, modelling software designs allows emphasising specific structural aspects that are rele-

vant to particular measurement goals [251].  

3.1.1 Related Work 

The widely-referenced model of a generic software system was defined by Briand et al. [30] 

using a graph-theoretic approach. The model was used by the authors [30] to support the 

specification of the mathematical characteristics for the structural properties of software as 

part of the property-based software measurement framework described in Section 2.5.2.  

In this generic model, a software system S is represented as a graph, where vertices sym-

bolise software artefacts (elements) and edges correspond to the relationships between these 

artefacts. Such a graph can be formally captured as a pair <E, R>, where E symbolises the set 

of elements of S, and R is a binary relation on E (RÌ E ³ E) representing the relationships 

between the elements of S. Also, a module m of S was defined as m = <Em, Rm>, where Em Ì 

E, Rm Ì Em ³ Emô, and Rm Ì R. The modules can overlap each other and can also be defined at 

a different level of abstraction, for example an Object-Oriented class vs. a segment of code. 

Additionally, the representation of a generic software system was expanded by Briand et 

al. [30] in order to capture the structure of a modular system. This was done in order to sup-

port the specification of the mathematical characteristics for the coupling and cohesion prop-

erties of software, which can be investigated only in the context of modular systems [30]. The 

modular system (MS) was defined as MS = <S, M>, where S = <E, R> is a generic software 

system, and M is a collection of disjoint modules m of S. For example, E can represent a set 

of OO methods, and R can represent a set of invocations from one method to another. A 

module m can then symbolise an OO class in system MS.  

Figure 3-1 shows a modular software design that can be represented as follows: 

E = {a, b, c, d, e, f, g, h, i, j};  

R = {(a, b), (a, c), (a, d), (c, f), (d, f), (d, g), (e, b), (f, i), (g, j), (h, e), (i, h), (i, j)};  

M = {m1, m2, m3}, where each individual module mx consists of the sub-sets of E and R. 
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Figure 3-1. Design of a modular software system (modified from ([30], p.71)) 

Note that this generic model was designed to represent the structure of any software sys-

tem, given that it does not reduce the number of possible system representations because 

software elements, modules and associated relationships can be defined according to specific 

technology and/or development paradigms. For example, this model has been successfully 

used (and also extended) by various researchers in order to unambiguously derive and theo-

retically validate software metrics based on the specific measurement goals: 

¶ Moraska [168] used the model in its original form when deriving metrics for measur-

ing structural properties of size, length, complexity, and coupling of concurrent software sys-

tems that have been expressed by means of Petri nets. 

¶ Rossi and Fernandez [207] modified the original model definitions to represent the 

structure of a software system composed of cooperating distributed components. This was 

done in order to formally define a set of design metrics specific to distributed systems. The 

structural modifications were based on substituting the definition of a set of system elements 

(E) and modules (M) with the set of system components (O) and component clusters (C) re-

spectively. Also, Rossi and Fernandez introduced additional types of relationships between 

system elements for capturing some of the behavioural aspects of the distributed systems. 

¶ Allen [3] extended the definition of system abstraction S with additional characteris-

tics in order to model explicitly the lack of relationships between the system and its environ-

ment (i.e. a disconnected node that represents the environment was added to the original defi-

nition of S). The author also provided separate definitions for software systems that include 

only inter- or intra-module relationships. These extensions were introduced in order to sup-

port derivation of software metrics for measuring the size, length, complexity, coupling, and 

cohesion of generic software systems. 
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¶ Briand et. al [33] also extended the generic model in later research publications in or-

der to formally capture the structure of OO systems based on the specific viewpoints and 

measurement objectives. For example, to theoretically evaluate existing metrics for measur-

ing coupling in OO systems, the structure of software system was redefined using OO Sys-

tem, OO Classes, and Inheritance Relationships as the key modelling constructs. The authors 

also included the formal definitions of OO class attributes, methods, and their associated pa-

rameters in order to make the model more descriptive. Additionally, in a more recent research 

publication [10], a definition of the generic structure of software system S was redefined in 

terms of the sets of OO classes (C), objects (O), methods (M), and lines of code (N) in order 

to derive metrics for measuring dynamic coupling in OO systems based on runtime object 

interactions.  

Neither the original nor the modified models are directly applicable to service-oriented 

system designs because: 

- They treat applications as a collection of software components independent of specific im-

plementation architecture 

- They were defined for a particular development paradigm (such as OO), thereby 

representing a specific technology-based viewpoint making them inapplicable to the particu-

lar characteristics of service-oriented designs. 

3.2 Fundamental Characteristics of SO System Designs 

This section summarises the four important characteristics of service-oriented designs (la-

belled C1-C4 below) discussed in Section 2.2, which cannot be readily captured by the exist-

ing model of a generic software system or specific models reviewed above. These character-

istics will be incorporated into the model of a service-oriented design presented in the next 

section. 

C1. SOC introduces more levels of abstraction compared to other development paradigms 

The Procedural paradigm has only one main level of design abstraction: a procedure. The 

Object-Oriented paradigm operates on two levels of design abstraction, where OO methods 

are encapsulated within OO classes.  

In contrast, the SOC paradigm introduces a third level of abstraction and encapsulation: a 

service. In service-oriented systems, operations (e.g. OO methods) are aggregated into im-

plementation elements (e.g. OO classes) that implement the functionality of a service as ex-

posed through its service interface. 

C2. Implementation of services can be achieved using various platforms and languages 
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Service-oriented systems can be implemented using a range of different technologies and 

development paradigms, which is especially relevant given the application of SOC to integra-

tion projects. Previous research has shown that the use of different development models, such 

as Procedural and OO paradigms, will result in systems with different structural properties 

[63]. Therefore, to allow for more accurate and detailed modelling of SO designs, different 

service implementation element types should be treated differently, rather than being com-

bined into one single generic element as was done in [3, 30, 168, 207]. 

C3. A service interface is an important first-class design artefact 

Correctly identifying service interfaces is challenging and important service-oriented de-

sign activity [57, 94]. This is because interface granularity and relatedness of its operations 

will strongly influence the structural properties of service-oriented designs as discussed in 

Section 2.2.2. Moreover, service-oriented systems should be structured in terms of independ-

ent, self-contained services, with service interfaces being the primary entry points of a system 

in order to enforce service autonomy [4, 67, 186]. As such, service interfaces must be highly 

stable as future changes can potentially affect a large number of clients. 

C4. A service is not an explicit design construct 

In existing implementation technologies, a service boundary is logical rather than physi-

cal. Therefore, there is a need to define a concrete procedure for the unambiguous allocation 

of implementation elements to services in order to determine service boundaries, thereby al-

lowing inclusion of services as first-class design artefacts in the model of SO design. Addi-

tionally, identifying a service boundary will allow specifying various types of intra- and in-

ter-service relationships (Section 3.3.2) that can influence the coupling of service-oriented 

designs as described further in Chapter 4. 

3.3 Model Definitions 

This section presents the model of service-oriented system design, which extends a generic 

model of a software system (described in Section 3.1.1) by incorporating the fundamental 

characteristics of service-orientation. In this model, the design of service-oriented system is 

represented as a bi-directional graph [80] that can be expressed using standard set-theoretic 

notation. Vertices (V) in this graph symbolise software design artefacts found in service-

oriented systems, namely service interfaces and various service implementation elements. 

Edges (E) correspond to the relationships between these artefacts, representing both structural 

and behavioural dependencies.  

For example, an arbitrary design structure (SOS) illustrated in Figure 3-2 consists of: 

- a vertex set V(SOS) = {si1, si2, p1, c1 bp1, h1, i1, c2, p2, c3, c4};  
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- and an edge set E(SOS) = {(si1, p1), (si1, c1), (si2, bp1), (si2, c2) (c1, p1), (p1, c1), (p1, 

h1), (c1, i1), (p1, p2), (c1, c3), (c2, c4), (c4, c3), (p2, si2)}, where an edge with end vertices x 

and y is denoted by (x, y). 

Also, the graph of a service-oriented system can be partitioned into a number of sub-

graphs representing individual services in the system as shown in Figure 3-2, where a graph 

SOS has two marked sub-graphs (services), ser1 and ser2. For example, service ser2 consists 

of a vertex set V(ser2) = { si2, c2, bp1, c4} , which is a subset of V(SOS); and an edge set 

E(ser2) = {( si2, bp1), (si2, c2), (c2, c4)} , which is a subset of E(SOS). 

The formal definitions capturing the design of SO system are presented in three parts to 

improve readability, with Section 3.3.1 defining design artefacts that constitute service-

oriented systems; Section 3.3.2 defining various relationships between these artefacts; and 

Section 3.3.3 combining definitions from the former two subsections into one complete 

model. Finally, Section 3.3.4 presents a formalism for representing different types of Service-

Oriented system designs based on their conformance to the principles of service-orientation. 

3.3.1 System Structure 

This subsection formally defines the structure of a service-oriented system in terms of its 

constituent services and associated service interfaces and implementation elements. The nota-

tion used in the model definitions can be found in Appendix C. 

 DEFINITION 1 (System structure) 

The service-oriented system structure (SYS) is composed of the sets of various design ar-

tefacts as follows: 

i) The concept of a generic design element is subdivided into two distinct design arte-

facts, a service implementation element and a service interface, in order to cover design char-

acteristic C1 described in Section 3.2. 

ii)  The implementation element artefact is further subdivided into more concrete imple-

mentation types, namely Business process scripts13 (bps), OO classes (c), and Procedural 

packages14 (p). These types represent common technologies used to implement service-

oriented systems. This was done in order to cover design characteristic C2. 

iii)  The service interface (si) is defined as a separate design construct in order to cover 

design characteristic C3. Furthermore, the structural characteristics of interface types (OO 

interfaces or Procedural packages) are also different from that of concrete implementation 

types [82, 242]. As a result, the OO interfaces (i) and Package headers (h) are defined as 

separate elements in the model. 

                                                      
13 For example, WS-BPEL 2.0 scripts (refer to Section 2.2.1) 

14 Collection of procedures that can be written in any procedural/structural-based language (such as C). 
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Figure 3-2. Example design representing SO system (SOS) 

Formally, a system structure (SYS) can be defined as: 

SYS = <SI, BPS, C, I, P, H>                    [D1] 

where SI is the set of all service interfaces si in SYS; BPS is the set of all business proc-

ess scripts bps in SYS; C is the set of all OO classes c in SYS; I is the set of all OO interfaces 

i in SYS; P is the set of all procedural packages p in SYS; and H is the set of all package 

headers h in SYS. 

 DEFINITION 1.1 (Service structure) 

The sets representing the compositional elements of a service (s) are subsets of the sets 

comprising the total elements of the system (SYS), with the exception of the service interface 

which is a single element because a service has only one service interface.  

Formally, a service (s) can be defined as: 

s = <sis, BPSs, Cs, Is, Ps, Hs>                [D1.1] 

if and only if sis Í SI Ø (BPSs Ì BPS Ø Cs Ì C Ø  Is Ì I Ø Ps Ì P Ø Hs Ì H) Ø (BPSs 8 Cs 

8 Is 8 Ps 8 Hs àð s). 

Note that àð symbol represents service membership. As was described previously (charac-

teristic C4), a service boundary is logical rather than physical in current implementation tech-

nologies. Therefore, the allocation of elements to services is performed by considering the 

possible call paths in response to invocations of operations exposed in a service interface.  

As an example, consider the design shown in Figure 3-3 and Figure 3-4, in which: 
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i) service interface si2 has a service operation sopA(...) which is realised by the following 

sequence of calls:  1) si2.sopA(...) -> c2.opB(...);  

   2) c2.opB(...) -> c4.opC(...);  

ii) class c4 has operation opC1(...) which invokes operation opD(...) belonging to class c3.  

Upon examining the relationships between all system elements (static coupling), without 

taking into consideration the chain of calls initiated from service interface si2, an element c3 

will be allocated to service ser2 (as shown in Figure 3-3) given that elements c4 and c3 are 

coupled together via service unrelated relationship initiated by the call c4.opC1(...) -> 

c3.opD(...). Such allocation would be incorrect because element c3 should not be a part of 

ser2 given that c3 is not reachable through methods invoked on c4 through operation sopA() 

of interface si2. Figure 3-4 shows the correct assignment of elements to services performed 

by examining the chain of calls initiated from the service interface si2.  

The information required to perform the allocation of design elements to services can be 

derived from behavioural design artefacts such as sequence or collaboration diagrams, flow 

charts or data flow diagrams; or by tracing the actual executable code if available. In practice, 

service unrelated relationships (such as c4.opC1(...) -> c3.opD(...)) would most likely occur 

when designing a service-oriented systems using a bottom-up approach (refer to Section 

2.2.2). Such relationships break the rule of service autonomy and should be avoided [68].  

Finally, note that some of the implementation element types could be absent from the sys-

tem and/or service structure. As a result, the corresponding sets of elements would be empty 

(indicated by Å), but the Definitions D1 and D1.1 would still hold. For example, the follow-

ing is the representation of a service-oriented system SOS and a service ser1 from Figure 3-2, 

where service ser1 has no elements in the set of Business process scripts (BPS):  

SOS = <SI, BPS, C, I, P, H> = <{si1, si2}, {bp1}, {c1, c2, c3, c4}, {i1}, {p1, p2}, {h1}>;  

ser1 = <siser1, BPSser1, Cser1, Iser1, Pser1, Hser1> = <si1, Å, {c1, c3}, {i1}, {p1, p2}, {h1}> 

 

To make the model more detailed and descriptive, we now present the definitions of the 

operations of elements and their associated parameters, and attributes of elements. 

 DEFINITION 2 (operations of an element) 

Design elements can have one or more callable operations, which can be treated generi-

cally for all element types and defined formally as:  

For each element e Í SI 8 BPS 8 C 8 I 8 P 8 H let Op(e) be the set of operations op of 

element e                      [D2] 

In addition, operations can be defined individually to cover for the specific element types. 

For example, operations included in a service interface can be defined as:  

For each service interface siÍSI let SOp(si) be the set of service operations sop of service 

interface si. 
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Figure 3-3. Static allocation of implementation elements to services 
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Figure 3-4. Dynamic allocation of implementation elements to services 

 

 DEFINITION 2.1 (operation parameters, return type, and pre- and post-conditions) 

- Operations can have (optional) input parameters, which can be formally defined as: 

For each operation opÍOp(e) let Param(op) be the set of parameters par of op           [D2.1] 

Additionally, parameters can be defined for the specific operation types. For example, pa-

rameters of a service interface operation sop can be defined as: 

For each service operation sopÍ SOp(si) let Param(sop) be the set of parameters par of 

sop. 

- Operations can have (optional) return type, which can be formally defined as: 

For each operation opÍOp(e) let returnTypeop be the return type of op                         [D2.1] 
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The return types can be defined individually to cover for the specific operation types. For 

example, the return type of a service interface operation sop can be defined as: 

For each service operation sopÍ SOp(si) let returnTypesop be the return type of sop.  

 

- Operations can have (optional) pre- and post-conditions, which can be formally defined as: 

For each operation opÍOp(e) let Cond(op) be the set of pre- and/or post-conditions cond of 

op                   [D2.1] 

As was the case with the input parameters and return type defined above, the pre- and 

post-conditions can be re-defined to cover for the specific operation types. For example, pre- 

and post-conditions of a service interface operation sop can be defined as: 

For each service operation sopÍ SOp(si) let Cond(sop) be the set of pre- and post-

conditions of sop.  

 

 DEFINITION 2.2 (attributes of an element) 

Design elements can have one or more attributes, which can be treated generically for all 

element types and defined formally as: 

For each element e Í SI 8 BPS 8 C 8 I 8 P 8 H let Atr(e) be the set of attributes atr of ele-

ment e                   [D2.2] 

Additionally, attributes can be defined individually to cover for the specific element 

types. For example, attributes of an OO class can be re-defined in terms of class variables:  

For each OO class cÍC let Var(c) be the set of member variables var of class c.  

3.3.2 Relationships 

This subsection presents the definitions of various types of relationships between service-

oriented design elements, where a generic concept of a relationship is described in Figure 3-5. 

This definition of generic relationship is consistent with the types of interactions from the 

coupling framework proposed by Briand et al. [33] (described in Section 2.4.2), except for 

the technology-dependent associations that are needed to cover for the inherently diverse na-

ture of service-oriented design elements.  

 DEFINITION 3 (relationships between design artefacts in service-oriented systems) 

Given that not all combinations of element a to element b relationships are technologi-

cally achievable, the relationships are described below in terms of the common, possible, and 

improbable sets of service-oriented design relationships. These sets are based on current 

technological constraints and the experience of the present author, but are not considered de-

finitive and could change in response to changing technology. 
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Figure 3-5. Definition of a Service-Oriented design relationship 

Common relationships (Rc) represent relationships that are likely to occur in all service-

oriented systems, in which collaboration between software elements is done either through a 

service interface or directly between implementation elements belonging to the same devel-

opment paradigm. For example an OO class (c) invoking another OO class (c) directly (class-

to-class CC relationships), or through an OO interface (CI) can be considered as a common 

relationship since the elements involved in the relationship belong to the same paradigm. 

This set of common relationships can be formally defined as: 

Rc = <CSI 8 SIC 8 CC 8 CI 8 IC 8 II 8 PSI 8 SIP 8 PP 8 PH 8 HH 8 BPSSI 8 SIBPS 8 BPSBPS>, 

where CSI Ì C ³ SI, SIC Ì SI x C, CC Ì C ³ C, CI Ì C ³ I, IC Ì I ³ C, II  Ì I ³ I, PSI Ì 

P ³ SI, SIP Ì SI ³ P, PP Ì P ³ P, PH Ì P ³ H, HH Ì H ³ H, BPSSI Ì BPS ³ SI, SIBPS 

Ì SI ³ BPS,  BPSBPS Ì BPS ³ BPS15. 

For example, a set of relationships CI representing subset of all OO classes to interfaces 

relationships (C ³ I) for system SOS would be CI ={(c1, i)} in the design shown in Figure 

3-2, where each single relationship is represented as the ordered pair (source, destination).  

 

Possible relationships (Rp) represent relationships which are technology (or paradigm) de-

pendent; insofar as the design elements collaborate with the elements belonging to a different 

development paradigm. For example a function (procedure) within a Procedural package (p) 

is called from a method of an OO class (c) via a native interface. The set of possible relation-

ships can be formally defined as: 

                                                      
15 the ³ symbol represents a Cartesian product between two given sets (refer to Appendix D) 

A relationship is said to exist between two service-oriented design elements a and b 

(a Í SI 8 BPS 8 C 8 I 8 P 8 H and b Í SI 8 BPS 8 C 8 I 8 P 8 H) if: 

i) An operation of a (op Í Op(a)) invokes an operation defined in b (op Í Op(b)) 

ii) An operation of a (op Í Op(a)) references an attribute defined in b (atr Í Atr(b)) 

iii) An element a is the type of an attribute of element b 

iv) An element a is the type of a parameter of an operation defined in b 

(parÍParam(opÍOp(b) 

v) An element a is mapped to element b via technology-dependent association. For 

example, two OO classes related through OO inheritance, or wsdl-based service 

interface operation mapped to a business process script via middleware support 

Furthermore, if b is also related to a according to the above, this is considered to be 

a separate relationship. 
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Rp = <CP 8 PC 8 CH 8 CBPS 8 BPSC 8 BPSI 8 PBPS 8 BPSP 8 BPSH 8 PI >, 

where CP Ì C ³ P, PC Ì P x C, CH Ì C ³ H, CBPS Ì C ³ BPS, BPSC Ì BPS ³ C, BPSI 

Ì BPS ³ I, PBPS Ì P ³ BPS, BPSP Ì BPS ³ P, BPSH Ì BPS³ H, PI Ì P ³ I 

 

Improbable (technology dependent) relationships (Ri) represent relationships that are con-

sidered to be improbable within the logical and current technological constraints of a service-

oriented system. For example, a WSDL-based service interface (si) cannot call another ser-

vice interface (or other explicit interface types such as OO interface (i) or Package header 

(h)) directly, as this would be done through a separate implementation element. Also, a Pack-

age header (h) can be related to other headers only (via ñincludesò relationships), but cannot 

be coupled directly to other implementation elements. Finally, it is impossible to have a rela-

tionship from an OO interface (i) to the elements belonging to different development para-

digms such as Procedural packages (p) and headers (h), and Business Process Scripts (bps). 

For completeness, the improbable relationships are defined below: 

Ri = <SISI 8 SII 8 ISI 8 SIH 8 HSI 8 HP 8 HC 8 HI 8 HBPS 8 IH 8 IP 8 IBPS >, 

where SISI Ì SI ³ SI, SII Ì SI ³I, ISI Ì I ³SI, SIH Ì SI ³ H, HSI Ì H ³ SI, HP Ì H ³ P, 

HC Ì H ³ C, HI Ì H ³ I, HBPS Ì H³ BPS, IH Ì I ³ HI, IP Ì I³ P, IBPS Ì I ³ BPS 

The set of overall relationships in a service-oriented system design can therefore be repre-

sented as a union of all common (Rc) and possible (Rp) relationships between various design 

elements. This overall set of relationships (R) is formally defined as: 

R = Rc 8 Rp                      [D3] 

 DEFINITION 3.1 (relationships between design artefacts belonging to a service) 

The set representing the relationships belonging to a particular service s is the subset of 

the overall set of relationships (R). This subset includes relationships between elements be-

longing to a particular service and can be formally defined as: 

Rs = Rcs 8 Rps                  [D3.1] 

if and only if Rcs Ì Rc, Rps Ì Rp, and Rc 8 Rp = R according to Definition D3. 

 

3.3.2.1 Service-Oriented Static Relationship Types 

The following definitions cover the design relationships from the perspective of a service by 

addressing various intra- and extra-service relationship types that can influence the structural 

properties of service-oriented software designs. Such relationship types encapsulate important 

design principles of service-orientation. For example, the direct extra-service relationships 

from one implementation element to another (IR and OR relationships specified in Defini-
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tions D4.3 and D4.4) should be avoided given that SO systems should be structured in terms 

of independent services, where all inter-service interactions are performed strictly via service 

interfaces (design characteristic C3 from Section 3.3). The structural service relationship 

types are defined formally below in order to provide the foundation for the coupling metrics 

presented in Chapter 4, with the formal definitions of such metrics being based on the defini-

tions of the structural relationships. 

Note that the following relationship types can be considered as coupling relationships ac-

cording to the coupling framework of Briand et al. [33] adopted in this research and described 

in Section 2.4.2. Similarly, the service relationships defined below cover the locus of impact 

aspect [33] (import or export coupling) with incoming and outgoing relationships covered 

separately. 

 DEFINITION 4.1 (relationships between a service interface and service implementation 
elements) 

The set of direct service interface to implementation relationships IIR(s), which repre-

sents the relationships between a service interface sis and the implementation elements e of 

service s, is formally defined as:  

IIR(s) = {(sis, e) Í Rs | Rs Ì (SIBPS 8 SIC 8 SIP) Ø sis Í SI Ø e Í (BPSs 8 Cs 8 Ps)}    [D4.1] 

For example, the IIR set for service ser1 shown in Figure 3-6 is: 

IIR (ser1) = {(si1, c1), (si1, p1)}. 

Note that as previously described in Definition D3, a service interface cannot be con-

nected directly to other types of explicit interfaces (such as OO interface or Package header) 

due to technological constraints. Therefore, these relationships are not included in the defini-

tion of IIR(s). 

 DEFINITION 4.2 (relationships between service implementation elements) 

The set of internal service relationships ISR(s), which represents the interconnection of 

implementation elements e1 and e2 belonging to service s can be formally defined as:  

ISR(s) = {(e1, e2) Í Rs | Rs Ì (CC 8 CI 8 IC 8 II 8 PP 8 PH 8 HH 8 BPSBPS 8 CP 8 PC 8  

         CH 8 CBPS 8 BPSC 8 BPSI 8 PBPS 8 BPSP  8 BPSH 8 PI) Ø  

      e1, e2 Í (BPSs 8 Cs 8 Is 8 Ps 8 Hs)}              [D4.2] 

For example, the ISR set for service ser1 shown in Figure 3-6  is: 

ISR (ser1) = {(c1, p1), (p1, c1), (c1, i), (i, c2), (p1, h), (p2, h)}. 
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Figure 3-6. Example SO design (including different relationship types) 

 

 DEFINITION 4.3 (relationships between the service implementation elements of a given 
service and the elements belonging to the rest of the system - incoming) 

The implementation elements e1 belonging to the rest of the system are connected to the 

implementation elements e2 belonging to a particular service s via incoming relationships 

IR(s) defined formally as:  

IR(s) = {(e1, e2) Í Rs | Rs Ì (CC 8 CI 8 IC 8 II 8 PP 8 PH 8 HH 8 BPSBPS 8                       

CP 8 PC 8 CH 8 CBPS 8 BPSC 8 BPSI 8 PBPS 8 BPSP 8 BPSH 8 PI) Ø                               

e1Í(BPS-BPSs 8 C-Cs 8 I - Is 8 P - Ps 8 H - Hs) Ø e2Í(BPSs 8 Cs 8 Is 8 Ps 8 Hs)}        [D4.3] 

For example, the IR set for service ser1 shown in Figure 3-6  is: IR (ser1) = {(c3, c1)}. 

 DEFINITION 4.4 (relationships between the service implementation elements of a given 
service and the elements belonging to the rest of the system - outgoing) 

The implementation elements e1 belonging to a particular service s are connected to the 

implementation elements e2 belonging to the rest of the system by outgoing relationships 

OR(s) defined formally as:  

OR(s) = {(e1, e2) Í Rs | Rs Ì(CC 8 CI 8 IC 8 II 8 PP 8 PH 8 HH 8 BPSBPS 8                    

CP 8 PC 8 CH 8 CBPS 8 BPSC 8 BPSI 8 PBPS 8 BPSP 8 BPSH 8 PI) Ø                                        

e1Í(BPSs 8 Cs 8 Is 8 Ps 8 Hs) Ø e2 Í (BPS- BPSs 8 C- Cs 8 I - Is 8 P - Ps 8 H - Hs)}    [D4.4] 

For example, the OR set for service ser1 shown in Figure 3-6 is: OR (ser1) = {(c2, c4)}. 
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 DEFINITION 4.5 (relationships between service implementation elements of a service 
and other service interfaces - incoming) 

The service interface si (of a service s) is connected to other elements e in the system by ser-

vice incoming relationships SIR(s) defined formally as: 

SIR(s) = {(e, si) Í Rs | Rs Ì (BPSSI  8 CSI 8 PSI) Ø 

                e Í (BPS - BPSs 8 C - Cs 8 P - Ps) Ø si = sis Ø si Í SI}                                  [D4.5] 

For example, the SIR set for service ser1 shown in Figure 3-6 is: SIR (ser1) = {(c4, si1)}. 

 DEFINITION 4.6 (relationships between service implementation elements of a service 
and other service interfaces - outgoing) 

The implementation elements e (of a service s) are connected to other services in the sys-

tem (strictly through service interfaces si) by service outgoing relationships SOR(s) defined 

formally as: 

SOR(s) = {(e, si) Í Rs | Rs Ì (BPSSI  8 CSI 8 PSI) Ø  

                  e Í (BPSs 8 Cs 8 Ps) Ø si  ̧sis Ø si Í SI}            [D4.6] 

For example, the SOR set for service ser1 shown in Figure 3-6 is: SOR (ser1) = {(p2, si2)}. 

3.3.2.2 Service-Oriented Dynamic Relationship Types 

This subsection defines dynamic relationships present in service-oriented design structures, 

where a dynamic relationship represents the runtime collaboration between multiple elements 

in response to a specific operation invocation. 

 DEFINITION 5 (direct collaboration relationships between service-oriented design enti-
ties) 

To capture the dynamic aspects of service structures, a concept of a collaboration (c) was 

introduced. A collaboration cop captures elements that interact in order to achieve some de-

sired functionality in response to all possible invocations of operation op belonging to some 

element e. Formally:  

co Í CO(e) = <Param(opÍOp(e)), CS>                 [D5] 

where Param(opÍOp(e)) represents parameters to the operation o belonging to set of op-

erations Op(e) of element e as per Definitions D2 and D2.1; CO(e) is a set of all collabora-

tions of element e; and CS is the set of collaboration sequences (csopÍOp(e)). A collaboration 

sequence captures the set of interacting elements that achieve functionality exposed in opera-

tion o based on specific inputs (i.e. parameter values) and can be defined as:  

csopÍOp(e) Í CS(e) = <SIcs, BPScs, Ccs, Ics, Pcs, Hcs>             [D5.1] 
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where SIcs Ì SI, BPScs Ì BPS, Ccs Ì C, Ics Ì I, Pcs Ì P, Hcs Ì H. This represents the set of 

interacting elements that achieve functionality exposed in operation o based on specific in-

puts. In terms of graph theory notation [80], collaboration sequence csoÍO(e) represents an 

open or closed walk starting at element e.  

 DEFINITION 5.1 (indirect collaboration relationships between service-oriented design 
entities) 

Additionally, a concept of an indirect collaboration (ico Í ICO(e)) was introduced in or-

der to capture the indirect collaboration sequences (icsoÍO(e)ÍICS(e)) that include indirectly 

connected elements determined based on the overall static coupling disregarding whether the 

elements are interacting to achieve some specific functionality (as was described in Section 

3.3.1 using collaboration sequences initiated by the service interface operation as an exam-

ple). Note that the definitions of ic, ICO, ics, and ICS are the same as the ones for c, CO, cs, 

and CS, only the semantic rules for assigning the elements to collaborations are different (i.e. 

elements will be included in the indirect collaboration as long as they are connected via any 

of the previously defined relationship types). Formally:  

ico Í ICO(e) = <Param(opÍOp(e)), ICS>             [D5.2] 

icsoÍO(e) Í ICS(e) = <SIcs, BPScs, Ccs, Ics, Pcs, Hcs>            [D5.3] 

Note that defining direct collaborations allows formally specifying the service member-

ship operation <> (Section 3.3.1). For example, an element e is said to be a member of ser-

vice s if and only if e belongs to some collaboration sequence cs Í CS as part of collaboration 

c = <Param(soÍSO(sis)), CS>. 

3.3.3 Combined Structure and Relationships 

This section presents a complete model by combining the definitions of system elements and 

relationships from Sections 3.3.1 and 3.3.2. Additionally, it defines key set-theoretic opera-

tions (such as inclusion, union, and intersection) that have to be defined in order to support 

the theoretical validation of metrics in Chapters 4 and 5. 

 DEFINITION 6 (SO System and Service) 

A service-oriented system SOS consists of a number of design elements and associated re-

lationships and can be formally defined as: 

SOS = <SI, BPS, C, I, P, H, R>                  [D6] 

Given a system (SOS), a service ser can be formally defined as: 

ser = <siser, BPSser, Cser, Iser, Pser, Hser, Rser>             [D6.1] 
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is a service of SOS if and only if  siser Í SI Ø (BPSser Ì BPS Ø Cser Ì C Ø Iser Ì I Ø Pser Ì P 

Ø Hser Ì H) Ø Rser Ì R Ø Rser  Ì (IIR (ser) 8 ISR(ser) 8 IR(ser) 8 OR(ser) 8 SIR(ser) 8 

SOR(ser)) Ø (BPSser 8 Cser 8 Iser 8 Pser 8 Hser àð ser)  

 

Given the above definitions, the inclusion, union and intersection set operations16 for ser-

vices can be defined as follows: 

¶ Inclusion: service s = <sis, BPSs, Cs, Is, Ps, Hs, Rs> is said to be included in service t = 

<sit, BPSt, Ct, It, Pt, Ht, Rt> (notation s Ì t) if BPSs Ì BPSt Ø Cs Ì Ct Ø Is Ì It Ø Ps Ì Pt Ø 

Hs Ì Ht Ø Rs Ì Rt 

¶ Union: The union of services s = <sis, BPSs, Cs, Is, Ps, Hs, Rs> and t = <sit, BPSt, Ct, It, Pt, 

Ht, Rt> (notation s 8 t) is the service st  = <sist, BPSs 8 BPSt, Cs8Ct, Is8It, Ps 8 Pt, Hs 8 

Ht, Rs 8 Rt>, where service interface sist contains operations from both sis and sit 

¶ Intersection: The intersection of services s = <sis, BPSs, Cs, Is, Ps, Hs, Ri> and t = <sit, 

BPSt, Ct, It, Pt, Ht, Rt> (notation s ž t) is the service st  = <sist, BPSs ž BPSt, Cs ž Ct, Is ž 

It, Ps ž Pt, Hs ž Ht, Rs ž Rt>, where interface sist contains only operations that can be sup-

ported by the intersected elements originally belonging to services s and t. 

Furthermore, to accommodate definition of metrics in Chapters 4 and 5 and to formalise 

some of the important characteristics of software services, the empty, disjoint, composite and 

atomic services can be defined as follows: 

¶ Empty service: service s = <Å, Å> (notation Å) is the empty service 

¶ Disjoint services: services s and t are said to be disjoint if s ž t = Å 

¶ Composite service: service s with SOR (s) 8 OR (s) ̧  Å is said to be a composite service 

¶ Atomic service: service s with SOR (s) 8 OR (s) = Å is said to be an atomic service 

 

3.3.4 Different Types of SO Systems 

This sub-section defines service-oriented systems in the context of a modular design [30]. 

Additionally, the definitions are separated into specific types of service-oriented system de-

signs based on the conformance of a given system to the key structural principles of SOC, 

service encapsulation and autonomy (described in Section 2.4.2). That is, we introduce for-

mally a new structural (coupling) design property specific to service-oriented paradigm, ser-

vice-autonomy, which is based on the conformance of the system design to the principles of 

                                                      
16 The set operations are used in the theoretical validation of metrics based on the property-based software engineering 

measurement framework of Briand et al. [30]. 
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SOC in terms of structuring the software system as a collection of services where all imple-

mentation elements belong to one and only one service. 

 DEFINITION 7 (Partitioned SO System) 

A system that is entirely partitioned into services (i.e. there exist no implementation ele-

ments that do not belong to a service) is considered a partitioned service-oriented system 

(PARSOS). Formally,  

PARSOS = <SOS, SER>                   [D7] 

is a partitioned service-oriented system, if and only if  

- SOS = <SI, BPS, C, I, P, H, R> is a service oriented system as per Definition D6; 

- ser = <siser, BPSser, Cser, Iser, Pser, Hser, Rser>  is a service of SOS (Definition D6.1); 

- SER is a collection of services ser such that:  

" bps Í BPS ($ser Í SER (bps Í BPSser)) Ø "c Í C ($ser Í SER (c Í Cser )) Ø  

" i ÍI ($ser Í SER (i Í Iser )) Ø "p Í P ($ser Í SER (p Í Pser )) Ø  

" h Í H ($ser Í SER (hÍHser ))  

 DEFINITION 7.1  (Pure SO System) 

A system that is partitioned into a set of services, where: i) every implementation element 

is part of one and only one service (i.e. all services in the system are disjoint); ii) all inter-

service interactions are performed strictly via service interfaces; is considered to be a pure 

service-oriented system (PURSOS). Formally,  

PURSOS = <SOS, SER>                 [D7.1] 

is a pure service-oriented system, if and only if 

- SOS = <SI, BPS, C, I, P, H, R> is a service oriented system (Definition D6); 

- ser = <siser, BPSser, Cser, Iser, Pser, Hser, Rser>  is a service of SOS (Definition D6.1); 

- SER is a collection of services ser such that:  

" bps Í BPS ($ser Í SER (bps Í BPSser )) Ø "c Í C ($ser Í SER (c Í Cser )) Ø  

" i Í I ($ser Í SER (i Í Iser )) Ø "p Í P ($ser Í SER (p Í Pser )) Ø 

" h Í H ($ser Í SER (hÍHser )) Ø 

" seri, serj  Í SER (seri ž serj = Å) Ø 

" ser Í SER (OR(ser) 8 IR(ser) = Å). 

 

Figure 3-7 and Figure 3-8 illustrate examples of PARSOS and PURSOS system types re-

spectively. For example, óAcademic Management Systemô shown in Figure 3-8 is an example 

of a pure service-oriented system (PURSOS), where the system consists of nine fully inde-

pendent services that communicate with one another strictly via service interfaces.  
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In contrast, the design shown in Figure 3-7 cannot be considered as PURSOS type, inso-

far as service elements are directly connected to the elements of other services (via OR or IR 

relationships), and some of the services share implementation elements. Nonetheless, this de-

sign can be considered as PARSOS since the entire system is partitioned into services.  

 

 

Figure 3-8. Example Pure Service-Oriented System (PURSOS) 
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Figure 3-7. Example Partitioned Service-Oriented System (PARSOS) 
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