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Abstract

As thepace ofbusinesschange increasesegrviceoriented (SO) solutions should facilitate
easier maitainability as underlying business logic and rules change. To date, little effort has
been dettated to consideringow thestructural propert® of coupling and cohesiamay
impacton the maintainabilityof SO software products. Moreover, due to the unique design
charactestics of ServiceOriented Computing (SOC), existing Procedural and Object
Oriented (OO) saivare metrics are not sufficiendrf the accurate measurement of service
oriented design stotures.

This thesismakes a contribution to the field of SOC, and Software Engineeringnin ge
eral, by proposing and evaluating a suite of dekgrl coupling and cohesion metrics for
predicting he maintainability of serviceriented software products early in the Softwass D
velopment LifeCycle (SDLC). The proposed metrics can provide the following benefits: i)
facilitate design decisionthat could lead to the spedé#tion of quality SO desigrthat can
be maintained more easily; identify designproblemsthat can potentially have a negative
effect on the maintainability of existingerviceoriented design structureand iii) support
more effective control of maintainability the earlier siges of SDLC.

More specifically, the following research was conducted as part of this thesis:

- A formal mathematical modealovering the structural and behavioural properties of

serviceorientedsystem desigwas specified

- Software metrics were defined a preciseunambiguousand formal manner using

the above model.

- The metrics were theoretically validated and empirically evaluated in order te dete

minethe success of this thesis follows:

a. Theoretical validation was based on theropertybased softwar engineering
measurement framewarAkll the proposed metrics were deemed as theoretically valid.

b. Empirical evaluationemployed a controlled experimentdldy involvingten pa-
ticipantswho performed a range of maintenance tasks on two SO systems ddve@loge
measured using the proposed metrics) specifically for this sty miajority of theex-
perimental outcomes comparéaourably withour expectationsand hypothesesMore
specifically, the results indicated that most of the proposed metrics caedtheéoupredict
the maintainability of serviceriented software products early in the Software Deelo
ment LifeCycle (SDLC), thereby providirgyidence for the validity anpotential usefi
nessof the derived metrics. Nevertheless, a broader range of induscaleexpeiments
and analyses are required to fully demonstrate the practical applicability of the metrics.
Thishas been left tauture work.
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CHAPTER 1.INTRODUCTION

Chapter 1. Introduction

ServiceOriented Computing (SOC) is an emerging software development paradigm, which is
based on the principle of encapsulating application and business logic within independent,
reusable, and businessiented software services. Presentiftle research effort has been
dedicated to considering how ts&ructural properties of serviagiented software designs

may influence the maintainability of final software productsMore significantly, software
metrics for measuring serviagiented degn properties in an automated and objectiveima

ner do not exist.

This thesis makes a contribution to the field of SOC by presenting a suite of theoretically
validated and empirically evaluated software metrics for measuring structural properties of
coupling and cohesion of serviegiented designs. The metrics can be used as earlycpredi
tors of themaintainabilityquality characteristic of serviemiented software systems. Mai
taining sofware productss a resourcéntensive process; therefore developgajtware that
can be more easily maintained should be a key objective of any software engineering process.
To this end, the derived metrics will allow identification and thus mitigation of potential
maintainality problems early in the Software DeveloprhkiieCycle.

This introductory chapter servésur purposes. Firstly, Sectidnl discusses the rationale
behindthis research. SecondlyeStion1.2 presentghe researclhuestions. The methodology
followed in this research in order to answer the research questions is then descriled in Se
tion 1.3 Anally, Section1.4 summarises theontributionsmade by thishesis

1.1 Rationale

ServiceOriented Computing (or Servie®riented Architecture (SOA)has recently emerged
as a major paradigm for developisgftware system§4, 66, 186, 219]Systems created
within the SOC approach, that is Servidaented (SO) systems, aim to exhibit high flekibi
ity and agility, facilitating rapid business changes and promoting software [&&is&87,
215].

The fundamentakoncepts of servicerientation have been described in the research and
industry literaturg12, 57, 118, 183hnd software tools for assisg in thedevelopment of
SOapplications are becoming more widely usgdnetleless,guidelines for designing high
guality serviceoriented software that can be easily ni@nedareyet to be fully established,

! Note that fo the remainder of this thesis, the term SOC will be used to represent the development paradigrmeused to d
velop applications conforming tspecific type of system architecture, a Ser@ciented Architecture (SOA).

2
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CHAPTER 1.INTRODUCTION

and formal mechanisms for assessing and estimating theamability d SO applications
do not yet exist.

In previous paradigms such as Procedural and Ofjeented (OO) development, it was
shown that various quality characteristics (such as maintainability) can be predictedy-and co
sequently improved, early in the SoftwaDevelopment Lifecycle (SDLC) by examining the
structuralpropertiesof software designsuch ascouplingandcohesiof[35, 45, 76] To d-
fectively quantify these properties, a number of software metrics were proposednand e
ployed to assist in the identification of the design problems and early prediction of software
quality attributeqd32, 44, 53, 146]Early prediction of maintainability is of utmoshpar-
tance given thathe maingénanceactivities are resource intensive; therefore, it is crucial to
identify and fix the potential problems as early as possible.

At present, little research effort has been dedicated to considemdhecoupling ke-
tweenservices anadohesiveness ahdividual servicesin serviceoriented systemmay im-
pacton the maintainabilityof software products. Moreover, due to the unique characteristics
of SOC described in Sectidh2, the existing Praadural and OO metrics are not sufficient
for the accurate measurement of the seroitented design statures[189]. Therefore, this
thesis formally dfines, and theoretically and empirically evaluates a suite of-S@a&ific
designlevel metrics. The metrics support rigorous assessofestructural propertiesc@u-
pling andcohesion of serviceoriented design artefacts, thereby assisting in the detection of
the design deficiecies and facilitating prediction of maintainability early in the development
process.

1.1.1 The Significance of SOA

Enterprise information systems are becoming increasingly large and complex requiring more
precise mechanisnfer managing software complexity and, more importantigding the
demands of highkgdynamic business environmenis.order to efficiently suppoithese b-
jectives, the SOC paradigih2, 64, 66, 186, 230j)as introdeed as an extension to the éxis
ing development@proaches (such as Procedural and OO development)

SCC providesa flexibleand agile developmemhodelby introducing an additional layer
of software abstraction a servicdayer. Serviceoriented applicatins are structured as a-co
lection of independent, busineakgned software services, which can be composed o e
ecutable business processes. The business processes encapsulate business logic and rules,
separating them from the software implementatibseasvices, thus promoting higher ssu
ability of the individual services anfdcilitating rapidpropagation obusiness changend
reduction ofmaintenancefforts[18, 220, 241]

2 Note that the key terms and concepedsited to this research will be highlighted in italic font throughout the remainder of
the thesis.
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CHAPTER 1.INTRODUCTION

SOA is becoming an increasingly popular choice of systetmtacture. For exampleca
cording to a market survey from Forrester Resef6h

- 21% of North American and Europed@NA-EU) enterprises said that they plan to
adopt SOA by the end of 2007, which should bring an overall SOA penetration in
NA-EU enterprise markets to 62%;

- 22% of AsiaPacific enterprises and 14% of N&U smallandmedium businesses
planned to adopt SOAi2007, bringing total projected penetration in these markets to
59% and 40% respectively.

Therecently released followp report indicates that the above adoption targets have been
largely met by the companies participating in the survey in termmargformingthe undeny-
ing IT infrastructures into welplanned serviceriented solutions, and that SOsll con-
tinueits strong market momentuim 2008 and beyonf®7].

Additionally, this rapid uptake of SOA has been stromgjipported by major software
vendors who offer a number of sendogented middleware platforms and developmeni-env
ronments and tools. Moreover, the Object Management Group (OMG) has recently set up
0 T IB®A Consortiumd[227] with the support fromiBM, Sun, Cisco, SAPand Softwar&G
in orderto achieve the followingbjectivesby 2010: i) 75% of the Global 1000 companies
selfproclaim SOA Success; ii) 75% of Major Government Agenciespsetflaim SOASLc-
cess; iii) 50% of miesize businesses sgdfoclaim SOA Success; wheBOA Success ised
fined in terms of value generation, and increase in business and IT [@§lily

To summariseSOCis beconng an importansoftware development paradigshifting
focus frommonolithic softwareto compositeapplications consisting of autonomous, aed r
usable and maintainable software services that can be easily composed into executable bus
ness process¢s2, 184, 241]The key concepts of SOC will lwkescribedn greater étail in
Section2.2

1.1.2 The Importance of Software Maintainability

Developing quality software should be the key target of any software engineering process,
with software maintainabilitypeing one of the most importagtiality characteristicgrepe-
senting the capability of the software product to be modji8d]. According to théSO/IEC
91261:2001 standard, aftware mantainability can be subdivided into four sub
characteristics:analysability changeability stability, and testahblity [111]. These sub
characteristics can be directly measured using standardised metrics prescribed by ISO/IEC
[112, 113]

The Software Development LifeCycle (SDLE)nsists of a number of typically iterative
and interleaving development phag#82]. One of these phases sstware maintenance

4
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which is resource intensive given thhe bulk of theproject effortis consumedy the co-
tinuous perfectiongorrection andadaptationof existingsoftware resourced 35, 147] Al-
though the reported numbers vaityhas been estimated by various researchers thatdine
tenance phase of tH@DLC consumes more thaf0% of the overall project resourcdg9,
103, 123, 205]Therefore, developing software that is difficultn@intain can contribute to
project failures due to the cost and time overfir&3, 231].

More importantly, ceating highly maintainablesoftware is especially crucial for an
emerging generation of constanlyolving serviceoriented enterprise applicationss Ahe
pace ofbusinesghange increases due to globalisation acdremerce SOA-based systems
should be able to rapidly adapt customer@needsby seamlessly integratinghanges to the
underlying business logic and rulgs3]. This can be more readily achieved when thé sof
ware is highly maintainable. Maoeer, the timeneeded to complete software maintenance
activities can play a major role when determining ttagability of enterprisego adjust to
changingmarket conditios andto implement innovative products asdrvices in order to
stay competitive. Apresent, given that servicgiented solutions are typically new and are
yet to undergo major software changes, it is not clear whetheesired behaviour will be
exhibited when modifications are made. Maintainability is discussed further in S2&ion

1.1.3 Measuring Structural Properties of Software Designs

The maintainabilityof any software produatan only bedirectly measuredvhen the product
has been developed and released, and subsequent changes are made. Althsughthsses
maintainability of the finished products will result in the most precise measurementg-this a
proach has a considerable disadvantage since any discovered problems will be more costly to
fix at the postroduction staggl35, 231]

Therefore, various research initiatives have been focused on establishing predictive mo
els that support estimation of softwanaintainability early in the SDLA9, 177] Estimd-
ing the maintainability of software prior to its release could result in the loss of measurement
accuracy and is potentially tedous task to perform. Nonetheless, such early estimation can
decrease the cost of fixing any potential problems given thgbriheentive andtorrective
actionscan be performed more efficiently during the earlier stages of develofdégnt

One of the key factors in these predictive modelthésstructue of software as repr
sented by its structural design proper{ieger to Sectior2.4), namely size, complexitygou-
pling, and cohesiofl, 7, 146] Consequentlya large numbeof metricshave beemroposed
for measuring the structural properties of designs in a quantitative and automated[B&nner
44, 98, 102] The existing structurahetricswere definedor softwaresystemseveloped s-
ing the OO [33, 43, 44, 98, 146r Procedural72, 156]development gproachestherefore,
theyare notnecessargpplicable to thé&ey principlesof SOC as described in &®n 2.5.

5
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Previous studiesindicate that structuralcoupling and cohesion(measured using various
metrics) can have a strong causal impact on maintainalilitys, 79, 85, 86, 214Con%-
guently, there is aeed todefinea suite ofmetricsfor measuringcouplingand cohesionof
serviceoriented software designs. Such metrics can peotrid following besfits:

A Identify problemsin existingserviceoriented design structures;
A Justify key tradeffs indesign decisions;
A Allow for more effective control of maintainabilifit, 7).

Moreover, such metrics can provide a foundation for a comprehensive destigodd-
ogy. This is because the metrics will encapsulate key principles of semi@nted @sign,
thereby providing support for eliciting initial serviogiented design guidelines and rules.

Note that software designs also exhibit additional structural properties that could infl
ence the maintainability of software, such as compleand size. These properties are not
investigated in this work since the decision was made to focus on the properties that were
deemed to be most important, based on the analysis of the problem domain and measurement
objectives as explained in Sectidd.1 In brief:

i) designlevel complexity can be viewed as the combinatiorcanipling and cohesion
[55]; therefore, the proposed metrics can be adapted to indirectly measyniexdty;

i) the size of software is not dependent on any particular development paradignme-As a r
sult, existing metrics (such as SLOC/LQ] or FPA[224]) can be readily used to measure
the size of serviceriented software.

1.2 Research Questions

The primary goal of this research isderive a suite of software metrit@ quantifying the
structuralpropertiesof coupling and cohesionf SO desigrs in order topredict software
maintainability In doing so, thishesis addresses the followifige research qustions:

1. Whatarethe distinguishing characteristics of SO designs?

This is answered in Chapters 2 and 3 of this thesis, with fundamental characteristics of
serviceoriented software being identified and documented in Chapter 2, and then formally
captured by the model presented in Chapter 3.

2. Can existingProcedural and OOmetrics correctly measure structural properties
(such as coupling and cohesion) of SO dgss?

Answered by the findings of a castidy that empirically evaluated the applicability of
existing metrics to servieeriented designs. The results of the estsgly, summarised in
Section 2.5.5 indicated that the existing metrics are not sufficientSO designs.

6
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3. Which metrics should be used to measure coupling and cohesion in SO designs?

A new suite of metrics for measuring structural properties of coupling and cohesion in
serviceoriented designs is formally defined and theoretically validateGhapter 4 (co-
pling metrics) and Chapter 5 (cohesion metrics).

4. Can measures of desigievel coupling and cohesion be used as useful predictors of
maintainability of SO software products?

This is answered in Chapter 6 where the derived metrics have bedeated empirically
in order to statistically test the correlation between the derived measures of couplirng and ¢
hesion, and the maintainability of sernAeeented software products.

5. Can measurement of servieaiented design coupling and cohesion beonducted
in an automated manne?

This is discussed in Chapter 7 where the derived metrics are shdwifil tthe desirable
pragmatic properties since they are technology independent and can be collected @ an aut
mated manner using a dedicated software tdote that developing a metric collection tool
was considered to be outside of the research scope and is part of future work.

1.3 Research Methodology

This section presents the overall methodology followed in this research in order to derive and
theoreticallyand empirically evaluate a suite of SO design metrics, thereby answering the
research questions defined in the previous section.

A critical analysis ang@omprehensiveeview of existingwork in the areas of SOC, gef
ware maintainability, and software mes was conducted in order to gain knowledge and
expertise required to effectively perform research activities described in this sectioe- The r
sults of this analysis/review (Chapter 2) contribute to answering Researsin@Qude

Furthermore, an initiatasestudy has been conducted in order to empirically determine
whether some of the widelysed Procedural and OO metrics can correctly measure the stru
ture of serviceoriented designs. The study, presentefl80], demonstratethat themetrics
under investigatiortannotquantitatively distinguish between Si2signs thatvere consi-
eredqualitatively differentthus poviding an answer to Research Question 2.

The actual metric derivation process uses the approaches proposed by Shepperd and Ince
[218] and Briand et al[37]. Such approaches provide systematic guidance for the metric
derivation process, thereby insuring that the metrics conform to fhewilog widely-
accepted validity criterigrl, 213} i) represent accurately the entities and attributes they pu
portto quantify;) possess a O6f ace ppliecablay e 6 ; ii1) be pr e
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Figure 1-1. Research Activities

The metrics derivatiorprocess is outlined iRigure 1-1 together with the corresponding
thesischapters and research questions, with eesbarch activity described in greater detalil
in the fdlowing subsections.

1.3.1 Define Formal Model of Service-Oriented SystemDesign

As aprerequisite to the measurent of any softwareproperty,it is necessary téormally
modelthe entity under investigation (servicgiented desigd, thereby establishing a meeh
nismfor definingmetricsin an unambiguouand brmalmannemaking sure that the derived

metricsacaurately represent the entities and attributes they purport to quantify

A formal model of servic@riented design will capture an understanding ofcitwe de-
sign principles anatharacteristic®f SOC,aselicited through: i)detailed critical eview of
previous work ii) informal faceto-face or correspondendmseddiscussios with experts in

the area; and iii) skills and development experience of the present.dautbanodel will also
indirectly assist in answering Research Question 1.

% Note that theerminology used in this thedis describe different concepts of service i ent at i on

oriented

d e s i geféundamSedtion®2 2.6/ Taébje 2 a n
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CHAPTER 1.INTRODUCTION

1.3.2 Derive Metrics

Theoverall metrics derivation process consist the following steps:

1. Establish measurement goals.

The measurement goals should be defined in line with the research objectives, with the
fiGoal/Question/Metric  ( GQM) [1®]ekeihgocdmmonly used as a guide for defining
goals along the following dimensions:

i) Object of studyhatdefinesthe entitiesandattributesunderinvestigation;
i) Purposeof measuremerthat showslte potential use dhe metrics;

iii) Quality focusthat assists in selecting the dependent attributes usedasgtmptionsind
experimentahypotheses;

iv) A viewpointthat specifies who is affected by the results of measurements;
V) A descriptionof theenvironmenthat provides caext of the obtained results.

For example, the key measurement goal of this research can be formulated according to
the above template as:

i) Analysethecouplingandcohesiorof serviceorienteddesigns
i) for the purpose oévaluationandprediction

iii) with respect tesoftware maintainability

iv) from the point of view oSoftwareengineers

V) in the context o&xperimental SO software systems

2. Establishinformal assumptions and experimental hypotheses

The assumptions assist in timetrics derivation and validatigorocess by establishimg-
formal connections betweestructural design properties obuplingand cohesion andsoft-
ware maintainability as captured by its stharacteristicsanalysability changeability sta-
bility, andtestability) based on an undeastding of the problem domain and the review of
existing literatureNote that he sub-characteristicof maintainability are discussed imetdil
in Section2.3.1 Furthermorethe formallyredefined assumptiswill serve as gxerimental
hypothese$o be tested during the empirical ewalon of metrics (in Chapter 6).

3. Metrics definition and theoretical validation.

Rigorous and precismathematicahotations and techniques should be udedng the
derivation and subsequethteaetical validation of the metrics. To this end, the definitions
captured by the formal model of serndoeented software design will allow definimgetrics
in a preciseuynambiguousandformal mannerMoreover, the evaluation of the completeness
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of the poposed metrics can be performed based on the coveragedatiraland behavioural
aspectxgptured by the model.

Additionally, in order to derive metrics that are valid from theasurement theof204]
perspective, it is important to clearly specify the following characterigticH:

i) Metric type (direct/indirect)- the metrics derived in this research are direct measures
since they do not involve other design properties in their measurement activities.

i) Metric scalei the derivedmetrics are defined oratio and absolutescale which are
the most informative type of measurement scale.

iii) Measurementniti the derived metrics usmuntas the measurement unit.

Note that as with the formal model of SO design, the metrics are based on an intuitive u
derstanding of the core principles of SQkkreby insuring that the derived metnmsssess a
6face valueb. Fto demdnstrate theitheoretical validitypod metriesn@her
fore, the derived metrics were theoreticalglidatedusingthe propertybased software eig
neering measement framework30] described in SectioR.5.2

The abovedescribed metric derivation process will allow answering Research Question 3.

1.3.3 Empirical Evaluation of Metrics

Empirical evaluationshows the usefulness of mesrin practice, thus being tr@ucial activ-
ity in estblishing the overall validity of a givemetric. The empirical evaluation of the e
rics derived in this thesigsvolves experiencedsoftware engineerand posigraduate students
performing maintenance tasks two serviceorientedsystemsexhibiting different structural
properties. Statistical methods are then use@st thecorrelation between desigroupling
and cohesiomasmeasured by thderivedmetricsand encapsulated by the experimental h
pothesesand maintenance effontseasured usingxistinglSO/IEC metricg[112, 113] Note
that establishedxpermental techniques farollecting dataandanalysing the resuli@re used
during the empirical evaluation.oF example in this thesis, theorrelation and regression
analysis technigques were used since they provide a robust method suitable for exploratory
researcj34]. The empirical evaluation addresses Research Question 4.

1.3.4 Practical Applicability Analysis

It is not enough to simply validate metrics theoretically and empirically, the metrics should
alsobe practically applicableTo be useful in real projectsaimetrics should exhibit thelfo
lowing pragmatic characteristi¢g8]:

1) Themetricscanbe easily collected in an automated marinetherwise it will be dt
ficult to efficiently applymetrics to largescale projects.

10
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2) The metricsshouldbe technologyindependeni otherwise theywill have a limited
scope of use, and comparison aciassiuctsdeveloped using different technologigsl be
difficult.

3) The metrics should bmtegrated into the software proceasssupport the decision
making during the design and implementation phas&DLC.

Applicability analysis will allow answering Research Question 5.

1.4 Contribution

This section outlines the contributions of this thesis, with the e@itributionbeinga suite
of softwaremetrics for measuringtructural propertiesf serviceoriented design artefacts as
described in Sectiof.4.1 Secondary contribution is a formal modelering the structural
and behavioural properties sérviceorientedsystem designas @scribed in Sectiori.4.2
Additionally, the metrics and a formal model can lay a foundation for theatlerivof SOA
specific design methodology as briefly discussed in Sedtiér8 Finally, the summary of
the contribution is shown in Siéon1.4.4

1.4.1 Coupling and Cohesion Metrics

The main contribution of thisthesisis the derivationof a suite of designlevel metrics for
measuringcoupling [191, 194]and cohesion[192] in serviceoriented system§Chapters 4
and 5 respectively)The metricscanbe used as earlyredictors of quality characteristics of
serviceoriented softwarewith this work beingparticularlyconcerned with the qualityha-
acteristic ofmaintainability, thus allowing organisationt® identify potentialquality prob-
lems in the earlgtagesf the SDLC.

The proposedmetricsare theoretically valid since theyeshown to exhibitnathematical
properties ofcoupling and cohesionas defined in the propertyased software engineering
measurement frameworsf Briand et al.[30]. More importantly, the metrics have been
evaluated empirically and the results indicate a correlation between the coupling and coh
sion of serviceoriented designs (as measured by the metrics) ladaniaintenance efforts.
The empirical evaluatioronsisted of a number of experimenighere participantsvere
asked to perform maintenance activities taro software systems that exhibit different
structural characteristics as reflectedtbg metrics. The relationshipbetween thecoupling
and cohesion metricend measures of maintainabilityas then analysed showing statist
cally significant corredtion for a number of the metrics derived in this research (as described
further in Chapter 6)Therefore we can conclude that the derived metrics can be considered
as theretically valid and potentially useful predictors of software maintainability.

11
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1.4.2 Formal Model of SO Designs

The secondary contribution of this thessthe definition ofa formal mathematat model
covering the structural and behavioural propertiesest/iceorientedsystem designil193,

195] (Chapter 3) This modelcapture the design structuref serviceoriented systesias a
bi-directional graptexpressed usinggt-theoretic notatiofi80]. Verticesin the graph symbide

ise design defacts representing logical and physical software entitieadfan service
oriented systemd&dgescorrespond to the relationships between these design artefaats, repr
senting both strttural and behavioural dependencies.

There are two majdbenefits of this model. Firstly, the modetmalises thdundamental
design concepts of SO@jus supporting a bettenderstanding of the issues relatecsds
vice-orienteddevelopmentSecondly, and more importantly in the context of this thesis, the
modelprovides means for definingnd theoretally validatingsoftware metrics i precise,
unambiguousformal manner.

Note that he proposed model was designed to be as generiteehdology agnostic as
possiblein order to facilitate wide applicaiiiy. Nonethelesshe modelcan bereadily spe-
cialisedto coverthe constraints imposed kg specific implemeition technology193].

1.4.3 Initial Design Guidelines

Although it is not one of the immediate goals of this research, the derived metriey @an
foundation fora serviceorienteddesign methodologigy providing means aflentifying ini-

tial designlevel guiddines and patterns. For example, specific design guidelines cam-be fo
mulated interms of concrete metric valuesdditionally, theproposedormal model eforces
constraints on theveralldesignstructureand possible relationships between desigefacts,
thus providing means to evaludte conformance of a given system design tduhdame-

tal characteristics of SQ Such constraints should be captured by the development dretho
ology. Note that the derivation of the complete seraidented design nteodology is le-
yond scope of this thesis and is part of future work.

1.4.4 Summary of Contribution

CONTRIBUTION ACADEMIBENEFITS INDUSTRBENEFITS
- Extendingthe concepts of a6 - Allowing comparison andes
METRICS pling and cohesion for sdce- lection of alternativeSO design
oriented(SO)software sgtems. structures and sipporting justif-
- Replicaing (and specialisingf ™ cation of key tradeff design
the repeatableprocessof deriv- decisionsn SOC.
12
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ing metrics for aspecific deve
opment paadigm (SOC).

- Establishing link betweese-
vice-orientedcoupling and co&-
sion, and the maintainability
SOsoftware products

- Providing a basicfoundation
for specifying methodologic
design guidelinegor SOC.

- Supporting detection and mit
gation of maintainabty prob-
lems early in the Software B
velopment LifeCyclg SDLC).

MODEL

- Promoting a better understh
ing of the SOC paradigm,
encapsulating the major stru
tural and behavioural desi
properties of SO software

- Demonstrating the process
exterding the generic model of
software desig30] for a sp-
cific paradigm (SOC)

- Providing means for definin
and theoretically validating se
vice-oriented desigmetrics in
precise andormal maner.

- The model an provide a the-
retical support for variousott-
ware tools. More specdally, the
model can be used to support:

1) automateddesign cons-
tency checks and metric catle
tion;

2) creation of architecturs
and desig diagrams using
graphical representation (the
specification of which is part @
future work)of the aréfacts and
relationships captured by th
model

Table 1-1. Thesis Contribution

1.5 Thesis Structure

The remander of this thesis is separated into six chapters. Chapter 2 reviews acallgrit
analyses existing work in the areas related to this research, thereby providingatidauod

the remaining chapters. Chapter§ 8over the metrics derivation processl associatedca
tivities (as shown irFigure1-1). More specifically, Chapter 3 presents a formal model of SO
software designs, which in turn provides the formalism for the definition of couplingoand c
hesion metrics in Chaptessand 5. The metrics are then empirically evaluated in Chapter 6.
Finally, Chapter 7 presents concluding remarks (including the analysis of the practical appl
cability of the derived metrics) and outlines some future reseamttions.

13
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Chapter 2. Literature Review

This chaptereviews and analyses existing work in the amd&&erviceOriented Architecture

and Computing, software maintainability, and software design properties and metrics. The
review provides the necessamgckgroundor the work pesented in this thesiand assists in
formulating aswers for the research questions defined in the previous chapter.

2.1 Overview and Purpose

The reviewprocesswvas based orthe guidelineproposed by Kitchenhaifi27] and eval-

ated by Brereton et aJ26], which incorporate the procedures for performing a systematic
literature review in the context afoftware engineeringThe major review activitieghe
search strateggmployedfor selectingappropriate review material, and the specific revie
sources areascribed in Appendix A.

The purposeof this literature review is twofold. Firstly, it was designed to investigate
various research topics related to this thesis in order to provide answers to Research Que
tions Q1 and Q2 described in Sectib@ Secondly, it provides background needed to unde
stand the intended contribution of this research (namstyta of software metrics for mea
uring coupling and cohesion of sendodgented designs thereby indirectly assting in an-
swering Research Questions Q3, Q4, and Q5 (Seti#n

More specifically, a number of research topics have been identified and reviewed. These
topics are listed iTable2-1 together with the coesponding section numbers, with the major
research areas highlighted in bold faxbtethatthe order of the presentation of researgih to
ics is not consistent with the order of corresping research questions since all effortswa
made to produce a structurally sound chapter where the topics are grouped into sections based
on their conceptual relevancadditionally, some of the reviewed topics are presented in
multiple chapters in order to improve thedahility of the thesis, r&d also make it easier to
compare the contribution of this research to that of theiegis/ork

2.1.1 Review Structure

The literature review is documented in four separate sections. Each section comprises a
grouping of related research topics (frArable 2-1) as follows:Section2.2 discusses the
fundamental characteristics and design principles of Se@imnted Computing (SOC) and
ServiceOriented Architecture (SOABection2.3 overviewsthe areas of software quality in
general and software maintainability in particular. Sec?drexamines the structural prape

ties of software designBinally, Sectior2.5describesthe area of software metrics.

14
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RESEARCH TOPIC®F INTEREST SECTION
QUESTION NUMBER
Q1 A SOC (andSOA), including: 2.2
0 key concepts and definitions 2.2.12.2.3
0 conceptual andrchitectural structure 2.21
o technological aspects(for example, web services at 221
Business Process Mdtieg (BPM) approaches)
o0 software engineering principles 222
A developmenstrategies anthethodologies 222
A design principles and characteristics 222
Q2 A software design propertiesn general 24,241
0 design properties afouplingand cohesion 242,243
A software metrics in general 25,251
0 existing metrics for measuring coupling and esitin 254,41,51
Q3 A measurement theargndmetrics derivation and theoretic 252
validation gproaches
A formal models of software 2.52,3.1
Q4 A software product quality in general 2.3
A quality characteristic ofmaintainability and its varioug 2.3.1,2.3.2
subcharacteristics
A maintainabilityprediction factors 2.3.3
A empirical validation of metrics 253,6.1
Q5 A practical applability and tool support 72

Table 2-1. Research areas covered in the literature review
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2.2 ServiceOriented Architecture (SOA) and ServiceOriented
Computing (SOC)

This section describeshe fundamentacharacteristics of Servie®riented Architecture
(SOA) and Servic®riented Computing (SOCAdditionally, given that the main focus of
this research is the design of servizeented (SO) systems (in particular its structural prope
ties); this sectionaviews and discusses the major principles of SO design. It is important to
note at this stage that the concepts of SOA and SOC are relatively new and the eelated r
search is still in its infancy, lagging behind the industry initiatives in the[20d& Although
all effort was made to produce ahjective and welsupported overview of SOA and SOC,
some of the presented concepts and definitions are based on the experience of theupresent a
thor and on informal discussiomath the software practitioners and researchers in the area
[60, 99, 141, 182, 206, 248]

Note that the terms SOA and SOC are often used interchangeably in the exist@ag liter
ture. In this thesis, SOA and SOC are treated as related, but at the same itnctecdistepts
as reflected by the structure of this section, where SOA and SOC are described independently
from one another. More specificallgOA representan abstract igh-level architetural
model thatcovers all aspects ofgvisionng, cmnsumptionandmanagementf software se
vices (or systems comprised of such servi§Es®]; whereas SO the development par
digm used tanalyse design and implemetite individualSO systemghat can be irgrated
into SOA.

2.2.1 ServiceOriented Architecture (SOA) - Concepts and Defiitions

ServiceOriented Architecture (SOAEpresentan abstract modelf system architecturdnat
employs businesaligned softwareservices which can becomposedand orchestratedising
executable business prosesto fulfil a specific domain or business requireme@atpazoglou
et al. define services dsa u omous, platforrindependent entities that can be descrijbed
publi shed, discovered, a [L&4, pl 6dl]cenacksyin SOA arp | e d i
commonl y tr ebaotxeeds 6a sf réobm atchke ar chi tect dr al pe
ing service interfaceconstitute thenly visible part to the rest of the architect[6¢].

Numerous definitions of SOA have been proposed in the research and industry literature,
including:i) a businesgentric architectural approach enabling organisations to integisate sy
tems and processes as repeatable serMid¢sii) a consistent approach for defining\sees
in the IT systems that align with business functions and procgs&gsiii) a logical way of
designing software systems to provide services teused applicatins or other services
tributed in a networK184]; and iv) an architectural model that aims to enhance the agility
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and prodativity of an enterprise by using services as the primary means through whieh sol
tion logic is representef®8]. Moreover, the notion of SOA has been extended in recdmt pu
lications to cover the spédig application domains. For exampM/oods andVattern[241]
introduce the concept of ESA (Enterprise Services Architecture), which is the framework for
enabling easier evolution of IT resources using the combination of business semantics and
core pringples of SOA.

It has ben suggested that SOA can provide a number of advantages over the oiher arch
tectural models in terms dfie reusability, business agilityandinteroperability of the po-
duced softwargl8, 66, 130, 173, 208]Such characteristics constitute the fundamentals of
SOA.

Services in SOA arkighly reusablebecause they are independent-selfitainedentities
that do not depend on the state or context of other services in the system, and thug-can be r
used in the context not known at the design time. Additionally, services are typicaly co
posed into business processepresented in terms of businesscepts rather than system
level implementation detai[245]. Such processes cée designed by busineasalysts with
the aid of software tool support and theansformed into executable modules or business
process scripts, which are deployed and executed using middl&wasgpsulating business
logic and rules in the business processes, thereby separating them from the actual software
implementation, promoteeusability and increases thieusiness agilityof software. Moe-
over, the business processes can be easily modified by business analysts without a need for
implementatiorlevel changes, again increasing thesiness agilityf software andacilitat-
ing rapid business changand reduction of maintenancdaets [18, 187, 241]

Interopeability is supported by the technological aspects of SOA. At present, services in
SOA are typically implemented as platfeindependent \Wb Services that communicate via
XML -based SOAP protocol and are described using WSDL 1.1 (or recently standardised
WSDL 2.0) interfaceq4, 94]. This allows forseamlessnieroperability between different
platforms and programmingriguages. To this end, SQifeats individuakoftwaresystems
as independent services geared for integration, and uses them to build agile netwadrks of co
laboratng service applications.

Note however thathe implementation of Web Services is not restrictedhie SOAP
stack of protocolgiven that SOA is technology agnostic. For examiglehadsonandRuby
[203] suggested recently that Welkr8ices carbenefit from theRESTful implementations
on top of HTTR in which servicesare defined in a resouragiented fashion instead of a
more conventiondiunctionoriented manner. The process of modelling applications ak a co
lection of RESTful services simplerthan SOAR-based Web Services because thmlmer

4 Representational State TransfREST) is the generic architectural style fovdelling webbased applications and-r
sources. According to Fielding, the foundation of REST is said to be directly interleaved with that of the W@B]itself
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of architectural decisns associated with REST is relatively smaller (as reflected by the
smaller number of alternative technologies and stand@t88). Neverthelessthe core de-

sign element®f REST are not readily suited for the process of semreposiion, due to

the lack ofconceptual and technological support for the integration thélcurrent Business
Process Modelling approache=fér to Sectior2.2.1.9 that constitute an integral part of
SOA[188].

Given the desiréo conduct worldiide businessnd other collaboration in a uniform-i
teroperable manner, as well as the need to efficiently compose, leverage and reuse existing
business resources, Servideented Architecture utilising web services and various-WS
spedfications[236] appears to be a highly suitable solution. Note that it is not an objective of
this thesis to champion SOA, indeed this is not needed Si@¢eis already a popular aieh
tectural choice, with many organisations having adopted (or are planning to ado9&@OA

2.2.1.1Conceptual and Architectural Views of SOA

At a conceptual (or logical) level, SO#onsists of threprimary componentsi) service po-
viders, who publish service descriptions aiadlisesoftwareservicesji) service consumers,
who discovera servie descrifion, and invoke a servigand iii) service registries or repos
tories (such as UDOPR46]) that maintain a directory of services to be discovered by tire co
sumerg64, 67] This highlevel conceptual model is illustratedfigure2-1.

Additionally, the conceptual model of SOA introduces another fundamentattgrastic
of serviceorientationi loosecoupling This is because the service consumers aoddars
are separated from one another via service registries, meaning that there is no need for e
plicit relationships between both parties. That is, the service conswaerselect (or sh
cover dynamically at rutime [173]) required services from the registry without degpeg
on a particular service provider. Moreovene of the prnary motivations for using &b
Services, is that they are accedsthrough language and location independent intexface
which also pomotesloosecouplingfrom the integration perspectiy4].

Note however that it is possible to des®@AP-based Web Services in a titghcoupled
manner.For exampleWeb Services Resource Framework (OASIS-RF, which has been
recently standardised by OAS[&75], definesspecificationfor modelling and accessing
stateful resources using Web s@es. SpecificallyOASIS WSRF provides support fothe
management ofpplication state through properties assaed with Web 8rvices Such
6forceful 6 i intpWeb SBdarvweswhixH areaneantttoabe statelegsading to
the core principles of SOP68], could result in tightlycoupled applications.
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Figure 2-2. Architectural view of SOA (modified from [12])

The architecturalevel view of SOA is shown ifrigure 2-2. At the architectural level,
SOA implementations consists of: i) the major services (1) in the system (the desigm and i
pl ementation of wiioxh iag ttrheatagd hagd et lua alk
nessprocesses (2) that are usecctomposeindividual sevices in order to provide extended
functionality to the consumers (3); and iii) various integration (4) anchgeameritrelated
(5) aspects.

5 This highl e v el |l ogical struct ur #indiesecuedo mmidglly referred to as oOfi

% Thecompositionakspecintroducedby business processes is another fundamental characteristic q280A
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The business processes themselves are typically exposgdstasidardised service inte
faces (for example, WSDbhased interfaceg!, 94]), and as such can be included invese
registries as common services.

The integration architecture is typically covered by the ipnige Service Bus (ESB40]
implementations that provide middlewdexel support for the integration of disperse-se
vice-oriented applications in terms of message andtdvased nteractions, and seamless
data integratiorf161]. From the architectural perspectivey BSB providesan abstraction
layeronthetop of existingenterprise messaging system order taninimisedirect deped-
enciesbetween therovidedservies and their potential consumers. Moreover, an ESB can
provide support for business process choreography and orchestration implemeations
described in the ftowing subsection.

The managementlated aspects, such as service monitoring and Quality of Service
(QoS) enforcement, are also supported by the middlelased solutions or dedicated tsof
ware compaents (for example, intelligent agei24.9]).

2.2.1.2Business Processadodelling

Business processes reflect workflows within and between organisations. Bysinesss
modelling (BPM) describes activities that interact with various intra/mganisatioal ele-
ments while supporting the operation of the busif#88]. Specifically, the purpose of bus
ness process modelling is to provide a mechanism for composing software services together
in order to provide some wellefined business functionalitThis includes two distinct co-
positional approaches: orchestration and choreogridghy

Orchestratia specifications incorporate a local view of the business interactions, where
onecentralisedbusiness process entity controls the flow of the process execution, aad inv
cation of the required services. In contrast, choreography specifications captggebikle
perspetive of the business interactions across different enterprises or organisational divisions
without imposing the need for a centralised control insofar as each participant in a croreogr
phy interacts with other participants via pé@ipeer maesage exchanges ¢200]. It is im-
portant to note that the orchestration specifications can be directly mapped to the executable
business pragss scripts, whereas the choreography specifications are not directly executable
since they are designed to capture the overall-leghl messaging beti@mur and associated
business rules of a workflow without considering {l®wvel details such as the gjfec format
of messagexxhanges.

There are a large number of techniques proposed for business process miatejimg
from flow charts to UML and Petri Nets, eabhving various supporting business process
languages. Such languages allow busimpeesess models to be designeahdin the case of
orchestrationgirectly executed via middleware suppdior example:
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A Business Process Modeling Notation (BPMN) [238] is a standard fomodelling
and specifying business processhoreographiedbased on a flowcharting techniguelhe
BPMN specificatiorrelies on a number of suppimg standards such XML Process Defin
tion LanguaggXPDL) which is a file format used to store various aspects of BPMIN di
grams[17]; andWeb Services Choreography Description Langudy&-CDL) which pio-
vides a formalism fodescribingpeerto-peercollaborations between workfloparticipants
usingpi-calculus[233].

A Web Services Business Process Execution Lang{(¥i§eBPEL 2.0)[176] is the la-
estin the series obrchestrationanguages, uniting the ideas from the XLANZ26] and
WSFL [144] languages, and extending the origiBakiness Process Execution gaage for
Web Services (BPEL4AWB]) specification WS-BPEL 2.0is arguably the most widely used
orchestrationlanguage since it was developed &yonsortium of major software vendors
(namelylBM, Microsoft, and BEA)andhas been recentstandardisetty OASIS[176].

Businessprocesses aran integral part of SOAconsituting one of the fundamentaké
sign and implementation constructs in sernocented systems. As such, they will be treated
as distinct service implementation artefaictghe formal model of SOsystem desigmre-
sented in Chapter.3

2.2.2 ServiceOriented Computing (SOC) - Key Concepts and Definitions

While SOA representsa conceptual and architectural modathout enforcing any ao
straints on the actual design and implementation of services (that is, services in SOA are
treated as 0bl aiddal dewiceaiented sysiemshervicéOeientiedhCin-
puting (SOC)is theconcretesoftware development paradigm based on the concept gf-enca
sulating application logic withiautonomousstateless servicexposed via weltlefined se-
vice interfaceg67, 104, 181, 186]Senices in SOC are autonomous and stateless insofar as
they do not dpend on the context or state of other services in the sy$838h

SOC covers all development phases of the Software Development Lifecycle (SBLC), i
cluding requirements engineering, system analysis asigrdesoftware implementation, tes
ing, and maintenance of the final products. As such, SOC can be considered as synonymous
to ServiceOriented Software Engineering (SOSE). Note that the term SOSE is met co
monly used in the existing literature, althougipBzoglou et a[184] recently defined SOSE
as one of the major research areas that requires attention of the researcinitpmiso, the
main facus of this research is the design of seradented systems; therefore, the other d
velopment phases are only covered briefly in this review.

" Note that the underlined font will be used in the remainder of this chapter to indicate that the discusiddsrditertly
related to the contribution and outputs of tiesearch.
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Figure 2-3. Design view of service-oriented systems

Figure 2-3 illustrates the desiglevel view of serviceoriented system, where the design
and implementation of the individual services is taken into consideration. For ex&aple,
signlconsists of three services], s2, ands3 where eactserviceconsists of two distinct
fundamental design artefactervice interfaceandservice implementationehents As was
described previously,esvices can be implemented using a range of different technologies
and development paragins Similarly, there are no technological constraints on tine la
guages and description formats used to describe service interfaces (although WSBL is co
monly used to describe service interfaces in present imptatiens). To this end, services
in SOC ae somewhat similar to components in Compo+iaded Development (CBP11,

212], but they are typically more coargeaired and busines®lated then components and
implementation inheritance and its complicatigpemmon to comgnents in CBD) are not
present in SO(145].

2.2.2.1Development Strategies

There are three main strategtbst can beusedto develop servic@®riented solutionstop-
down, bottorrup, and meetin-the-middle [12]. Such strategies are typically complementary
and iterative and can be integrated into existing widelgepted development processes
(such as, for example, Rational Unified Process (RUB3)).
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Top-down strategy starts with thianctional and noffunctional requirements and business
process models anefines them in a stepwise fashion down to a software implementation.
The top-down development is often referred to as domain dexmsition, which consists of

the decompositionf the business domain into its functional areas and subsyglé, 139]

The crucial task ohtop-down strategys to identify the units of softwaratomic servicesof

6ri ght 6 tharcannba lewsediintdifferent conteX¥tomic services can then lwem-
posed into coarsegrainedcomposite servicesr business processeBhe issue ofservice
granularity is important to this research since we consider the identification of service inte
faces as important SO design activities as discussed further infS2eti.3

Bottom-up strategy is mainly related to the existing (legacy) systems, where the developers
work upwards to the requirements and business process models by building sertmesf
existingsystens. A bottomup strategy includes two differetéchniquesFirstly, the devé-
opers can add kayer of service interfacesn top ofexistingsystemswithout changing the
internal structure of such systen®econdly, legacy systems can be refactored in aweay

that theinternal structure of the software system becomes seovierted[142, 145] To this

end, examining the structural properties of software designs (using software martvied d

in this research) can assist software engineers in making an informed decision regarding
whether it ishest to refactor the system, or simply add a layer of semtiedaces to it.
Meetin-the-middle strategy is a combination of tamwn and bottorup approachesAt
present,the only welldescribedmeetin-the-middle techniqueis a goalservice modelling
(GSM) approach initially proposday Levi andArsanjani[12, 139] and recently elaborated

by Arsanjani et al[13] as part of thd B M8esviceOriented Mbdelling and Architecture
(SOMA) [106] development methodology. GSM aligns existing software assetdwgimess
goals, by combining the topdown and bottorup strategies, so that all services in the system
can be traced back to some wadifined business goal.

Note that gaop-down development strategy is arguably more interoperable thattoanbo
up approab since avoiding languaggpecific types and starting with interface andssage
definitions can lead to a much higher likelihood of interoperalili88]. The drawback of
top-down approach is that, in its full generality, it can only be appliexystems developed
entirely from scratcly].

Also note thathiere are conflictingpinions as to which general strategy should be used
when developingserviceoriented systems For example, according to Spendéfl1] and
Fowler et al[81], developers should not try ttesignan applicatio into disparate Web se
vices that talk to each other. Rather, they should build the application and expose various
parts of it as WelServices ffeatingthemas Remote Facad¢82]). In contrast, Barry18]
and Singhet al.[219] indicate that simply addingVeb Services to an existing application
will not produce a servieeriented solutionThey argue that the systeshould be composed
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from discreteinternal and external sgces The former view advocates a bottam a-
proach, where developers build the application, add web services to it, and then combine se
vices into business process&€onversely the latter viewprescribes a tepgown approach
based on businessmain decompositian

2.2.2.2Existing Development Methodologies

Although methodological support for the developmeh8O software appligtions is in its
infancy, there are a number of approaches tover various aspects of S@dlopment:
- | B M&erviceOriented Modelling and ArchitecturéSOMA) [13, 105] and the
fiMethodology for Service Architectures ©.0 f r o m[1TBPpBVide supportdr the ide-
tification andspecification of services at the business level, as well as the composition of se
vices into executable business processes. However, neither approach addresses design and
implementation issues beyond the definition of service interfaces and identification of main
service components that realise the services. AdditiorMMA is a proprietary methotlo
ogy available only by purchasijnconsultancy services from IBM (although, thdaded
recently H3bl i shed i
- IBM Redbmk fiPatterns: Servie®riented Architecture and Web Serviod65] con-
cerns varioudVeb Service elated technagies uch as SOAP, WSDL, UDDI), however,
rather than containing abstract methodadagprocesses or patterns, the redbook is more a
technology specific developers manual. Same can be said &ledi® M 6 SOA Progran-
ming Mode [77] which aimsto simplify the creation and use of business servicembiting
(IBM specific) middleware futionsmore accessible to the developer
- The most complet&O development methodolody dateis defined by the industry
practitioner Erl[66-68]. Although this methodology offers principles of service desigm
briefly discusses thestructural propertiesand norfunctional characteristics of service
oriented softwareit lacks formal foundationand mérics, which can lead to ambiguity and
lack of design verifiability Furthermore, the methodology is not supported by empirical
evaluation and thus
scientific approach.

summary ofthegpr oach has been

SOC.

i s

based

m @fulle corstructdelr | 6 s

Nonet hel ess, Erl 6s <con
guidance for software practitioners. It is also regarded as useful academic text on SOA and
For exampl e[p6]isaureently fisedias d réfegende texttidse 6 We b

Sevi cesd® subject taught
As for research contributions, the work of Papazoglou ¢18B, 184, 186]jncludes the
most comprehensive suppanti t er ms

vi ces

try.

of

at RMIT University,

scope

and cWeb®er age,

Dev el op 83} including: fPREnnidyy Anklysi® and Design; Constru
tion and Testing; Provisioning; Execution and Monitoring phases. Nonetheless, theidimetho
ology is still evolving, and as sucits not mature enough for the wide adoption in the sadu
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The above methodological approaches can, either individually or in combinationdbe rea
ily used to develop SO applications. Nonetheless, they do not provide any guidance in terms
of the structual propertiesof serviceoriented designs (such asupling between s&ices
andcohesionof individual services). This can have a significant impact on the quality of the
produced SO software products since it was shown in previous paradigms thatratructu
properties of software have direct influence on software quality, especially in terms of the
maintainability of software. To this end, the structural design metrics derived in this research
can: i) enhance the existing approaches by providing formdl @umantitative means for
evaluating the quality of produced software desighisiorm a foundation for a new niet
odological design pproach.

2.2.2.3ServiceOriented DesigrnConsiderations

Softwaredesignis theartefactproduced in the design phase of the SDL@GicWw can be ga
tured in the form of g@hysical documentr other king of representatidrthat aticulate the
intent of thesoftware enginedd07]. According to Erl[68], ServiceOriented design incomp
rates principles for creating services with distinct design characteristics that supportrthe ove
all vision of SOA. To this end, the major goal of the seraiiented design process is to
provide a methodological support for the software practitioners facing a task of designing
serviceoriented solutions that can be integrated into an overall SO¢h Support must take
into cansideration the fundamental characteristics of SOA described in the previous section,
namelyreusability, business agilityinteroperability, loosecoupling,andcomposability.

Note that thanfluence of the design process the abovecharacteristicyvaries. For g-
ample,interoperabilityrefers to the platforragnostic nature of Web Services, and as such, it
is restricted by specific technologicatplementation and cannot be directly influenced at the
design stage. Similarhqusiness agilitys somewhat restricted by the neednclude bus
ness proesses in the system design, which can also be considered as technotogitraint
Although, such restriction can be loosened by replacing the business process scripts with
dedcated software components (such as services), as long as these components encapsulate
all business logic and rules, and serve as the orchestrators of other services in the system.
Moreover, loosecouplingin the context of SOA typically refers to the igtation aspects
(including separation of service consumers from servioeigers via the service registries)
rather than the actual structural property of software design or implementation. Again, such
integration related coupling cannot be directly ieficed at the design stage.

The remaining two characteristicsesability and composability are highly dependent
on the structure of servigmiented system designs. More specifically, they are related to two

8The structural properties of software discussedn detail inSection 2.4.
® Presently, there is no standardised languagmtation for expressing SO design artefacts.
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imperative features of SO design (and SO@eneral)i service autonomgnd granularity
and relatedness of service operati¢6g, 134, 247]

Service autonomgneansthatall design elements a given software system are clearly
separated into distinct, stateless, and-setftained services that communicate with eabh ot
er strictly via the service interfaces. That is, there are no directsetmice relationshipsed
tween services in theystem. For example, Designl shownFRigure 2-3 conforms to the
principle of service autonomy, whereas Design2 does not conform to this principle. Note that
from the architectural (SOA) perspective, both services will look ext#wlpame since they
have identical service interfaces. Tieeisabilityof a given service will depend largely on its
autonomy This is because it would be difficult
reuse it in another if the implementation oistservice is linked directly to the implemant
tion of other services.

We refer to this direct linkage as one of thest mportantaspects of structural coupling.

The notion of autonoy is then directly related to the structural property of couplivitich
is investigated in this thesis.

Note that some researchers and practitioners question the idea of structuring sofiware sy
tems as collection of servic§21]. This is because there is a common miseption in the
research and industry communities that services in SOC have to be implemanveiol &6
vices. Given that Web Services are resource intensive due to the XML marshallingr-structu
ing the whole system as a collection of Web Services may have a negative impact pn its pe
formance. In this research, we view SOC purely as the developmaudtigrar and as such
we do not restrict service implementations to Web Services.

Service granularity and relatedness of its operatimnanother key design consideration
in SOC. That isserviceorientation highlights the challenge of granularity, whenwises
are typically categorised infine-grainedandcoarsegrained type$67, 219] A fine-grained
service addressessmall unit ofbusinesdunctionality. In contrast, a coarggainedservice
abstracts larger chunks blisinescapability within a single interactioff.o date, here is no
agreed criterion for determirg the right granularity of services.

The concept of granularity isniportant because it has direct impact onabmposability
andreusability of services For examplefine-grainedservices should conceptually be easier
to reuse and composed into mooenplex composite services compared to the cegna@ed
services[68]. Another important charactstic of SOC is theelatedness of the operations
exposed in a service interface Su c h &6 r am beaconsidkmredeas sdor iodicator of se
vice cohesion. To our knowledge, thencept of service cohesion is yet to be investigated or

even dscussed in the existing literature. This is surprising givendblagsionhas been long
recaynised as one of thmost important structural properties of software.
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The fundamental concepts of SOC described in this section, wdikbassed furthesnd

formalisedin Chapter 3.The metrics for measuring the coupling and cohesion of service

oriented sdfvare designs arpresented in Chapters 4 and 5.

2.2.3 Key Terms

The terminology used in the rest of this thésishown inTable2-2.

TERM DEFINITION
SOA High-level architectural model coverinfpgical and architectural
aspects of servieerientation.
SOC br The actual development paradigm covering the procesevefap-
ing software applications structured in termsaofonomicservices.
SODEVELOPMENT SOC covers all phases of the software development lifec
PARADIGM (SDLC) ranging from rguirements specification and analysis to

mainenance and other pestlease activities.

SO SOFTWARE
SYSTEMér PRODUCT

Fully implemented and released software system. The syster
contain a number of different afacts including (SRS, analysis a
design documentgxecutable source codand other related dae
mentation

SO SOFTWARE DESI(

i) The design of the SO software system (produmt)i) the activ-

ties undertaken when designing SO software system (process)

Table 2-2. SO terminology used in this thesis

2.3 Software Product Quality - Maintainability

Developing high quality software products is of prime importance and shoalédyetaget
of any software engineering process independent of thelafewent paradigms or teahn
logical platforms in us@l11]. One early definition of software quality was proposedRby

bey andHartwick [209], where quality was considered as synonymous &ighr o grdam g o o
ness 6haracteisedashow easy the pr ogr ationwihaaihdwd

easily it can be modifi@d[209, p. 671] The authors reasoned that for atwafe program to
be of high quality, itmust possess thapplicable quality attributess assessed loyantitative

measuremenst
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Software quality was later recognised to be a somewhat amtsgand multidimensional
concept where different views are expected to ¢8@fL For example, most of theisting
definitions of quality can bgenerally classified into threeffiirent, and sometimes coatr
dicting, perspectives: i) the conformance of software products to the funceqnakments
[89, 199, 231]ii) the user satisfactiofii60, 232] and iii) the lack of errors or unexpected
behaviour[39, 89, 169]

To support software engineers in performing a systematic and rigorous assessment of
software quality, everalhighly-referencednodelsof software product quality have beim
troduced byBoehm et al[25], McCall [157], Kitchenham[125], and Drome){62]. These
models are structured in a hierarchical,-ttmovn manner, where the concept safftware
quality is divided into a number ajuality attributeswhich in turn are further decomposed
into subattributes The system quality is then evaluated in a bottgnfashion, wherg¢he
degree to which each of the qualksiyb-attributes is present in the produetlects the overall
quality of the softvare.Such nodelscan provide a valuable insight into the area of software
quality by covering important quality concepts and dimensions. Nonetheless, the eristing r
search work on quality modelling is considered to be somewhat subjective, incomplete and
not strong enough to gain wide aptance[122].

In order to provide a unified and comprehensive framework for specifyidgvaluating
the quality of software produgtthe Jont Tednical Committeeof the International Sta-
dards Organisation (ISQnd the International Electrotechnical Commissi¢iieC) defined
the international standafdr software product evaluatiotf50-91261991[110], which can-
bined and extended the concepts and guidebngsally propsed byBoehm et al[25] and
McCall [157] into one generienodelfor charactesing quality. This standard wasecently
replaced by the widelusedset offour gandards)SO/IEC 91261-4 [111-114]that incor-
rate a more prescriptive software quality model inclgdircomprehensive set wirics.

In this thesis, the decision was made to use the quality model and metrics defined in
ISO/IEC 91261-4 standards wheimvestigating and measuring timeaintainability of se-
vice-oriented software so to be consisteiith the current industry practices. Note that we
acknowledge the concerns of some researchers in relation to Software Engineering(SE) sta
dards in generdll96]; andISO/IEC 91261-4 in particular. Forxamge, Al-Kilidar et al.[2]
demonstrated two w&aesses of ISO/IEC 9126 standards in terms of overlapping between
some of he measured properties and ambiguity in the definition of one of the qualiby attri
utes (safware usability). Nonetheless, we believe that application of established international
standards should be encouraged in both SE research and industry commumgiés.ke-
cause standardsncapsulate uniform approaches for solving problemsoncretising the
common informal practices and development conc@3], and thereforeised extensively
in all other engineering disciplines. Moreover, the qualitydet described INSO/IEC
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91261 standard has been additionally evaluatedinyg et al[120] using a surveybased
study Although the result®f the study again reveal possitdenbiguities in theway the
model defines its qualitgttributes andubattributes, they show direevidence othe ove-
all validity of the model.

2.3.1 Quality Model - ISO/IEC 9126

The set of ISO/IEC 912&tandard consists ofour partsthataddresshe followingareas:
Quality modé- ISO/IEC 91261:2001[111]

External metrics ISO/IEC 91262:2003[112]
Internal metrics ISO/IEC 9126:3:2003[113]
Quality in use metrics ISO/IEC 91264:2004[114].

The quality model prescribed ISQIEC 91261 is summarised in this sectiofhe me-
rics for measuringoftware maintainability (fromhe ISO/IEC 912§2-3]:2003 standards)
are briefly discussed in Secti@i3.2.1 These metrics have been used as dependent variables
in the empirical evaluation of the woling and cohesion metricsrilved in this thesis, and
will be described in more detail iEhapter®.

ThelSO/IEC 9126quality modelcaptures software product quality asialtidimensional
concept comprised of six characteristicswhich are futher subdiviled into sub
characteristicé that can be measured directly by various internal or external quality metrics.
Themodelwas designed to be as generic as possible, and as such, it does not target any pa
ticular develgment paradigm or technological implemeatidn [111]. For example, this
model can be used effectively in its present state to assess the external qussityiosf
oriented software poucts, as was done in this thesis for the particular case of software mai
tainablity.

Figure 2-4 illustrates the ISO/IEC quality model. It also provides deéinitions for the
maintainability quality characteristic and its fosub-characteristicsanalysability, stability,
changeability andtestablity that can be directly measured usitg internal and external
ISO/IEC metricsThe analysabily, stability, and changeabilityubcha®lacteristics of man-
tainability will be explicitly mapped to the metrics derived in this work in order to establish
experimental hypotheses for the enat study described in Chapter 6. The testability-sub
characteristic is not investigated since it refers to the general capability of any software pro
uct to be tested, and as such, is regethdent ora particular development paradigrlso,
the investigatia of other quality characteristics was considered outside of the research scope,
but could be conducted in future work ascdssed irChapter?.

T
T
T
T

19 The ISO/IEC 9126standard substituted the terms [quality] attributes aneasmbutes, as commonly used in prior work,
with [quality] characteristics and swudaracteristics respectively.
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Figure 2-4. ISO/IEC 9126-1 quality model [14] i maintainability
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2.3.2 Software Maintenance

The ISO/IEC 9126l standard does not provide the description of the actual softwareemaint
nance phase including its various activities and associated issues; therefore the atea of sof
ware maintenance is discussed itaden this subsection in order to provide further ratio
ale and additional background for thesearch.

Maintenance ighe phasef the Software Development LifeCycld131] that deals with
the postproduction modifications of a software product, and has long been regarded as one
of the most resoureeonsuming development phases. For example, Boehm[26ap.593]
suggest that major benefit of the improwaghability to deal with software quality consider
tionsfor any software development organisatwould be anmprovement in software ma
tenance costffectiveness

It has been suggested tlmhintenane activitiesconsume more thahnalf of the overall
project resourceld 03, 137, 148, 205More specifically,PageJoneq180] notesthat60% of
the whole lifetime cost of the system is spent on maintenavitiée Rressmar{199] states
that most software development compargpsndbetween 60% and 70% e projectre-
sourceson correcting, adapting, enhanciagd reengineering existingpftware, and Zuse
[251] writes that over 70% of the overall development effort is spent on testing and maintai
ing software products. This shows that developing software that is difficult to maintain (that
is software exhibiting low matainability) could result in project failures due to the time and
cost overrun$l53, 199, 231]

Interestingly,Holgeida et al. note that the amount of time spent on maintenance activities
is shavn to be stablen 60% (versug0% spent on the development activiti@és)manyem-
pirical studies coducted ovethe last thirty yearsfiand not increasing to take up a larger
and larger part of the work due to software 06ageviichgany and
claimed would haperd [103, p. 690] Althoughthe authors do not deliberate on this point, it
is reasonable to assume that the improvatkrstanding of software development practices,
and more recently the introduction of new depelent paradigms such as OO, allowed to
manage effectively this suppas explosion of maintenance efforts. This could also Ime co
sidered as one of the main reasons for considering a wide adoption of SOC since ds the sof
ware products continue to become increasingly large and complex, SO&itigatd more
efficient develompment process and easier implementation of maintenance Faskxample,
properly designed servig@iented solutions should exhibit a high degreeeofsability, and
according to Mar[151, p. 25] reusability can have a positive effect on maintainability due to
the reduction of development costs
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m Perfective - 41%
m Corrective - 38%
m Preventive - 16%

Adaptive -5%

Figure 2-5. Balance of Maintenance Activities [109]

There are foumwidely-acceptedtypes of maintenancactivities originally defined by
Lientz and Swansofil47] and later supported by other researchers and practitift&3s
197, 199, 225, 231]

1 Corrective fixing software faults (or defects), where a fault can result from emers i
troduced during the requirements, design or implementation development, phases

1 Preventive various activitiesaimed at increasing the maintainability of a product and
preventing software faults before they occur by, for example, including additional
documatation and improving the design structure

1 Adaptive adapting software to changes in the environment, wleve@onment can
include hardware, middleware, operating systems and other technology retated fa
tors

1 Perfective functional modifications to the system performed in order to accommodate
for new or changed user requirements or to enhance the existingmahty.

These activity types are consistent with the ISO/IEC 9126 standard, where maintainability
is characterised in terms @brrections improvementgpreventive or perfectivedr adapa-
tion of software

Most of the maintenance efforts are typicalhest on theerfectiveactivities: Lientz and
Swansor[147] demonstrate that at least half of thaintenance effostcan be considered as
perfective, andPigoski[197] notes thatbout 55% of alsoftwarechange requests arelated
to new orchanged requirements (perfiee mainienance). More recentlythe International
Software Benchmarking Standards Group (ISB8@gstigated the maintenance patterns of
54 commercial software systefi®9] from the communications, finanadmanufaturing
domainsin order to determin@ercentage of time spent on timglividual typesof maint-
nanceactivities. The results of the study ashownin Figure 2-5, where perfectivemainie-
nance was again shown to be the predominant activity.
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The perfective maintenance is highly relevant to the seoriemted software products
which typically include a large number of business rules and associated busitessgas
discussed in Section 2.2. Such business processes are shown to be the most unstable part of
software applicationf234]. This suggests the potential increase of the ratenantber of
perfective maintenance tasks required to keep up with the rapidly changing business requir
ments. To thiend,developing serviceriented software products that exhibit high maintai
ability is one of the key challenges of SOtethat developng highly maintainable stf
wareimplies increasinglevelopment costs; therefore, thestpracticallevel of maintainakl
ity is typically theacceptedor stakeholder agreetbvel[83].

2.3.2.1Measuring Maintainability

A number of quantitative measures have been proposed to directly assess the maintainability
of software mainly based on the cost and effect of the modification actijdtied3, 147,

231]. To measure the maintainity of serviceoriented software products in this research

we used maintainability metricgfthed in ISO/IEC 9126(2-3) standard$112, 113]so as to

be consistent with the earlier decision to utilise these standdrdse metrics are used tv d

rectly measure the stdharacteristics of maintainability (refer Fagure 2-4) and are sep

rated into external and internal metric types. They are summarised below with the detailed
description of all metrics presented in Section 6.3 (as was mentioned previously, these me
rics will be used as dependent variables in the empsiadly dscribed inChapter §.

- ISO/IEC 9126-2:2003 External metrics: The external metrics ammputed bybserving

the behaviour of the maintainer nser when the software is maintained. For example, the
external metric for measuring tlehangeabilitysulcharacteristic of maintainabilitis the
Modification Complexity(MC) metric defined asvc = Ssum (A) / N, whereA is thework time

spent to changendN is the totahumber of changes

- ISO/IEC 9126-3:2003 Internal metrics: The internal metrics areomputed by measuring

the effect of modifications on the product itsdfor example, one of the internal metrics for
measuring thetability sub-characteristic of maintainabilitg theModification Impact.ocd-

isation (MIL) metric defined asviiL = A / B, whereA is the number of emerged adverse i

pacts in the system after modifications; and B is the total number of modifications made.

2.3.2.2Predicting Maintainability

Quiality characteristics of software, such as maintainapghypuld beestimated as early in
the Software Development Lifecycle (SDLC) as possible in order to allow timely idantific
tion and correction of the potential quality problems prior to the release of the softwdre pro
uct if required. For example, the early prediction of maintainabidityallow software prakct
tioners to optimise future maintenance c¢$&!, 205] To this enda number ofjuality pre-
dictionmodelg[16, 62, 73, 74, 148, 177, 19&ve been established in the form of
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Figure 2-6. A simple maintainability prediction model used in this research

Quality Characteristic = f (influencing factor/gherea given quality characteristis ican-
sidered to be a functioff) of relevant factors thataninfluence the quality chacteristic in
guestion.

In terms of the maintainability prediction, the influencing factors can be generallpcateg
rised into:documentatiofrelatedfactorsandthe structural properties of software desig

Exampledocumentatiosrelated factorsinclude: i) readability of source cod@he per-
centage of comment lines in total cod#)cumentation contents qualigndunderstandabi
ity of software(the correlation beteen documentation and source cdd¢) ii) documented
preconditionsand postconditionsfor all functions in sourceode,commentdor all source
code blocks, andelf-descriptiveidentifiers[62]; and iii) overall quality of the documentation
[153] (for example, the thoroughness of the activity Ifds3]).

The completeness and quality of the product documentation can havsi@decalle m-
pact on theanalysabilitysubcharacteristic of maintainability given that it is directly related
to the important and timeonsuming cognitive tastf program comprehensidg@23], which
takes upapproximately half of all maintenance effo[is37]. Nevertheless, the documant
tion-related aspects cannot be used effectively to predict the otheashatdxteristics of
maintainability thatare of interest to this research, nanaigngeability andstability.

In contrast, thestructural properties of softwarelesigns(such as size, complexity, €o
pling, and cohesion) are shown to influence all aspects of software maintair{&Bility70,
225]. AccordingtoZusei good software design cPBRospe’l | ower
This is because antenancectivitiescanbe performed efficientlpnly if the arlier devé
opmentphasegsuch as design phase) are done corr¢2t.

The structural properties of software dgs constitute the fundamental construct in the
simple maintainabilitycausalmodelused in this researclrigure 2-6 provides a scématic
view of this model, which is loosely based on the quality model proposed by Babgjya
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where the quality of OO software designs was modelled based on the corresponding stru
tural properties. The structural design properties themself are discussed further inZS4éction
Note that the msented model is incomplete, showing only these aspects that have already
been covered in thiseview. The model will be augmented with additional constructs at the
end of this chapter after all the relevant cqtsdave been covered.

Finally, it also important to mention that in addition to the software preeieted fa-
tors discussed above, there are a number of proekded external factors that can alge i
fluence the maintainability of software. The pregeelated factors do not consider thetsof
ware product itself; instead, they cover various issues related to the development process
practices and other project related congti@ns. Such factors can include:spcial aspects
related to program comprehsion[223]; ii) user knowledge andhaintiner effectiveness
[148]; iii) the quality of the mimtenance processes and practices (based on, for example,
Software Maintenance Maturity Modgl]); and iv) tke thoroughness of defare inspections
during the design and implementation phases of S[243]. These factors are not invest
gated in this thesis because: i) they are difficult to control prior to the software release; and
iii) the investigation of projeetelated factors is out of scope of thesearch.

2.4 Structural Properties of Software Designs

The design of any software product possesses a number of properties that ssmsdexidy
measuring the structure of the desagtefactsusing software metricsSuch structural prope
ties are said to capture the (internal) quadtysoftware andcire commonly referred to as-
ternal quality characteristic§l6, 35, 62, 71, 74, 98, 25%|nce they do not descriltlee vis-
ble quality of a product, rather, ¢y hae a causal impact on the (externgliality charaat-
ristics such asnaintainability, reliability, and performanceAccording toSamoladas et al.
[211, p. 84] the external quality chacgeristicsshouldalways be correlated to internal djoa
characteristics

2.4.1 Overview

There are four major structural propertieat are commonly used to represent the quality of
any software desigimrespective otthe development paradigm in usgze complexity cou-
pling, andcohesion These properties can be broadéfined[16, 34, 63, 84, 2223s:

A Size:a number oflesignartefactsn the system desigor the amount of functioriy
a software system provides to a yser

A Complexity:degree of difficulty in understanding the structure of desitgfacts or
the amount of the internal wo(klgorithmic complexityperformed by a desigartefact;
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A Coupling:a number of relationshigsetween desigartefacts or the strength oé re-
lationshipestdlished by a connection from omaetefactto another

A Cohesiondegree to which the elementsatlesigrartefactbelong bgetheraccording
to some defined criteria.

An interesting observation can be made in relation to the above definitions: they all i
clude measuremenmelated keywords, such as number, antpdegree, and strength, sugges
ing that the definitions are precise and unambiguous. This is misleading since the definitions
of structural properties are typically semantic and are subject to different interpretations. For
example, thestrength of coumhg relationshipscan be interpreted in a number of waks-
cording to Briand et al.34, p. 724] the properties o$ize, complgity, cohesionand ca-
pling are hardly ever defined in a precise and unambiguousiagg/ambiguity in the defin
tion of structural properties is mainly due to the followingsoms:

1) Multi -dimensionalnature of properties

Structural properties of softwatypically incorporate mukglimensional aspecfg4], that
is, the properties can be conceptually separated into a numbermfogdsties or influencing
factors. From the measurementgpective, the properties can tensidered as the complex
attributeg98]. For example, some of thefluencing factors otouplingcan includetypes of
the relationship, interface complexity, and the direction of communicg8RjnTo this end,
the correlation between external and internal quality can be characterisadkeasal quality
attribute (for example, software maintainabilityy reflectedby the internal quality attrb-
utes/structural propertiegfor example, coupling)which in turnarereflected by thenternal
quality subattributes (for example, direction of coupling communication). Furthermore, to
constrain the definition of the structural properties, it is necessadgntify the commorin-
fluencing factors based on theesffic technological and conceptual viewpoifit4].

2) Level of abstraction

The structural propertiesf softwarecan be measured at different levelsabStraction,
ranging from requirements specifications through to executable implementations, with the
target level of abstraction ilniendng the definitionand consequent measurementstruc-
tural propertiesFor example, the property sfzecan be applicable to requirements specif
cation documents, software designs, and software implementations. The other three prope
ties ofcoupling cohesion andcomplexityare typically investigated at the design and &npl
menttion level. The level of program abstraction has a significant influence on the definition
of structural propertied-or examplecomplexity is commonly defined in terms dfet alg-
rithmic complexity of software modulg99, 156, 237] The information required to measure
the algorithmic complexity sometimes not available at the design stage, and thus, such defin
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tions would be restricted to software implementation (with tkeegtion of atypcal cases
where this information has been defined in the requirements specification itself aad prop
gated throufout the design).

It has been recommended tisatuctural properties should be evaluatsdearly as poss
ble since the soon@roblems inthe software structurean be identifiedthe lessethe effort
required to correct therfl0, 15, 34] Moreover measuring structuraropertiesliate in the
development process (after the implementation phdefertsthe purpose of such attributes
beingused agpredictorsof external qualityattributes. This is becae theexternalquality at-
tributes can be meared directlyif the system is already implemented.

The quantification of structural propertissmore difficult at the design stage compared
to the implementation stage because data available during e dege is usually limited.
Most of the previous work in the software quality area examined the structural properties at
the mplementation level, but more recent research suggests that such properties should be
examined as early in the development lde as possiblgl6, 36, 179]In this research, the
structural properties are investigated at the design level so to provide mechanism for the ea
liest possible evaluation of software maintainabhility

3) Different design paradigms

Previousresearch has shown that the use of diffed@welopment paradigms, such as
Procedural design and OO, will result in systems with different structural propf8es
102]. This is because structural properties hangre dimensionsaandassuch, arenorediffi-
cult to measure in OO systems compubtie procedural ones due to the existence of nagRy
ditional design constructs anmtiechanismsFor example, OO intduced additional design
concepts of: object abstraction, inheritance, polymorphism, and class hierarchies that can i
pact the structural properties of software. Similar can be said about SOC, where the-introdu
tion of additional level of dsign abstraction, namely a service, and associated design pri
ciples ofserviceautonomyandservice granularity(discussed in Sectidh2.3andformalised
in Chater 3) can influence the design structure of software.

Note thatthis thesis investigatebe impact of servicerientationon couplingandcohe-

sionproperties onlyThe properties afizeandcomplexityare not investigated due to the-fo

lowing reasons:

A Szeshould be directly dependent tive functional requirementsf the software st
temthe ef ore | ittle can be done from the softw
size of the system. Additionallgjzeis independent from the development strategy irausle
existing approaches for measuring giz&] [224] should be directly applitde to SOC.

A Complexitycan only be fully quantified after the implementation of software s co
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cluded; it cannot be directly measured during the design phase. This is because pypical a
proaches for investigating complexity are based on examining thetlaigmricanplexity (or
internal complexity) of implemented software modules as described by HendGatenrs

[98] and McCabg156].

A Complexityis commonlyviewed as th&ombination of coupling and cohesiarmen
investigatedat the desigievel. For example, Gdamber and Kemergd4] define OO cm-
plexity as the complex attribute that is influenced by manipfa including system coupling
and class cohesion, and Briand et al. suggesathaspectof softwaredesign propertiesan
berelated to theeomplexity[27, p. 69] To this end, investigating the coupling arahesion
in this research allows Wwity. to O6indirectlyd c

The following subsections describe the properties of coupling and cohesion in reere d
tails. Note that the existing metrics for measuring these properties in Procedural ard OO d
velopmen are presented in a separate section (Se2tmd) to improve thesis readability.

2.4.2 Coupling

The concept otouplingwas originally defined for procedural systeins Stevens et ahs
At he measure of t hestadigheddynagconmector frora snsdoleto at i o
anot [22rp0233]where coupling was classified based on the type of conndctiata
or control.The authors had later extended their defini{d#2] in order to characterigeur
major factors that influence coupling:type of connection between modulés;complexity
of the interfaceiii) type ofinformation flow; andv) binding time of canection

The notion of coupling was then extendeddbjectoriented QO) systems due to thee
istence ofadditionalmechanismshat can influence coupling, such ga@dymorphic relatim-
ships[44, 63, 102, 146]Also, there are two main subjects of inte{estdesign constructs)
OO0 design namelyclassesandmethods as opposed to procedusistems where the prec
dure (a module consisting of code statemeistghe main subject of interesto this end,
coupling in OO sthesinteedpendency of ah@bject wreatherjadss in &
designrepresenting the count of other objetitat would have to be accessed by a given o
ject in order for that object to function correaily16, p.7} Currently, there aréour major
frameworks characterigg various dmensions of OO coupling

A Eder et al[63] describe coupling in terms ttiree different types of relationships i
cluding: i) interaction relationships betwe methods; ii) amponent relationships between
classes; and iii) inheritance between clasEhese relatinshipsare then used to derivkeree
dimensions of couplinginteraction component and inheritance For each dimension of
coupling, the differenstrengths of coupling are identified. For examphtestrengths ofnte-
raction coupling are listed below from strongest to weakéstintent, Common, External,
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Control, Stamp, Data, No direct couplindote that a complete software implenation is
required to determine theomponentndinheritancedimensions of coupling; however, the
interactioncoupling in which a method invokes another method (of a different class) can be
examined at the design stage.

A Hitz and Montazer{101, 102]proposetwo different types of couplingclass level
coupling (CLC)and object level coupling (OLC)YCLC captures i) relationships between a
method of a given class with a method of another class via direct call; and ii) references from
a method of a given class to the attributes of anothesscl®LC captures coupling based on
the state dependencies between two objects durirtimenCLC is considered to banpor-
tant wheninvestigating software maintahility because changes in one class may lead to
changes in other classes which use@itC on the other hand, influences variaqus-time
activities such as testing and debuggifig.with theEder et al[63] framework,a numberof
generalfactors determininghe strengttof a particularcouplingtype are identifiedNote that
both types of coupling are difficult to examine at design time, with the only exception being
methodto-method interactions as part of CLC which can be obtained from Udduesice
diagramsand can be considered as similar toititeractioncoupling of Eder et a[63].

A Hall et al.[95] categorisecoupling intofour different aspects: isize of interface
(amount of data Esed to the ndule); ii) type of information flowcontrol or data); iiitype
of passed datgsimple data or entire structures); and type of connectiorfinformation
passed is glmal or in parameter lists). Additionally, three coupling domains thagrcthe
above aspects are proposednitouplingrepresenting the complexity (size) of the rfdee;
i) outcouplingrepresenting the interactions between a module and other modules; and iii)
global connectiorrepresenting the complexity of global védolia usage in a program. The
out-couplingis conceptually similar to thiateractioncouplingof Eder et al[63] andCLC of
Hitz and Montazerj101, 102]

A Briand et al.[33] consider coupling to be representative of ititeractions between
classeslIn contrast to the previous three frameworks which mainly focus on the impkement
tion-level couping, this framework examines coupling based on the information available
during the higHevel design phase. According to the authore | i ting design flaws and
errors early lefore they can propagate to subsequent phases can save substantial amounts of
mo n e[380p. 97] Given our goal of measuring coupling at the design level, the definition
of serviceoriented design coupling in gthesis generally follows the framework of Briand
et al. This framework concentrates on coupling caused by interactions that occur between
classes. Three coupling aspects are identified that determine the overall strength of coupling
of a given @signartefact
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1) Type of interaction. Definesthe mechanism byhich two classes andd are coupled:

i) Classattribute:classcis the type of an attribute of clags

i) Classmethod classc is the type of a parameter of methog or classc is the return

type d methodmyg;

iii) Methodmethod: methodny directly invokesnethodmg; or mq receives via parameter

a pointer tanc thus invokingit indirectly.
2) Coupling relationship. Two classes can be connected via one of the three comnaen rel
tionships:inheritance, friedship,andother. Note that Briand et al. targeted C++ basest sy
tems in their framework, and as such thendshiprelationship type is language dependent.
Nevertheless, Briand et al. suggest that the relationship types can be easily redefined based on
the tedinological constraints.
3) Locus of impact of an interaction.Can beexport(classcis the used class) in the intera
tion), orimport(classcis the using clagsn the interaction

In this thesis, thaypes of interactiorand coupling relationship from Briand et al.
framework[33] are redefined according to the fundamental principfeserviceorientation.
Also, the locus of impaatf an interactions considered when investigating coupling. For e
ample,serviceoriented desigrtoupling relationshipsover: i) types ofservice design aet
facts involved innteractions and ii) locality aspectsof the relationshipsn respect to the
service boundarythat is, whether the relationship is inteor intraservice The redefined
types of interactions and associated relationships are lisedan Chapter 3. Additionally, a
new dimension of coupling is proposedChapter 4service autonomywhich cannot le di-
rectly mapped to the above frework.

2.4.3 Cohesion

The notion of cohesion has been widely discussed in the context of the OO asdtliyaioc
paradigms with various qualitative classification schemes being proposed to describe diffe
ent levels of cohesiof63, 222, 242] For procedural systems, cohesion was originady d
fined by Stevens et al. agimeasure of the degree to iain the ebments of a module belong
togethebd [222]. It was also suggested thata highly cohesive procedural module, ak-el
mentsshould berelated to the péormance of a singléunction Additionally, the authors
proposed six semantic categories of module cohesion that were later elabodsrtnded

by Yourdon and Constantifj242]. The seven resultant categories are defined beloging

from the wed&est to the strongest types of module cohesiveness:

A Coincidental the elements of a module have nothing in common besides behig wit
the same moduje
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A Logical elements with similar functionality such as input/output handling ake co
lected in one module

A Temporal the elements of a module have logical cohesion and are performed within
the same time period;

A Procedural(added inf242)): the elements of a module are connected by some control
flow;

A Communicationk the elements of a module are connected by some control flow and
operate on the same set of data;

A Sequential the elements of a module have communicational cohesion andrare co
nected by a sequential control flow;

A Functional the elements of a module hasequential cohesion, and all elements-co
tribute to a single task in the problem domain, thus potenti@hymising maintenancefe
forts [31].

The notion of cohesion waater extended for the OO paradigm in a framework proposed
by Eder et al[63], where cohgion was redefined as tlielegree to which the methods and
attributes of aclassbelong together in order to cover for the additiondkesign constructs
introduced by the O@aradigm.More specifically,Eder et aladopted the original cohesion
categoriesof Stevens et al[222] when investigating the cohesiveness of individual class
methodsat the same time introducifige newqualitative categoriesf OO class cohesion

A Separable (weakestihe objects of a class represent multiple unrelated data @bstra
tions. For instance, the cohesion of a class is separable, if the methods and attributes can
be grouped into two sets such that any method of one set invokegthods and reffe

ences no attributes of the other; set

A Multifaceted:the objects of a class represent multiple related data abstractions. The
relation is caused by at least one method of the class which uses all the datAaaisstra

A Nondelegatedthere exist attributes which do not describe the whole data atistra
represented by a class, but only a component of it. That is, the attributes of the alass inte
preted as relation schema violate third normal form;

A Concealedthere exists some useful datistraction concealed in the data alutiva
represented by the class. Consequently, the class includes some attributes and methods
which might make another class;

A Model(strongest)the class represents a single, semantically meaningful concept.

Similar classlevel categories of cohesion have been also suggestBatinan and Kang
(fr el atedness of [23ppd259).e componentso

41
(February, 2009)



CHAPTER 2LITERATURE REVIEW

It is important to note that the process s$igning design artefacts &gparticular cole-
sion categoryas a subjective nature, and thus cannot be autonfeteslich, the above da
sifications have limited practical applicability. Nevertheless, they can provide strongpeonce
tual premises for estabhing practical approaches for characterising and quantifying-coh
sion using software metrics. The existing cohesion metrics are overviewettion2e5.4

In this thesis, the conceptual categories of cohesion introducBtelgns et a[222] and
Eder et al[63] are extended and modified in erdo account for the unique charactéds of
savice-oriented designs. Additionally, two servioeented categories of cohesiaxternal
andimplementatiorhave been introduced. Thernoeptual categories are then used to drive
the definition of measable characteristics and derivation of senocented cohesion me
rics in a systematic manner consistent with the principlesealsurement thearyhe categ-
ries and associated metrics are preseint&hapters.

2.4.4 Discussion

The structural properties abupling and cohesion of software designs are yet to lre tho
oughly investigated in the context of SOC. For example, a commonly useddesm
couplingrefers to the technological and integration based aspects of SOA, rather than the a
tual design princig@s incorporated by SOC as described in Se@i@r2 This is unfortunate
since t has beersuggestedhat high quality software should baderpinned by a properly
structured software desighat exhibitslow couplirg andhigh cohesionin any development
paradigm[32, 44, 72]

More specifically the structual properties can be used as a guatechoosingaternative
design approaches amgitefacts For instance, a desigapproachmay be preferred ovemna
other because it producdssigns consisting of loosetpupled artefactsor a design artefact
may be peferred over another because it is more cohg8de Such application of structural
properties is important to the emerging field of SOC given a lack of mature desigrdmetho
ologies. More importantly in the context of this research, the properties are shown to-be val
able early predictors of external quality characteristics (such as maintainability) in beth Pr
cedural and OO paradigms. For examplable 2-3 shows the perceived influence of céup
ing and cohesion on the stharacteristics of maiainability.

Note that coupling and cohesion @@mmonly considered to lmnflicting factors.This
is becauseaupling is reduced when the relatstips amag modules are minimised. To this
end, thesimplestway to achieve best possible couplingasievelop a system consigy of
one (large) module onlyrhis approach would be considered as bad design practice since the
resultant module will be unnecesséayge and difficult to analyse, which can potentia#y r
sult in the decreased cohesion.
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ANALYSABILIT] CHANGEABILIT STABILITY

S S S
COUPLING
[146][170] [121][170] [55] [170] [55]
S W u
COHESION
[146] [55] [121] [53]

Table 2-3. Influence of the structural properties of coupling and cohesion on software maintai-
nability (S - strong; A - average; W1 weak; U - unknown)

Most of the existing workn quality estimation and prediction based on the structural
properties of software investigatesupling and cohesioim isolation[32, 53, 244] Neve-
theless some recent empirica¢sultssuggesthat coupling and cohesi@hould be examined
in combiretion when predicting the maintainability of software prodybty.

In this research, the decision was madsttmly and measure coupling and cohesion in
isolation so to be consistent wiphevious studies which it was demonstrated thadupling
and cohesion can havedastinct causal impact on external quality attributes such as-mai
tainabilty or faultproneness in bothr&cedural[100] and OO[7, 38, 45, 49, 92, 164, 177]
software.As sucha derived suitef designlevel SOcoupling and cohesiometrics, which is
the central contribution of this thesis, can be separated into the coupling and rcohesio
types because it was designed to measure thesepts in isolation. Théollowing section
provides a detailed overview of the softwarenoe area.

2.5 Software Metrics

The needto develop high qualitgoftware productdas led to an increasinglgrge bodyof
work being performed in the area of softwareasuremeni87], where measuring software
guality involves the use ahetricsto assign a value to the attributeslar investigatio112-
114]. Note that although the ISO/IEC 9126 standards define metriarasasurement scale
and a method used foreasurementin Software Engineering the tenmetricis sometimes
considered synonymous teasurg72]. In this thesis, we follow the ISO/IEC 9126 défin
tions wheraneasureandicates the actual number or category obtained by makmgasia-
ment. Theefore, there is a clear distinction between both terms.

A correctly implemented measurement process can provide software development organ
sations with concrete mechanisms for controlling the quality of software products in@n effe
tive and systematic manngr60]. Additionally, a significant challenge to software eragrs
is to avoid negleting proper developmermrocesswhile advancing among the techagy
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dimension[75]. To this end, metrics can provide mechanisms for quantifying the ways in
which processes, products, and technologies relate to one gi&Bler

It has been argued thaifsvare engineerings fundamentallyanempirical subjectand as
such,metrics shoulglay a pivotal role within it[76]. In fact, there is a large number of tsof
ware engineering metrics being proposed in the research and industry literature. For example,
Zuse[251] estimated in 1998 that there are approximately 1500 different metrics being pr
posed for measuring various aspects of softwaroducts and processes. Furthermore, the
area of software measurement has been recognised as one of the most crucial software eng
neering disciplines in SElI&s Capabilm-ty Mat
provement métodology[46].

Nonetheless, according to Fentidmetrics continue to lie at the margins of softwane e
gineering [76]. This ismainly due to the large gap between theory and practice ithe
software metricaarea as discussed by GI49€, p. 221] Moreover, in the pasgoftware
measuremerttastypically suffered from a lack of) stardardised terminology; and ig for-
malism for expressingmetricsin an unambiguousnd fully operational manner (that is, a
manner inwvhich no additionalrterpretation is required on behalfthe user of the measure)

[37]. Section2.5.1describes key awepts and definitions related to software metrics.

There are two general types of criticism appliedb current software nics:

i) Various researchers in the metrics figdd, 72, 98, 207, 237havenoted that most
existing software metrics were derived without any theoretioahdation and as such, they
lack appropriate mathematical operties. This suggests that software metrics should be
created and validated with theoretical and mathematical i$gmtion2.5.2discusses the key
principles of measurement theory that was used to derive theoretically swinds in this
thesis, and also overviews existingpeoaches for theoretical validation of metrics

i) Although some of the existing wedhown metrics are theoretically sound, they lack
empiricalevaluation42, 228] which is arguably the most important validation of any metric
since it allows establishing models fanedicting (externalyjuality of software Section2.5.3
describes existing approaches for empirical evaluation of me#nck,also presents some
empirical studies related to this research

Finally, Section2.5.4 describes the existing Procedural and OO coupling and cohesion
metrics in order to provide necessary background for this research.

2.5.1 Key Concepts and Definitions

The software measurement framework proposed by F¢nlgry2, 76]is widely consilered
to provide the most complete conceptual model and terminology for reasoning abesatesof
metrics. This framework has been adopted by a number of prominent researchers i the me
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rics areg27, 160, 251] and more importantly, it is consistent with the concepts andidefin
tions prescribed by the ISO/IEC 9126 family of qualitgnstards used in this research. The
measurement framework revolves around three fundamental measurement corstiucts:
ties attributes andmeasurement

1) Entities. A key task of any software measurement is to idemtifgt characteristhe eni-

ties thatwe intendto measureThree separate classifications types of entities have been pr
posed:

1 Process a collection of related software engineering activities, methods, acd pra
tices employed when developing or maintaining the products;

1 Producti an artefacthat is the output of the process activities, including docuament
tion, software design, or the actual code of a software program;

1 Resourcé an input used by the process activities to produce and maintain products,
including hardware resources and persbm@vailable throughout the SDLC.

Note that these types of entities are itependent. For example, product deficiencies
can imply the existence of a problem in the actual process used to develop this [@2&Huct
The entity investigated in this research is $beviceoriented software esign, which can
be classikd into product entity type according to the aboveerefore, the rest of the defin
tions and concepts presented in this section target the metrics for measuring produet type e
tities.
2) Attributes. An attribute ofa givenentity representany measurhle feature or property of
this entitywhere there is dundamental distinctiobetweenexternalandinternal attributes.
External attributes areharacteristicor features of the software product that areeally
visible. For example, software qualitharacteristics, such as maintainability, defined in
ISO/IEC 9126 standard (described in Sect®8.]) are examples of external attributds
contrast,internal attributes such as structural properties of tsedre designs (described in
Section 2.4.1) can be measured in terms of thequat itself.
The attributes investigated in this thesisthestructural properties (or internal attributes)
of couplingandcohesion of serviceoriented software designs
3) Measurement. Measuringsoftwareinvolvesdirect or indirect quantification dhe attrib-
utes of entities. Direct measurement of an attribute does not depend on the measurement of
other attributes. In contrasfydirect (or derived) measurement of a given attribute involves
the measurement of other attributes. Additionally, there are two typical measuegpkaai-
tions of metricsassessmerandprediction Measurement for assessment is applicable to the
attribues of existing entities, whereas predictive measurement of an attribute is based on
predictive model andissociatethypothess that link the measures of the attributeexisting
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enities (such as properties of software designsgxternalattributes & some futureentity
(such as maintainability of final 9@fare products)

The metrics derived in this research dim@ct metricsfor the assessmerndf couplingand
cohesionof serviceoriented software desigrnand subsequerrediction of analysability,
stability, and changeabilitysubcharacteristics afnhaintainability of software products

Additionally, there are two fundamentaieasurementonstrucs that have to be clearly
defined for all metrics in order to support thigjectiveinterpretationof the obtained metric
valuesand identification of th@pplicablestatistical analysisechniqueg14, 75, 235] These
constructaremeasurement scafndtypes of meases
Measurement ScaleThereare five possible types of measurement sadtle each scale type
covering a set of values, continuous or discrete, or a set of categories to whictbate astri
mapped. More specifically, each scale type can be formallyeapin the form o QT ,F 6 a 0

wheref is the admissible function (or admissible transformaf®#]) indicating a possible
mapping from metridvl to metric MQ The scaldypesplay a pivotal role in determining the
theoretical soundness of the metrics by constituting a key construct wietmsurement &
ory described in Sectior2.5.2 The scale types are defined belownirthe least informative
type to the most informative type:

- Nominata Q T ,whede&i®anyoneto-one mapping

The nominal scale indicates some formclafssification There is only one possiblem-
pirical relationdefined for nominal scalequality, which can be mapped to the formalarel
tions 6= Gand 6 I. Bor example, classifyingoftware designs n tO®D-baed a BAA- #
based leads to nominal scalaetrics.

- Ordinata Q T ,whebe&i®any monotonic increasing mapping

The ordinal scale indicates some form of classificationaaddring The possibé empiti-
cal relations are related txuality and order (formal relationsé< éand 6 .G or example,
aasigning val uegsanfih ifd theeualitftoBeftvaredesigndeads to an
ordinal scalef mdrics.

- Intervat a Q f(Nf), wheref(M) is inthe form ofaM + b, a>0

The interval scale represents an ordered rating scale where the difference between two
metric vdues has an empirical meaning. However, the ratio of two measures may not have
the same empirical meaning becausge® positionof a (Hoes notindicate the absence of
the quantity The empirical relations possible ardated toequality, order, and difference
(formal relationsd +abhdG§. For example, the temperature measured usingegecegCd-
sius) isdefined onan nterval sca.

- Ratia a Q f(M), wheref(M) is in the form ofaM, a>0

The ratio scalés an interval scale with the additional property that its zero position ind
cates the absence of the quantity being measiites.implies that in addition to the diffe
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ence betweetwo measures, the proportion of two measures have the same empirinal mea
ing. The empirical relations possible agquality, order, difference and relative difference
(formal relationsd6and ¢9. For example, measuringe couplingof a system by couimg

the number of relationships between its design artefaatisto a ratio scalemetric The
coupling metricglerived in this work are defined onmatio scaleas dscussed in Chapter. 4

- Absolute a Q MBince they can be measured only in one way

The dsolute scale implies thahyempirical and formal statement relating to measures is
meaningful. Typically, the measure is considered to be defined on the absolute scale when it
represents the result of dividing one ratio scale type measure by anoibescedé type
measure where the unit of measurement is the ¢ For example, dividing LOC by the
number of comment lines in the code will result in an absaelcaitemeasureNote that most
of the existing literature only defines the former four stgbes[71, 89, 218]since absolute
scale can be considered as a specialised case of a ratio scale. The absolute scale dype is intr
duced in this thesis in order to be consistent with the definitions of scale typedsHe
ISO/IEC 9126 standard3he cohesion metricgerived in this work are defined @atio and
absolutescalesas ascribed in Chapter.5
Types of measuresin order to concretise the procedures for collecting metrics data, inte
preting the results of easurement, and normalising measures for comparison, it istanpo

to identify the type of measurement (and a corresponadiegsurementnit) employed by a
metric. For example, only measures of the same type can be directly comparebinedo

into morecomplex metrics. There are three main types of measurement commonly used in
software engineeringize(e.g.function size)time (e.g. elapsed time), ancbunt(e.g. num-

ber ofrelationships between design artefactde metrics derived in this work useuntas

the measurement type as described inp&ra4 and 5

2.5.2 Theoretical Basis and Validation Approaches

The process of measuring software attributes should follow adefiied theoretical @

proach, where software metrics adhere to the fundamentaligles ofmeaurement The

theory used commonly to guide the measurement of software products is the representational
theory of measurement, areasurement theof204]. Measurement theory servas the b-

sis for developing, reasoning about, applying metrics[27, 72, 237, 251]More speciF

cally, it prescribes the imptant mathematical properties to the metrics ensuring thamet)

rics are categorisenhto distinctscaletypes ii) statistical techniques are applied aggpiately

based on the scale typafsmetrics (for exampleyparametric statisticsannot be applietb the

metrics defined on a lower than interval scadeiliii) transformationshatare notpermiss

ble forsomescale types are avoid§2i7].
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The use of measurement theory is especially relevant to the area of software désign me
rics given a lack of accepted definitions of the structural design properties as described in
Section2.4.1 The following lrief overview of the measurement theory combines descri
tions provided by Band[27], Fenton[75], Melton[160], and Zus¢251].

2.5.2.1Principles of Measurement Theory

The fundamental principle of measurement theory is that if in a given problem domain there
exists an empirical understandinhgf relationships of objects within this domathen such
relationships could be formalised mathematically. Moreover, there could be some common
understanding of one or more binary operations that can be applied to these objects. This
principle can be formally captured using three key constrecipirical relational system
formal (or numerical) relational systemand amapping between the empirical and formal
systemshat represents specific metrics.

The empirical relational systefk) is a model of thgroblem domairrepresentinghe
commonknowledge about the phenomentinbe measuredihe empirical system needs to
be mapped to a formal relational system, or a formal moEgkviich formalises the intu
tive understanding of the relationships between attributes in a precisenmatitial way.The
formal model of serviceriented design is presented in Chapter 3.

A theoretically valid metrici() should then demonstrate tequivalence between thene
pirical and formalsystems, where the mapping from one relational system to another that
preserves akelations and defines all admissible transformations is calle@h@omorphism
According to Zusd250], the homomorphism is the fundamentakion of measuremerthat
leads to the definitioandclassification of measuremieescales The formal definitions of the
measurement theory construdis £, 1) can be found irAppendix B, which also illustrates
an example application of measurement theory to the measurement the height of a human.

Software artefacts and their propestiare not physical objects and theietiehs are not
well understood compared to the physical properties, such as height. To this end, there is a
need to constrain and validate software metrics uaiigmsthat prescribe required math
matical charactéstics to the metrics based on the intuitive understanding of the prololem d
main as explained in the Subsectibh.2.2 The axionatic metric validation approadh used
in this research to validate the derived metrics.

Note hat there is a common understandihgt softwareattributes in generahould be
measurable orat least arordinal scale[158]. In our opinion, when measuring structural
properties of software designs, it is advisable to define metrics on a ratio scale in order to
support more complete reasoning about properties in question. It is not sufficient to state that

n the context of measurement theampirical understanding e f | ects the intuitiwarlab®d.ut son
48
(February, 2009)



CHAPTER 2LITERATURE REVIEW

A svice S1 ismore cohesive tharss er vi ce S20 (i mpli esineersdi nal
should be able to reason about c &Nhmesmaen i n t
cohesiveghanserviceS2 06 (i mpl i es r at nsistenswhathe @igw.of Bfidnd s 1 s

et al.[27, 30]who suggest that all structural properties of software should fireedeon a
ratio scale. As described previouslyetmetrics derived in this work are defined on ratio and
absolute scales

2.5.2.2Validation Approaches

There are a number of approaches for the validation of metrics. Some of therornal
andprimarily subjetive in nature, whilst others havleeoretical and axiomaticasesAxio-

matic approaches provide a formal objective framework for comprehensive metries valid
tion. In contrast, the informal approaches describe some desirable properties of metrics that
shoud also be taken into consideration so as to demonstrate the assfallnessf the me-

rics, but they are difficult to validate and are typically subjective.

The notion ofusefulnesss important in the context of software engineering where some
well-known metrics fail to satisfy the basic requirements of measurement theory, but are still
considered to be usef[B2]. For example, the original classification of design cohesion pr
posed by Stevens et §222] (described in Sectiod.4.3 was meant to be examined on an
ordinal scale, but Eder et §3] show that the categories are actually defined as the mixture
of nominal and ordinal scale types. Therefore, such classification of cohesion shoult be co
sidered invalid from the measurement theory perspective. However, this classification is
widely-accepted since it captures well the intuitive understanding of cohedjprogedural)
software designs. Similar can be said about some of the quantitative OO metrics.nror exa
ple, an influential and commonlysed suite of OO metrics proposed by Chidamber and
Kemerer (CK suite of metric$#4] has been criticised in terms of its validity from the siea
urement theory perspiave [101, 124]

The following describes some of the major validation apphes and associated validity
criteria. The informal approaches are only briefly summarised here since they are not strictly
used in this research due to our objective to derive the most formal and unambiguous metrics
possible.The axiomatic approachesn the other handare discussed in greater detail since
they provide foundation for the complete theoretical validation of éheedi metrics

Informal approaches. There are a number of informal approaches for examining the general
validity of metrics. Among those that are widely referenced: 8ec h n e i dmeitricsn d 6 s
validation methodologj213], HendersorSeller$[98] approach, and the ISO/IEC 9126tme
rics validity criteria. These approaches define general validity criteria (or desirable-prope
ties) for any software metric, with some commonly specified criteria include: i)stemsy;
i) discriminative power; iii) repeatability; iv)eproducibility; and v) objectivity (the metrics
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should be computed in a precise manner).iflalthlly, it is sugested that ameasure might

not be usefulhenit is used for assessment puree®nly, that issoftware metrics should be
used in predictive models similar to the maintainability prediction model used inethis r
search.

Axiomatic (formal) approaches.Axiomatic approaches assist in determiningttie®retical

and mathematicadoundness o& given metric based on its conformance to the formalised
intuitive understanding of the attributes under study. More specificlih approachesed

fine various axiomghat are used to validate the homomorphism between the empirical and
formal relational systems. That is, the axioms can demongtratex given metricreally
measures the softwacharacteristic it is supposed to ma@sat the same time conforming to
the general principles of measurement theory. For example, any theoretically valid metric
should be able to distinguish between twasidnilar entitieqd204].

A seminal work on the axiomatic validation of software metridd/esyuked #xiomatic
Approach[237] that definesiine axiomdor thevalidationof softwarecomplexitymeasures
Given that only the structural properties of coupling and cohesion are investigated ie-this th
sis, Weyuknerd6s axioms are not cestablishedyd i n
proaches for theofmal axiomatic validation of ntecs that extend the work of Weyukner
[237] and can be applied to the coupling and cohesion metrics, including

A distancebased software measuremérmeworkproposed by Poels and Deddn88].

In this framework, the authors examine the validity of software metrics using the fundamental
principles of mathematics, where all metrics are definethessurs of distance Accordng

to this purely mathematical definition of a metric, there are four important properties that
must be satisfied by the metricsnn-negativity ii) idertity; iii) symmetryand iv)triangle
inequality This framework can be considered not suitabtetlie@ purpose of detailed and
comprehensive validation of the structural software metrics since it does not specity prope
ties for the concrete structural attributes of software (such as couplingtesian).

A coupling axiomproposed byenton and Meltofi70]. The authors introdud&vo generic
axioms thashould hold for coupling measures. Both axi@asume that coupling is a nsea
ure of pairrwise connectvity between moduleshe first axiom states that if the only diffe
ence betweetwo module structurehartsSand{ @ an extra interconnectian { ,&hen the
coupling of{ & higher than theoupling ofS The second axiom states that systempling
should be independent from the numbecafinectednodules in the systerfror example,fi
a module is addetb the systenandthe resultant systeshows thesame level opair-wise
couging, then the coupling of the system rematims sameThe second pragty is arguable
and has beeariticisedby other researchers since coupling is typically considered te-be
pencert on the number ofonnections &ween module$33, 102] Therefore, the decision
was made not to use the axioms proposeldnton and Meltofi70] in this research.
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A property-basedsoftware engineering measuremémtmeworkproposed by Briand et all.
[30, 32, 34] which is ageneric frameworkhat extends the common principles of measur
ment theory by defining preciseathematical propertighat charactese the specificstruc-
tural attributes of software designs, whdesign can be viewed ascallectionof elements,
relations, and binary opdrans. The framework is unique in a sense that it prescnilaetke-
matical characteristic's (or axioms) forall structural properties of software includicgup-

ing and cohesion Additionally, the proposethathematical charactstics can be applicable
to theartefactsdefined at the design level as opposed to other frameworks which target i
plementation level metrics

The propertybased software engineering measurenfesshework of Briand et al[30,
32, 34]was chosen for the validation of metramsrived in this researdince it isgenericand
comprehensivallowing theprecisecharacterisation athe structural properties of software
designs independently of a specific development paradigna geneality is supported by
the definitions oimathematical characteristie®d measurement entities using generic design
constructs oimodulesm and modularsystemsMS Such costructs can be easily redefined

for a particular development paradigm as shown in Ch&péthis thesis. The comprehe
siveness is supported by the definition of mathematical characteristics for all structpral pro
erties of softwareand also the applicability of properties to the desayel metrics. Fu
thermore,the framework has been successfully used by other reseansthersvalidating
newly derived metrics[168, 207]

The specificmathematical characteristics from the propdraged software engineering
measurement framework that relate to couphing cohesiorare shown inTable 2-4. The
characteristicaire used as thieasis for the validation of the metridsrived in this research
wherea given metric can be deemed valid i€d@nforms tathe prescribea¢haracteristicor
the correspondingtructural property as shown in Chapters 4 and 5.

Note that thecharacteristics proposed by Briand et[@D] hold only when applying th
admissible transformations dlne ratio scaleThis decision to constrain the tres to a ratio
scalewas criticised by some leading researchers inatk@[126, 250]because such a o
straint could be considered as ovestrictive gven that it automaticallynvalidates a large
number of existing metrics (Briand et 0] demonstrated that most of the axig OO mé-
rics violate the prescribed charadécs). For exampleKitchenhamet al.[126] suggestthat
mathematical charactetics usedto define measures should nonstrain the scaléype of
measuresAlthoughKitchenhamet al. useNe y u k[B3i7]@doms as the example, the same
argument can bepplied to the mathematical characteristics proposed by Briand[80&l.

12 Note that Briand et al. refer to the mathematical characteristics (or axioms) as properties. Given that in this thiesis the te
property refers to the structural properties of software (coupling and cohesion), thenthramaticalkcharacteristc is
used instead to represent properties e&ult et al. so to avoid any confusion.
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CHARACTERISTIC

DESCRIPTION

COUPLING. Non-negativity

the coupling omodulem | modular systervS is nm-
negative

COUPLING.ANull Value

the coupling ofn | MS is null if there are no outgoingr
incoming relationships

COUPLING.3Monotonicity

adding inter module relationships does not decrease
pling of a module

COUPLING.Merging of

the coupling ofn | MS obtained by merging two modul
is not greater than the sum of the cougsnof the twg

Modules - .
original modules/systemssince the two modules m
have common inter modutelationshipgthat may disg-
pear after the merge]

COUPLING.5 the coupling oin | MS obtained by merging two disjoi

Disjoint Module Additivity

modules is equal tthe sum of the couplings of the t
original modulegsystems

COHESION.Non-negativity

and Normalisation

the cohesion of | MSbelongs to a specified intervi,
MAX]. Normalisation allows meaningful compariso
between theohesion valuesbtaina for different mal-
ulegsystems sincey all belong to the sametérval

COHESION.Null Value

the cohesionof m | MSis null if there is no intramodule
relationship/samong the elements of a (all) modulg
since there is no evidenteat the elemds should be e-
capsulated together

COHESION.3onotonicity

adding intramodule relationshifs desnot decreaseo-
hesion since such relationshipsre supposed tprovide
additional evidencef the relatedness sfystem elementg

COHESION.4Cohesive

Modules

the cohesion ofn | MS obtained byputting together twg
unrelated modules is not greater thidne maximum ca
sion of the two original modules/systems

Table 2-4. Coupling and Cohesion properties from property-based software engineering mea-
surement framework ([30] p.76-79)
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Additionally, it was sggested that mathematical characteristasnotbe used tcade-
guately define abstraeind usually semantic attributegch asouplingand ©hesion.
- Moraska, BriandyWeyuker and Zelkowitz responddd67]: i wi t h o oharactenstosh
we end up bstracting away all relevant structure from our model, limiting our ability to say
anything of interest p. 187 Furthermore, theuthors[167] statethati an | mpor t ant
of using propertiegor characteristicgds a means of defining measures is to help goalifi-
tion and make underlying assumptiomp ¢ i . 188 0

As discussed earlier, we believe that the definition of structural software metrics should
be done on a ratifor absolutekcale in order to allow for more comprehensive and detailed
examination of the design structure, therefdren i s -s@rmatei wonstraintd c
beneficial for the purpose of thissearch.

2.5.3 Empirical Evaluation of Metrics

Theoretical validation alone does not imply the overall validity of the metrics. Thesasde

the measurement theory only covers direct measurementf attributes for theassessment
purposesit does not prescribe rules or axioms for the predictive metrics. To validatesthe pr
dictive power of metrics, it is also imperative to establish doglly the relationship &
tween the metrics and the quality characteristics they purport to p[8djc®8, 213] The
common way to do so is to establish and statistically test the experimental hypotheses that
formalisethe relationships between the structural properties of software, as measured by m
trics, and the quality characteristics in questibime choice of statistical techniques foman
lysing the empirical data largely depends on the measurement goals, ananpatanitly,

the mathematical properties of metrics such as the underlying measurement scalemFor exa
ple, a metric should be defined on at leastrg@rval scale in order to allow for effective use

of parametric techniques such as ANOVA test (extensiahettest), Pearson coétfent,

or linear regrssion.

A number of comprehensive empirical studies have been conducted in order to establish
the correlation btween OO structural metrics (including coupling and cohesion metrics) and
the maintainability of OO software produg¢®0, 29,53, 146, 17Q] The experimentaletign
and associated methods and activities of these studies can be readily replicated when evalua
ing metrics defined for different development paradigms such as SOC. This is because the
study structure and objectiveseandependent of the particular technology or development
paradigm in use, only the independent variables will differ (for example, OO metrics can be
substituted with SO metrics).

There are a number of commonalities that can be found in the existingcaingtidies:
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- All studies show correlation between OO design properties, as measured by metrics, and
quality of software products in terms of their maintainability, which is consistent witkethe r
sults of other similar studies conducted in the contexProicedural and OO software to
evaluate various quality characteristics (such as software reliability and tays4§bj 38,

45, 49, 92, 164, 177This suggests that such coatbn can also be established for the se
vice-oriented sdivare products, therelyoviding rationale for this thesidMoreover,some

of the OO metrics which are shown to influence software maintainability can be used for in
tial benchmarking and cqguaris;m with serviceorientedmetrics as is done in Chaptero6

this thesis.

- Two major statistical approaches are commonly used: a standard significance testing of
variance (-testand ANOVAtest), anctorrelation andregressiorf166]. These approaches are
well suited for exploratory research and are commonly used in Software Engin@éiing
Note that correlation analysis allows assessing the degree to which one varidlaledsto
another; whereas regression analyswvides the basis for forecasting the values of & var
able from the values of one (simpleuwnivariateregression) or more (multiple or multivar
ate regression) variables by estimating the parameters of the equation linkind tieegig-
nificance testig, andcorrelation angimple linearegression technigues and associated ind
caors uch as the Pearson coefficientvhich reflects the degree of linear relationshigy b

tween two variablgs are used in this thesis to empirically evaluatenéely derived me-
rics. The specific technigues atescribed in more detaih Chapter 6.

- All studies are subject to variotisreats to validitythat limit thegeneralisatiorand n-
terpretation of the results. For example, most software systems used in the \sardies

search prototype systems, which are commonly smaller and less complex tHée iredlis-

try systems. Also, the data sets in some of the studies contained small sample sizes, thereby
reducing the statistical power and reliability of the res@tgh threats to validity are oo

mon to most empirical studies in software enginegii®]. The study conducted in thief

seart is also subject toalidity threats agliscussedurther in Chapter 6.

Given that the existing empirical studi es
of the associated experimental designs have been adopted in this thesis. The following su
marises the related experimental aspects (based on the measurement goals):

Briand et al. [29] investigatedhe effectsof the Procedurabind OOdesigntechniques and
associated e si gn principles per ceisyvoatdemaimtandbiety 6 g o o d ¢
of softwaredesigns The study design was based ostandardwithin-subgpctsmodel [165],

with the experimentamaterial consisting of four different software designs developed with

permutation of the design techniques and principlé® withinsubjects designvas en-
ployed in this research sincerégquires feweparticipants (the empirical study presented in
this thesisonsisted of ten participants ohbsdiscussed further in Chter 6.
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Basili et al.[20] evaluated Chidamber and Kemer€kK| suite ofOO metrics[44] (discussed

in Section2.5.4 using a controlled, grodpased study. @ counterbalancéhe differences in

skills and experienceamongthe participants when allocating them to study groupshe

level of experienceof each student was charactedsat the begimng of the studyased on
guestionnaires and inteews; and ii) thei b | o c procedgré[119] was employed to
minimise any potential learning effecith e p a r tdevelopmennekper@nce with var

ous paradigmsnd general understanding of the principles of SOC was evaluated prior to
conducting the empirical study in this research. Furthermore, the initiggirprogramming
exercise was completed by the participaagsdescribed further in Chap6.Fi nal k-y, a n
lective order6 p r o 2&7Hwas emnployedn orderto objectively allocate thetudy pa-
ticipantsto the eperimental tasks (refer to Section 6.2.4).

Dagpinar et al. [53] investigatel which objectoriented metrics can be used as sigaift
predictors of the maiatnability of software products bgnalysing thehistorical data of
maintenance activitiesollected from lhelogsof sample OO systems. The maintenance/acti
ities werecategorisednto distinct categoriesperfective/adaptivand corrective The man-
tenance activitiesonducted in this research were alstegorisednto the perfective and co
rective types fdbwing the typical distribution of maintenancetigities described in Section
2.3.2 As with the study obagpinar et al[53] this was done in order to simulate ré#d in-
dustrial settings

Finally, note that several researchers have criticised the standards of performieg and r
porting empirical studies in software engineerihf6, 128] The presentation of the empir
cal study performed in this research follows a widelfined template for reporting controlled
experiments in software engineeripgoposed byledlitschka et a[116, 117] The template
and associated activitiesipporta systematic and weditructuredpresentation of empirical
experimentsmaking it easier for the reader toderstandthe structure of the experiments,
and assedhe validity ofthe experimentalesults.Note that the original template proposed in
[116] had some inconsistencies in the review sections as highlighted by Kitchenham et al.
[128, 129] The updated version of the templft&7], as used in this thesis, has been restru
tured by the authors in order to address the ifledtproblems. This taplate consists of four
major sections that will be used as the foundation for thetsteuofChapter6. They are:

A Experiment planning:i) Goals; ii) Subjectsiii) Hypotheses and Variablgs/) Expe-

rimental materialy) Tasks;vi) ExperimentaDesign and vii) Execution proedure.

A Analysis:i) Analysis pocedire; ii) Descriptive statistics; and)iiHypothesis teing.

A Discussion:i) Evaluations of results; ii) Threats to validity; and fi)ture directions
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2.5.4 Existing Metrics

Thereis a large number of etrics proposed fogquantifyingvarious aspects of thaructural
propertiesof softwarein Procedural and OO developmé¢B8, 44, 63, 95, 102, 2015ome of

the widelyreferencedcoupling and cohesionmetrics are overviewed in this section. Such
metrics can complement the proposed SO metrics since they can be readily used to measure
the stretural properties of individualesvice implementation elements (such as OO classes
and interfaces) in isolation. The additional analysis of metrics directly related to this research,
insofar they contribute to the definitions of some of the metrics proposed in this thesis, is
provided inSections4.2 and5.2.

2.5.4.1Coupling Metrics
In the Procedural paradigm, the wkllown approach for quantifying coupling is based on
the broadcategorisatiorproposed by Stevens et f222] (Section2.4.2. The process ofsa
signing design artefacts to particulawupling categories has a subjective nature, and thus
cannot be automateth contrast, the common approachgteantify the coupling in OO pa¥r
digm is to use objective quantitative metrics that can be easily collected in an autanated f
shion[32, 44, 102, 146]Note that existing OO metriegeoftenexpressed in an ambiguous
manner which makes it difficult to understand how diffenergtricsrelateto one another
[33]. Moreover, only selected metrics have been validated theoretically and empirically. Ne
erthelessthere are a number of waktablishedDO metrics addressing vaus aspects of
coupling:

A Chidamber and Kemer@roposed Coupling Betweenbfcts (CBO)metric (as part
of their highlyreferenced suite of OO metric<CK metrics[43, 44]), which isa count of the
number of nosinheritance related couple@nteractions)with otherclasses. An object of a
class issaid to becoupled to another, if methodd one classise methods or attributes of
another classThe direction of the interactions between classes was not consitfetater
publication [36, arevised definition was proposed in order to include inheritdnased ing-
ractions Theoretically validatedYes( usi ng We y k;Empiridally evaluaiedYess )

A Chidamber and Kemerd#3, 44] also proposed &ponse for Class (RFC) metric,
which represents set of methods that can potentially be executed in response to a message
received by an object of that clasdore specificallyRFC = |RSjvhereRSis the response set
for theclass, which cabeformally definedasRS={ME.ii{R}, where{R} is the set o&ll me-
thods calledby methodi; and{M} is the set of all methods in the claBefer to the original
publications[43, 44]for the explanation of the above formalism. Also note that RFC can be
considered as the measure ofdgnamic coupling Theoretically validated:Yes (using
We y k n e r 6 sEmpiricallyevakigte: Yes.
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A Li and Henry[146] derived Data AbstractionCoupling (DAC) metric, which counts
the number of abstract data tyf§es classesdefined in ggivenclass An abstract data type
considered to bdefined in a class, if it is the typeof an attribute of class. More specifick
ly, DAC is the number of not inherited attributes that haetaas as their typ&.he aithors
reasoned thathite numberof variableshaving anabstract dataype indicate the number of
datastructures depelent on the other classeghich could potentially influence the mainta
nability of the systemiTheoretically validatedNo; Empirically evaluatedYes.

A Martin [154] propo®d two coupling metrics: efferent coupling (Ce) and afferent
coupling (Ca). The metrics are related to the categories of classes,adaegory is a set of
classes that belortggethemecauséhey achieve some commgpal (in this sense, a service
canbe casidered as a category of design elemen@s)is defined ashe number of classes
insidea givencategory thatlepend upon classes outside this catedargontrast, Ca iset
fined as he number of classes outsitie category thatlepend upon classeavithin a given
categoryMartin fails to specifypreciselywhat constitutes dependenclestween classesnd
cate@ries Theoretically validatedNo; Empirically evaluatedPartially.

A Chen and Torngref#1] derived a suite of metrics that are counted based omberu
of weightedcharacteristigsincluding i)the topologyand multiplicityof class interetions; ii)
the replication andrequencyof interactions; and iii) th@accuracy of component properties
thatappear in a relationshifinteraction) Additionally, the authors described a techmidor
combining couplingf individual classesto anoverallsystemcoupling, where domain sp
cific heuristics and technologyonstraints are used to determine the weighfiingoretically
validated:No; Empirically evaluatedPartially.

Finally note thata number of metrics have been proposed to quantify various dimensions
and types of coupling according to the coupling frameworks discusseekction2.4.2 For
exampleHall et al.[95]der i ved metrics fogo, mé@®sturicogphim
ARGl obal Connecti ono c oHitzpahd Mogtazer[H01, 4RJandBrie s . Sir
and et al[33] propose metrics for quantifying different asggect coupling according to their
frameworks (refer tdSection2.4.2). Furthermore, there are a number of coupling metrics
proposed for highhspecialisedireassuch agObjectConstrainLanguage (OC)expressioa
[202] which are shown to influence tlamalysabilityof UML-based mdels. These metrics
are not directly related to this research since they are specific tdi@ujaartechnological
concept (namely OCL) and thus nangric enough to be applicable in the context of diffe
ent development paradigms such as SOC.
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2.5.4.2Cohesion Metrics

In the Procedural paradigm, the wiklown approach for quantifying cohesion is based on
the taxonomy of cohesion categories defined by Stevens[@Ra].(refer to Sectior2.4.3.

The process of assigning design fatés to particular cohesion categories haslgestive
nature(similarly to coupling categorisation described previoyséy)d thus cannot be adt
mated.Therefore, more recent researchtiatives havdocussed on the definition of quaatit

tive cohesionmetrics thatsupportan entirely automateaneasurement procesbhe existing

OO cohesion metrics can be grouped into different categories based on the underlging mea
urement procedure aslfows:

1) Method->Attribute Accesgs

The attribute access relatecetmcs, which represent the most common type of cohesion
metrics, are based on the suppositizat a given OO clads cohesivef all its attributesare
used by althe methodsof this classSuchmetrics can be applied only at timeplementation
level because class internals are typically not known at ¢higyd stage.

A Chidamber and Kemereterived Lack of Cohesion in MethodsQOM) metric[43,
44], whichis the nost often used angkferenceddO cohesion metric to date. LCOM is the
number of pairs of methods in a class having no common attribute refe(@haesluced by
the number ofmethodpairs reérencing at least orgharedclass attribut€P). LCOM will be
set to zero in casf)| < |P|, where zero indicategood cohesion (LCOMis an inverse
measurg This artificial reduction of LCOM to zero has beaiticisedin the research liter
ture [20, 24, 146] Theoretically validatedYes( usi ng We y k;rEmpiricadlyeax i o ms )
luated Yes

A Li and Henry[146] and Hitz and Montazefil01, 102]redefined the LCOM metric
since it was shown that LCONan be overlydependentn the total number of nfeods: i)Li
and Hery proposed new definition of LCOM (commonly referred to as LCQNfined as
the number of disjoint sets of local methods in the clabsre no two sets inteectand any
two methods irthe same set shariraj least onelass attribute; and iiHitz and Montazeri
proposed another extension to LCQbbmmonlyreferred to as LCOMRZin order toinclude
method invocatios as the additional indication of cohesiveness. That is, LC@ddRndo-
cal methods to a given set not only basedtmattributeaccessedyut alsobased on thent
vocation of other methods of the same cld3$soretically validatedNo; Empirically eva-
luated Yes

A Bieman and Kan¢p4] propesed two metrics, Tight Class Cohesion (TCC) and Loose
Class @hesion(LCC), which are related to LCOM and its variations since TCC and LCC
also evaluat@airs of methods which use commcdassattributes. However, indirectly used
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attributes are also congiced, where @thodm uses attributa indirectly, if m directly or n-
directly invokesa methodY Qvhich uses attribute. TCC is defined as the percentage of
pairs of methods of the class which dreectly connectedLCC is defined as the percentage
of pars of methods of the class which a@nected bothdirectly and indirectly The values
for both TCC and LCC will range from O (worst cohesion) to 1 (best coheSibadretically
validated:Partially, Empirically evaluatedYes

A Gui and Scotf93] proposeclass cohesion metritiat is similar to the LCOMelated
metrics, but also takes into consideration the strength of cohkestareen methods bysa
signing a value to each pair of related methods based on the number of instance variables
common to these methodslass cohesiois calculated by dividing the sum of all simikaes
between methods by the total number of pairs laited methodsSystemlevel cohesionis
defined as thenean cohesion of all classes in the sysfEne authors also present sonme-e
pirical evidence that the proposetktric was a better predictor of classusabilitythan the
LCOM, LCOM1, LCOM2, and TCC/LC metrics.Theoretically validatedNo; Empirically
evaluatedPartially.

2) Method Parameters

The parameterselated metricare basedn the suppositiorthat a classs colesive when
all the methodén this class use the same set of parameter typiesh mérics areapplicable
to software designsince method interfaces are typically known at the design stage.

A Bansiya et al[15] proposeCohesion Among Mthods in a Class (CAMC) metric that
measureshe degree of correspondence between the parameter types across eachesf the m
thods in an OO clasgo compute CAMC for a class withmethods, the union of parameter
types in the method signatures of a class constructed; and setM of all parameter object
types for each method is constructed. An intersectiofSs$tM with the union seT is then
calculated Finally, the summedcardinality ofall theintersection sets is divided Bymultip-
lied by n to derive a final value of CAMCTheoretically validatedNo; Empirically val-
dated:Yes

A Counsell et al[50, 51] propose Normalised Hamming Distance (NHD) metric which

canbe considered as extension of CAMC. NHD quantifiesdiagreement betwaeaows in
a binary matrixconstructed based on the parameter types used byetheds of a classTo
calculate NHD the sum of the disagreemefistween methods over all parametisrean-
putedandthensubtracedfrom 1.1t wasempirically showrthat bothCAMC and NHD core-
late strongly with LCOM metric, thereby providing a useful alternative for nmiegs®O
cohesion since they can be computed at the design $tageretically validatedNo; Empr-
ically validated:Yes
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3) Program Slices

A Bieman and Otf22] proposed a set of functional cohesion metrics based on program
slices, where slicing represerstanethod for examining the implementation oftwafe and
removng code statementhat do not effeca computation of interest. €hresulting smaller
prograns (orslices) canbe used to assess thgribute uagepatternsand the dependenceb
tween parts of code and attributes usath approach is implementation dependent and ca
not be used to measure design cohesion as was no&drbanin his later publicatiori23].
Theoretically validatedNo; Empirically validatedPatially.

Additionally, there are a number of recent and fundamentally different approaches for
measuring cesion. For example, Marcus and Poshyvaiy0] proposed Conceptualoc
hesion of Chsses (C3) metric, which measures cohesion based on both structural and synta
tic aspects by using natural language processing techniques to extrewiatidn from the
source code identifiers and comments in order to analyse semantics of the prahkem d

2.5.5 Discussion

As was discussed in Secti@¥.4 the structural properties of softwatan be measured at
different levels of abstraction, ranging frdmgh-level desigrthroughto executable img-
mentations with the targetével of abstraction influeimeg the metricsdefinition and mea-
urement procesdMeasuringstructuralpropertiesof software implementatiooan result in
more accuratemeasurementsompared to measuring properties of designs sincee de-
tailed datais avaiable.Nonetheless, thmetrics should be collected as early asspie since
the sooner problems thesoftware structurean be idetified, thesmallerthe effort required
to correct themThus it is beneficial to use metrics thedn be applied eariyp the SDLC to
ensure that software design have favourable structural propdttereby decreasing the
number of software errors (or faults) and allowing the develdpdis problens and emove
irregularitiesin an efficient mannejl6, p.4] The suite ofserviceoriented coupling andoe
hesionmetricspresented in Chaptedsand5 respectivelyis appliable tolow-level desigs.
Numerous metrics have beproposed to measure coupling and cohesion of OQvsoé,
but as Fenton and Pfleedé&b, p.319]note there is as yet no common agreement on what
should be measured in OO systems and which metrics are apprdpuidtermore, most of
the existing meics lack formal theoretical validatioAs discussed in $8on 2.5.2 ametric
can be deemettheaetically validif it has been demonstratéatthis metricis indeed mes
uring the attribute it is purported measurdasedon the conformance to the accepted ax
oms. Such axioms support methodical definition of metrics based on the principlessef mea
urement theory The derived serviceoriented metricswere theoretically validatedising
propertybasedsoftware engineering meaementrameworkproposed by Band et al[30].
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Although many software metridsave been defined for OO development modmily
very few have been proposed for servimgenied systemsPrevious research has shown that
the use of differentlevelopment paradigms, such aededural design and OO, will result in
systems with different structural propert[€8, 102]as discussed briefly in Secti@#.1and
elaborated further in Chapter Bccordingly, the gisting Procedural and O@etrics are not
immediately applicable to th&ructureof serviceoriented designand development princ
ples introduced by serviemientation as was the case wittbBedural metrics being insuff
cient forthe principles 000 [44, 63, 146] The design of servieceriented systems including
various structural characteristics and senspecific relationships is formalised in Chagier
Additionally, Chapter 3 discusses the major distinct characterwti8® designs thatiffer-
entiate them from previous devptoent models (such as Procedural and OO development).

Furthermore,Perepletchikov et al[189] conductedan exploratory empirical study in
which some of theexistingProcedural and O@etrics[44, 156]were wable to differentte
betweertwo Service-Oriented designs that were qualitatively different in terms of loginéll
physicalstructure The systems were developed using two contrasting approaches, where one
of the approachesmployedcoarsegrained sendes structured usinghe principles ofOO;
and anotherapproachwas based on embedding business logic into executable BRSL
scriptswith thesystemconstructed in termaf fine-grained servicedNote that the study only
investigated a limited number aifetrics, namely six metrics from Chidamber and Kemerer
(CK) suite[43, 44] and Mc Ca b ednplextyymetrichl B®hwhichcis one of the
most used complexity metric for both Procedural and OO software. As such, it cannot be
considered as representative and comprehensive.

Nevertheless, it provided initial empirical evidencggesting that some of the existing
metrics cannot be readily applied to SO systems. The designs used in the study antt the resu
tant metric values are described189].

To conclude, there is a need to deraral theoretically validatmetricsspecific to SOC
paradigm. Such metrics shoudtso be evaluated empirically to establish the correlatesn b
tween serviceriented coupling and cohesion and the maintainability of final softwacde pro
ucts. To this end, the Maintainability model established in Segti®s2 (Figure2-6) can be
extended with the additional constructs as showfigare2-7.
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Chapter 3. Formal Model of ServiceOriented
System Design

This chapter presents a formal modelksefviceorienteddesign covering structural aroe-
havioural properties of the design artefacts iserviceoriented systemThe modelextend
the genericgraphbasedmodel of a software syste80] with the coredesigncharacteristics
of serviceorientation The main purpose of the model is to allseftware metrics related to
the strutural properties okerviceoriented softwareesigns to be:
A Defined in a precise unambiguous manrmsénce the entity under studgervice
oriented software degn, is specifiedin a formal way

A Theoretically validatedusing thepropertybased software engineegi measurement
framework[30] described in SectioB.5.2which requires software to bheodelledus-
ing graphbased bstractions.

Additionally, by famalising various types of serviagienteddesignrelatiorships, the
model simplifies the definition of coupling metrics asctibed further in Chapter 4.

This chapter is organised as follows. Sec@choverviews related wi on design md-
elling. Section3.2 describes theore design characteristics of servieariented softwarghat
should be captured by the model definitions. The model definitions are tesanied and
discussed in SectioB.3, and listed in a table in Sectid@4 to enable easier refncing in
later chapters. Finally, Secti@b5 summarises the derived model.

3.1 Modeling Software Designs

In order to define software metriégs an unambiguouand precisemanney the intuitive un-
derstanding of the principles of servicgented design should be consolidated into a formal
model. This is because the abstraction of an entity, such as software dasigid, be as
formal as possible in order to objectively measure its attripaéds

As described in Sectiod.5.1 measurementan bedefined as the process by whiebm-
bers or symbolsare assigned to attributes of entiti€sich assignmemhust preserve anyre
pirical observations about the entitiesd their attributes, thereby maintaining the bem
morphism between the empirical and relational systems as prescribed biethefrmea-
urement theoryTo illustrate the key concepts of measurement theory a simpiepéxaf
measuring height of a human is shown in Appendix B, where it is discussed that wisen mea
uring aheight(attribute)of a human (entity), thbiggervalues mst be assigned to the taller
humansso to be consistent with our intuitive understanding of the attribute of hdigéat
problem is thatan attributemay have a dissimilaintuitive meaningfor different people
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making it difficult to establish empiricaletationships between the @rds Therefore, there is
a need tadefine aformal model of an entity that will reflecta specific viewpoin{72]. For
example,a model of a human might specify a particular typgos$ture. Once suchraodel
is defined, theeonsensusan be established regardiegpirical and formatelationsapplica-
ble to umans with respect to their height

The need foformal modellingis particularly relevant irthe area of software measur
ment, where the structurpropertiesof software are not fully understood or consistendy d
fined. For example, evea presumably wellinderstoodoroperty of size and its associated
metrics, such as for example LiresCode (LOC), can have different interpretations,
therebyrequring awell definedformal model ofsoftware in order to avoid anguity [72].
Also, modelling software designs allows emphasising specific structural aspects tha-are rel
vant to paticular measurement god251].

3.1.1 Related Work

The widelyreferencednodelof a generic software system was deélivy Briand et al[30]
using a graphktheoreticapproach The model was used by the auth{86] to support the
specification of the mathematical characteristics for the structural properties of software as
part of theproperty-based software measurement framewdw&cribed in Sztion 2.5.2

In this generic modeh software systen&is representeds a graph, wheneertices syn-
bolise softwarartefacts (elements) andges correspond to the relationships between these
artefacts Such a graph can be formally captured asir<E, R>, wherekE symbolies the set
of elemets of S, andR is a binary relation o (R/ E 3 E) representing the relatiships
between the elements &f Also, a modulen of Swas defined am = <E,, R>, whereE, /
E, Rn/ En 3 EmsandR,/ R The modules can overlap each other and can alsefimed at
a different level of abstractiofgr examplean ObjectOriented clas vs. a segment of code.

Additionally, the representation of a generic software system was expayn@sind et
al. [30] in order to capture the structure ofrdularsystem This was done in order tosu
port the specification of the mathematical characteristics focdabplingandcohesion prp-
erties of softwargwhich can be investigated only irethontext of modular systerf&0]. The
modular system MS) was defined aMS = <S, M>, whereS =<E, R> is ageneric software
system andM is a colletion of disjoint modulesm of S For exampleE canrepresent aet
of OO methodsand R can represent aet ofinvocationsfrom onemethod toanother. A
modulem can then sybolise an OO class in systevit

Figure3-1 showsa modular software design thandae represented adIfows:
E={a b,c,d,ef g hii}
R={(a, b), (a c), (a d), (c,f), (d ), (d 9) (e b), (f ), (g i) (h, e) @h) Gk
M ={m1, m2, m3}where each individual modulesmonsists of the subets oft andR.
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Figure 3-1. Design of a modular software system (modified from ([30], p.71))

Note that this generimodelwas designed to represent the structifreny software sg-
tem, given that it does noeduce the number of possible system representatiecsuse
softwareelementsmodulesandassociatedelationships can be defined accordingpecific
technoloy and/or development paradignfsor example, this model has been successfully
used (and also extended) by various researchers in order to unambiguously derive-and the
retically validate software metrics based on the specific measurement goals:

1 Moraska[168] usedthe modelin its original formwhen derivingmetrics for measy
ing structurapropertiesof size, length, complexity, and couplin§concurrent software sy
temsthat havebeenexpressethy means oPetri nets

1 Rossiand Fernande207] modified the original model definition® representhe
structure ofa software system ogposed ofcooperating distributed componeniis was
done in order to formally defina set ofdesign metricspecific todistributed systemsrhe
structural modications were based on substituting the definition of a set of system elements
(E) and modulesN) with the set of system componen®) @nd compoent clusters) re-
spectively. Also,Rossi and Fernandeatroduced additional types of relationships between
system elements for capturisgmeof thebehaviourabspect®of the distributedsystems.

1 Allen [3] extended the definition of systeabstractionS with additional charactest
tics in order tanodelexplicitly the lackof relationships beteen the system and its enwiro
ment(i.e. a disconnected nodkat represents the environmevds added to the original dtef
nition of S). The author also provided separate défins for software systenthat include
only inter or intramodule relationshipsThese extensions were introduced in order {@ su
port derivation of software metrics fareasuring the size, length, cplaxity, coupling, and
cohesion ofgeneric software systems.
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1 Briand et. a[33] also extended the generic model in later re$epublications in o
der to formally capture the structure OO systemdased on the specific viewpoints and
measurement objectives. For example, to theoretically evaluate existing metrics for-measu
ing coupling in OO systems, the structure of softwar¢éegysvas redefined using OO Sy
tem, OO Classes, and Inheritance Relationships as the key modefistgicts. The authors
also included the formal definitions of OO class attributes, methods, and their assaiated p
rameters in order to make the model maescriptive. Additionally, in a more recent research
publication[10], a definition of the generic structure of software sysg&was redfined in
terms of the ats of OO classegC), objects (O)methodgM), and Ines ofcode (N) in order
to derive metrics for measuringydamic couplingin OO systemdased orruntime object
interactions.

Neitherthe original nor themodified models are directly applicable serviceoriented
system designgecause:

- Theytreat applications as a collection of software components independent of specific i
plementation architture

- They were defined for a particular development paradigm (such as 0OO), thereby
representing a specific technolebgsed viewpoint making them inajgable to the partic-
lar charateristics of serviceriented designs.

3.2 Fundamental Characteristics of SOSystemDesigns

This sectionsummarises the four important characteristics of semignted designs &t

belled C1C4 below) discussed in Secti@®, which cannot be readily captured by the €xis

ing model of a generic software system or specific models reviewed above. These eharacte
istics will be incorporated into the model of a serviceented design prested in the next
section.

C1. SOCintroducesmore levels of abstraction compared to other developmenagigms

The Rocedural paradigm has only omainlevel of designabstractiona procedure The
ObjectOrientedparadigmoperates onwo levels ofdesign &straction, wheré®©O methods
areencapsulated withi@O classes

In contrast, the SOC paradigntroduces a third level of abstraction and encapsulation:
service In serviceoriented systemsperations(e.g. OO methodsjyre aggregateahto im-
plementan elementge.g. OO classgghatimplement the functionality of aerviceas ex-
posed through itservice interface.

C2. Implementationof services can be achieved using various platforms and languages
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Serviceoriented systems can be implemented using a rahd#ferent technologies and
development paradigms, whichdspecially relevant given the application of SOC tegra-
tion projects Previous research has shown that the use of different developoéels such
as Procedural and Ofaradigms will result in systems with different struatal properties
[63]. Therefore,to allow for more accurate and detailed modelling of ®€igms,different
service implementation eleenttypes should be treatadifferently, rather thanbeing can-
binedinto one single generic element as was dor}8,i80, 168, 207]

C3. A service interface is an impaatt first-class desigrartefact

Correctly identifying service interfaces ¢ballenging and importargerviceoriented -
sign activty [57, 94] This is becausmterface granularity ahrelatednessf its opeitions
will strongly influencethe structural properties of servodented designs assdussed in
Section2.2.2 Moreover serviceorientedsystems should be structured in terwhsndepeml-
ent,self-contained s&vices, withserviceinterfacesbeingthe primary entry points @ system
in order to enforceservice autonomj#, 67, 186] As such, service interfaces must be highly
stable aguturechanges can potentialaffect a large nmber ofclients.

C4. A service is not an explicidesign construct

In existng implementation technologies,sarvice boundaris logical rather than phis
cal. Therefore thae is a need to define a concrete procedure foutiaenbiguousllocation
of implementation elements to services in orledeternme service boundaries, therely a
lowing inclusion of services as firstass design artefacts in the model of SO designi-Add
tionally, identifying a service boundary will allow specifying various typemé- andin-
ter-servicerelationships(Section3.3.2 that can influence the apling of serviceoriented
designs aseabcribed further in Chapter 4.

3.3 Model Definitions

This section presents the model of serodented system design, which extends a generic
model of a softwar system (described in Secti@rl.]) by incormrating the fundamental
characteristics of serviearientation. In this model, the design of\dee-oriented system is
represente@s a bidirectionalgraph [80] that can beexpressed usingtandardsettheoretic
notation. Vertices (V) in this graph symbolisesoftwaredesign artefacts found in service
oriented systems, namelervice interfacesand variousservice implementation elements
Edges(E) correspond to the relationships betwéeeseartefacts, representing both structural
ard behavioural dependeies.

For example, an arbitragdesign structuréSOS)illustrated inFigure3-2 consists of:

- avertex seV(SOSK {sil, si2, p1, cl1 bpl, hl, i1, c2, p2, c3; c4
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- and an edge s&(SOS) {(si1, p2, (i1, cl, (i2, bpl, si2, c3 (c1, p), (1, cI, (1,
hl), 1, i1, 1, p2, (1, c3, (2, cj, (4, c3, (2, sid}, where an edge with engerticesx
andy is denoted byx, }).

Also, the grap of a serviceoriented system can be partitioned intmamber ofsub
graphs representing individual serviégeghe system as shown kigure 3-2, wherea graph
SOShastwo marked sulgraphs(services)serlandser2 For examplesavice ser2 consists
of a vertex seW(seR) = {si2,c2, bpl, c4, which is a subset 0¥f(SOS) and an edge set
E(seR) ={(si2, bp), (si2, c3, (c2, c)}, which is a subset &(SOS.

The formal definitions capturing the design of SO system are presented in three parts to
improve readability, withSection 3.3.1 defining design artefactthat constitute serviee
orientedsystens; Section3.3.2 defining various relationships between these artefacts; and
Section 3.3.3 combining definitions from the former two subsectiomr#o one complete
model Fnally, Section3.3.4presentsa formalism for representirgjfferent ypes of Service
Oriented system designs based on their comkace to the principled serviceorientation.

3.3.1 System Structure

This subsection formally defines the structure of a semimnted system in terms of its
constituent services and associated service interfaces and implementation elements-The not
tion used in the model defitons can be found in Append

DEFINITION 1 (System structure)

The serviceoriented system structur8Y$ is composef the sets of various design a
tefacts as follows:

i) The concept of a generic design element is subdivided into two distinct design art
facts, a servicanplementation elemeand aservice interfacein order to cover design aha
acteristic C1 described in Secti8r2

i) Theimplementation elemenmirtefact is further subdivided into more concrete anpl
mentation typs, namelyBusiness process scripitgbps), OO classes (cand Procedural
packages (p). These types represent common technologies used to implement -service
oriented systems. This was done in ordezdeer design characteristic C2.

i) The service interfacdsi) is defined as a separate design construct in order to cover
design characteristic C3. Furthermore, the structural characteristics of interface types (OO
interfaces or Procedural packages) are also different from that of concrete implementation
types[82, 242] As a result, th€®O interfaces (iJand Package headers (lgre defined as
separate ements in the model.

13 For example, WSBBPEL 2.0 scripts (refer to Section 2.2.1)

14 Collection of procedurethat can be written in any procedural/structdrased laguage (such as C).
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Figure 3-2. Example design representing SO system (SOS)

Formally, a sgtem structureY$ can be defined as:
SYS =<SI, BPS, C, I, P, H> [D1]

whereSl is the set of all service erfacessiin SYS; BPS is the set of all business@ro
ess scriptbpsin SYS; C is the set of all OO classei®m SYS; | is the set of all OO interfaces
i in SYS; P is the set of all procedural packages SYS; and H is the set of all package
headerdin SYS.

DEFINITION 1.1 (Service structure)

The sets representing the compositional elements of a sesyiaee(subsets of the sets
comprising the total elements of the syst&i$, with the exception of the service irfece
which is a single element lmgse a service has only one service interface.

Formally, a serviceg can be defined as:

s = <sis, BPSs, Cs, Is, Ps, He> [D1.1]

if and only ifsisi SI@ BPS 1 BPS@Csl C @l | &1 POHs1 H) @ BRPS 8 Cs
8 158 Ps8 Hsads).

Note thatdsymbol representservice membershig\s was described previously (chera
teristicC4), a service boundary is logical rather than physical in current implatnen teb-
nologies. Therefore, the allocation of elements to services is performeonbideing the
possible call paths in response to invocations of operaggpssed in a service imface.

As an exampleconsider the design shownkigure3-3 andFigure3-4, in which:
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i) service interface si2 has a service operation sopA(...) which is realised by the following

sequence of calls: 1) si2.sopA(...)> c2.0pB(...);
2) c2.0pB(...}> c4.0pC(...);

i) classc4 has operatioopC1(...)which invokes operatioapD(...)belonging to class3.

Upon examining the relationships between all system elements (static coupling), without
taking into consideration the chain of calls initiatedni service interfacei2, an element3
will be allocated to serviceer2(as shown irFigure 3-3) given that elements4 andc3 are
coupled together viaervice unrelated relationshimitiated by the callc4.0pC1(...)->
c3.op[...). Such allocation would be incorrect because elero@should not be a part of
ser2given thatc3 is not reachable through methods invokedcéthrough opeation sopA()
of interfacesi2. Figure 3-4 shows the correct assigemt of eéments to services performed
by examininghe chain of calls initiated from the service irfecesi2.

The information required to perforthe allocation of design elements to servicas be
derived from behavioural design artefacts such aseseguor collaboration diagrams, flow
charts or data flow diagrams; or by tracing the actual executable code if avéaiaiectice,
service unrelated relationshsfsuch ac4.0pC1(...}> c3.0pD(...) would most likely occur
when designing a servig@iented systems using a bottarp approach (refer to Section
2.2.2. Such relationships break the rulesefvice autoomyand should be avoidg@8].

Finally, note that sme of the implementation element types could be absent fromghe sy
tem and/or service structure. Asesult, the corresponding sets of elements would be empty
(indicated byA ), but the Definitions D1 and D1.1 would still hold. For example, thevllo
ing is the representation of a servimgéented systen$OSand a serviceerlfrom Figure3-2,
where servicserlhas no elements in the set of Business process scripts (BPS):

SOS$ <8I, BPS, C, |, P, H> = <{si1, si2}, {bp1}, {c3, c2}, {i1}, {p1, p2}, {h1}>;

serl= <S§.erL BP&rL C;,erL |serL Pserl, Hserl> = <SilA, {Cl, C3}, {il}, {pl, DZ}, {h1}>

To make the model more detailed and descriptive, we now present the definitions of the
operationsof elements and their assaiedparametersandattributesof elements

DEFINITION 2 (operations of an element

Design elementsanhaveone or morecallable operations, which can be treated gener
cally for all element types and definaemtrhally as:

For each elemente | SI 8 BPS 8 C8 18 P 8 H let Op(e) be the set of operations op of
element e [D2]
In addition, operations can be defined individually to cover for the specific element types.
For example, operations included in a service interface can be datned
For each service interface sil Sl let SOp(si) be the set of service operations sop of service
interface si.
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Figure 3-3. Static allocation of implementation elements to services

Service | Service |
ser2 I-

Figure 3-4. Dynamic allocation of implementation elements to services

DEFINITION 2.1 (operation parametersreturn type, and preand postconditiong

- Operationscanhave(optional) inputparameters, which can be formally defined as:

For each operation opi Op(e) let Param(op) be the set of parameters par of op [D2.1]
Additionally, parameters can be defined for the specific operation types. For exaaple, p

rameters of @ervice interface operati@opcan be defined as:

For each service operation sopi SOp(si) let Param(sop) be the set of parameters par of

sop.

- Operationscan have (optional) return typehich can be formally defined as:

For each operation opi Op(e) let returnType,, be the return type of op [D2.1]
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Thereturn types<an be defined individually to cover for the spectdperationtypes. For
examplethe return typef a service interface operatisnpcan be defined as:
For each service operation sopl  SOp(si) let returnTypes,, be the return type of sop.

- Operationscan have (optional) preand postconditions which can be formallyelined as:
For each operation opi Op(e) let Cond(op) be the set of pre- and/or post-conditions cond of
op [D2.1]

As was the case with the input parameters and return type defined above,- thedpre
postconditions carbere-defined to cover for the specifioperationtypes. For examplgre-
and postconditionsof a service interface opgronsopcan be dfined as:

For each service operation sopi SOp(si) let Cond(sop) be the set of pre- and post-
conditions of sop.

DEFINITION 2.2 (attributes of an elemenf

Design elementsanhaveone or moreattributes which can be treated genericalfity all
element typeand defineddrmally as:
For each elemente | SI8 BPS8 C 818 P 8 H let Atr(e) be the set of attributes atr of ele-
ment e [D2.2]
Additionally, attributescan be defined individually to cover for the specific elemen
types. For examplattributesof an OO classan bere-definedin terms of class variables
For each OO class ci C let Var(c) be the set of member variables var of class c.

3.3.2 Relationships

This subsectiorpresentsthe definitions of various types afelaionships between séce-
oriented design elements, whergemericconcept of a relationship is describedrigure 3-5.
This definition ofgenericrelationship is consistent with thigpes of interactiosfrom the
coupling fram&vork proposed by Briand et B3] (described in Section 2.9,2except for
the technologadependent associations that are needed to cover for the inheligatse -
ture of sevice-oriented design elements.

DEFINITION 3 (relationships between desigartefads in serviceoriented systempg

Given thatnot all combinations oélementa to elementb relationships aréechnolog
cally achievablethe relationshipare describetielow in terms of theommonpossible and
improbable sets of servic@®riented design relationshipshdse sets are based on current
technological constraintand the experience of the present authot are not considerecd
finitive and @uld change inasponse to changing technology.
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A relationship is said to exist between two service-oriented design elements a and b
(af sI8BPs8Cc818P8Handb/ SI8BPS8C 818P 8H)if:

i) An operation of a (op I Op(a)) invokes an operation defined in b (op i Op(b))

ii) An operation of a (op I Op(a)) references an attribute defined in b (atr [ Atr(b))

iii) An element a is the type of an attribute of element b

iv) An element a is the type of a parameter of an operation defined in b
(pari Param(opi Op(b)

v) An element a is mapped to element b via technology-dependent association. For
example, two OO classes related through OO inheritance, or wsdl-based service
interface operation mapped to a business process script via middleware support

Furthermore, if b is also related to a according to the above, this is considered to be
a separate relationship.

Figure 3-5. Definition of a Service-Oriented design relationship

Common relationships (Rc) representelationships that are likelyo occur in all service
oriented systems, in which collaboration betweemwsok elements is done either through a
service interface odirectly betweenimplementatiorelementsbelonging to the same ddve
opment paradigm. For example @O clasg(c) invoking anothe©O class(c) directly (class
to-classCC relationship}, or through arOO interface(Cl) can be considered as a common
relationship since the elements involved in the relationship belong to the same paradigm.

This set of common relationships daaformally defined as:
R=<CSB SICB CC8 CI8 IC8 118 PSB SIP8 PP8 PH8 HH8 BPSS3 SIBP8 BPSBPS$>

whereCSIl C3 SI,SICI SIxC CCI C3C,Cll C3 I, ICI I3C,IIT I3, PSI

P3 SI,SIPI SI® P,PPI P3 P,PHI P3 H,HHI H?3 H,BPSSI BPS? SI, SIBPS

I SI® BPS, BPSBPS BPS3 BPS*.

For example, a set of relationships CI representing subset of all OO classes to interfaces
relationships (C 1) for systemSOSwould be CI ={c1, i)} in the design shownni Figure
3-2, where each single relationship is represented awdeeed pair(source, destination).

Possiblerelationships (Rp) representelationships which are technologyr paradigm)de-
pendentjnsofar as the desigglements collaborate withe elementdelonging toa different
development padigm. For example a functigiprocedure) within &rocedural package (p)
is called from a method ohaDO clasg(c) via a native interfacel he set of possible relatie
ships can be fonally defined as:

15the3 symbol represents a Cartesian product between two givefrefetsto Appendix D)
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R,= <CR8 PC8 CH8 CBPS BPS® BPSB PBPS BPSF BPSHB PI >
whereCPI C3 P,PCI PxCCHI C3 H,CBPSI C3 BPS,BPSCI BPS3 C,BPSI
I BPS2 |, PBPSI P3 BPS BPSPI BPS3 P,BPSHI BPS H,PIl P3|

Improbable (technology dependentyelationships (R;) representelationshipghatare cam-
sidered to bémprobablewithin the logical anadturrenttechnological constraintsf a service
oriented system. For exampke WSDL-basedservice interfacesi) cannot call another se
vice inteface (or oher explicit interface types such @© interface () or Packageheader
(h)) directly, asthis would be done through a separate implementation element. Asadg-a
ageheader ) can berelated to other headers only (Via n c | datioeships) buteanrot
be coupled directly to other implementation elements. Finally, it is impossible to haee a rel
tionship from anOO interface (j to the elements belonging to different developmena-par
digms such aProcedural packages J@andheaders lf), andBusiness Rycess Scripts (bps
For competeness, the improbable relationships afendd below:
R =<SIS3 SII8 I1SI8 SIH8 HSI8 HP8 HC8 HI8 HBP IH8 IP8 IBPS >

whereSISIl SI2 SI,SIIT SI3LISIT 13SI, SIHI SI3 H,HSIl H3 SI,HPI H3 P,

HCI H3 C,HI1 H3 I, HBPSI H® BPSIHI I3 HI,IPI I3 P,IBPSI I3 BPS

The set of overall relationships in a servareentedsystemdesign can therefore be repr
sented as a union of @bmmon(R;) and possible(R,) relationships betweevarious design
elementsThis overall set of relationshipR)is formally defined as:

R=R.8 R, [D3]

DEFINITION 3.1 (relationships between design artefadiglonging to a servige

The setrepresentinghe relationships belonging to a particularvices is the subseof
the overall set of relationships (R). This subset includes relationships between eleaents b
longing to a particular service and can be formally defined as:

Re = Res 8 Ros [D3.1]
if and only ifResl Re, Rpsl Rp, andR:8 R, = R according to Definition D3.

3.3.2.1ServiceOriented StatidRelationship Types

The following definitions cover the design relationships from the perspective of a service by
addressing variousitra- andextra-servicerelationship types that canfiuence the structural
properties of serviceriented software designs. Such relationship typeapsulate important
design principles of serviearientation. For example, the direct exsexvice redtionships

from one implementation element to anothi® and OR relationships specified in Defin
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tions D4.3 and D4.4) should be avoidgiden that SO systems should be structured in terms
of independenservices, wherall inter-service interactions are performsiiictly via service
interfaces (design chatacistic C3 from Sectior8.3). The structural service relationship
types are defined formally below in order to provide the foundation for the couplitnigsne
presented in Chaptdy with the formal definitions of such metribging based on the deifin
tions of the structural relationships.

Note that the following relationship types can be considered@sling relationshipsc-
cording to thecoupling frameworlof Briand et al[33] adopted in this research adescribed
in Section 2.4.2 Similarly, the service relationships defined below coveildhas of impact
aspect[33] (import or export coupling) with incoming and outgoing relationships covered
seprately.

DEFINITION 4.1 (relationships between a service interface and service implaaten
elementy

The set of direcserviceinterface to implementation relationshipi&(s), which repre-
sents theelationshipshetween a service interfasg and the implementation eshentse of
services, isformally defined as:

lIR(s) = {(sis, ) I Rs|Rs1 (SIBPS 8 SIC 8 SIP)@si;| SIPel (BPS;8 C.8 P,)} [D4.1]

For example, thdR set for serviceserlshown inFigure3-6 is:
lIR 6er) = {(si1, cl)sil, pl)}.

Note that as previously described in Defilmn D3, a servie interface cannot be ©o
necteddirectly to other types of explicit interfac€such as OO interface or Package header)
due to technological constrainf®erefore, these relationships are not included in theidefin
tion of IIR(S).

DEFINITION 4.2 (relationships between service implementation elements

The set ofinternal service relationshipkSR(s), which representthe interconnection of
implementation elements ande, belongingto services can beformally defined as

ISR(s) ={(e1, e) | Rs|Rs1 (CC8CI8IC8118PP8PH8HH8BPSBPS8 CP8PC8
CH 8 CBPS 8 BPSC 8 BPSI 8 PBPS 8 BPSP 8 BPSH 8 PI) @
e, e, (BPS;8 C,8 1,8 P8 H)} [D4.2]

For example, théSR set for servicserlshown inFigure3-6 is:
ISRger]) = {(c1, p1), (p119, (c1, i), (i, c2), (p1, h), (p2, h)}.
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Figure 3-6. Example SO design (including different relationship types)

DEFINITION 4.3 (relationships between the service irfgmentation elements of a given
service and the elements belonging to the rest of the syst@moming

The implementation elemengs belonging to theast of the system are connectedhe
implementation elements, belonging to a particular servicevia incoming relationships
IR(s) defined formally as

IR(S) = {(e1, &) I Rs | Rs1 (CC8 CI8IC818PP8PHS8 HH S8 BPSBPS 8
CP 8 PC 8 CH 8 CBPS 8 BPSC 8 BPSI 8 PBPS 8 BPSP 8 BPSH 8 PI) @
eil (BPS-BPS,;8 C-C,81-1,8 P-P;8 H-H,) De,l (BPS;8 C,8 I8 P, 8 H,)} [D4.3]

For example, théR set for servicgerlshown inFigure3-6 is: IR (serl) = {(c3, cl1)}.

DEFINITION 4.4 (relationships between the service implementation elements of a given
service and the elements belonging to the rest of the systenitgoing

The implementation elemengs belonging to a particular serviceare connected to the
implementation elements, belongng to the est of the system bgutgoing relationships
OR(s) defined formally as

OR(s) = {(e1, &) | R¢ | Rs1(CC 8 CI8IC81I1 8 PP8 PH8 HH 8 BPSBPS 8
CP 8 PC 8 CH 8 CBPS 8 BPSC 8 BPSI 8 PBPS 8 BPSP 8 BPSH 8 PI) @
el (BPS;8 C; 81,8 P, 8 H,) De, | (BPS-BPS;8 C-C,81-1;8P-P;8 H-H,)} [D4.4]

For example, th©R set for serviceerlshown inFigure3-6 is: OR (serl) = {(c2, c4)}.
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DEFINITION 4.5 (relationships between service implementation elements of a service
and other service interfacesncoming)

Theservice interfacsi (of a services) is connected to oth@ements in the system bga-
vice incoming relationshipSIR(s) defined formally as

SIR(s) ={(e, si) [ Rs|Rsl (BPSSI 8 CSI8 PSI) @
el (BPS-BPS;8 C-C.,8 P-P,)@si=sis@sil S} [D4.5]

For example, th&IR set for serviceserlshown inFigure3-6is: SR (serl) = {(c4, sil)}.

DEFINITION 4.6 (relationships between service implementation elements of a service
and other service interfaceputgoing

The implementation elemenggof a services) are connected to other services in the sy
tem (strictly throwgh service interfacesi) by serviceoutgoingrelationshipsSOR(s) defined
formally as

SOR(s) ={(e, si)I Rs|RsI (BPSSI 8 CSI8 PSI) @
el (BPSs8 Cs8 Ps)Dsi, sisDsii Sl} [D4.6]
For example, th&OR set for servie serlshown inFigure3-6 is: SOR (serl) = {(p2, si2)}.

3.3.2.2ServiceOrientedDynamic Relationship Types

This subsection definedynamicrelationshipspresent inserviceoriented desigrstructures
where a dynamic relationship repretshe runtime collaboration between multiplereents
in response ta specificoperationnvocation.

DEFINITION 5 (direct collaboration relationships between serviogiented design ent
ties)

To captureghe dynamic aspects of service structures, a qgrafeacollaboration(c) was
introduced.A collaborationcy, captures elements that interact in order to achieve seme d
sired functionality in response @l possibleinvocations of operationp belonging to some
elemente. Formally:

co / CO(e) = <Param(op/ Op(e)), CS> [D5]

whereParam(pl Op(e)) represents parametaosthe operatio belonging to set of @
erationsOp(e) of elemente asper DefinitionsD2 andD2.1; CO(e)is a set of all collaber
tions of elemeng; andCSis the set otadlaboration sequence&s,p/ope))- A collaboration
sequence captures the set of interacting elements that achieve functionality exposeat in oper
tion o based orspecific inputgi.e. parameter values) and candedined as:

Csop/op(e) /’ CS(G) = <Slgs, BPS¢s, Ces, les, Pesy Hes™ [D5.1]
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whereSlsl SI,BPSsl BPS,Cesl C,lesl |, Pesl P,Hesl H. Thisrepresents the set of
interacting elements that achieve functionality exposeapgrationo based orspecificin-
puts. In terms of graph thgonotation[80], collaboration sequenes/ o) repregnts an
open or tosed walk starting at elemeat

DEFINITION 5.1 (indirect collaboration relationships between serviogiented design
entities)

Additionally, a concept of aimdirect collaboration(ic, / ICO(e)) was introduced inm
der to capture thindirect collaboration sequencéis,;qe,/ ICS(e)) that includeindirectly
connected elementetermined based on the overall static couptilsgegarding whether the
elements are interactirtg achievesome specifidunctionality (as was described in &mon
3.3.1using collaboration sequences initiated by the service interface operation asran exa
ple). Note that the definitiosiof ic, ICO ics, andICS arethe same as the agor ¢, CO, cs
andCs, only thesemantiaulesfor assigning the elements to collalions are different(i.e.
elements will be included in the indirect collaboration as long as they are connected via any
of the previously defined relationship typdsdrmally:

icoI ICO(e) = <Param(opl Op(e)), ICS> [D5.2]
ICSOi O(e) I, ICS(e) = <SIC51 BPSC51 CC51 IC51 PCS! HCS> [D53]

Note that defining direct collaborations allows formally specifying the service membe
ship operation <> (SectioB.3.1). For examplean elenente is said to bea member of ge
vice sif andonly if e belongs to some collaboration sequecsé CSas part of collabation
¢ = <Param(sd” SO(si)), CS>

3.3.3 Combined Structure and Relationships

This section presents a complete mddetombining theddinitions of system elementnd
relationships fronSections3.3.1and 3.3.2 Additionally, it defines key seheoretic opa-
tions (such as inclusion, union, and inteti) that have to be defd in order to support
the theoretical validation of metrics in Giers 4 and 5.

DEFINITION 6 (SO System and Senjice

A serviceoriented systerB8OSconsists of a number of design elements and assoceted r
lationships andan be formally defined as:

SOS =<SI,BPS, C, I, P, H, R> [D6]
Given a system30S9, aservicesercan be formallyefined as:

Ser = <Siser, BPSser, Cser, Isers Psers Hser, Rser™> [D6-1]
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is a service of SO®and only if Siser] SID(BPSer] BPS@Cserl CDlserl | DPserl P
@ Hserl H) @Rserl RDRser I (IR (ser) 8 ISR(s€r8 IR(ser)8 OR(ser)8 SIR(ser)8
SOR(sen)d BPSer8 Ceer8 lser8 Pser8 Hserddser)

Given the above definitions, theclusion unionandintersectionsetoperation® for ser-
vices can be defined as follows:
1 Inclusion: services = <si;, BPS, G Is, Ps, Hs, R is said to be included in servite
<si, BPS, G, I, P, H, R> (notationsi t) if BPSI BPS@Csl C Dlsl 1, @Ps1 P.@
Hsl Hi ORI R

1 Union: The unon of services = <si;, BPS, G, I, P, Hs, R> andt = <si, BPS, G, I;, R,
H:;, R> (notations 8 t) is the servicest = <si, BPS 8 BPS, CS8C;, 18I, Ps8 P, Hs 8
H:, Rs8 R>, whereserviceinterfacesis;contains operations frototh sisand si;

1 Intersection The intersection of services= <sis, BPS, C, Is, P, Hs, R> andt = <sij,
BPS, G, I, P, H; R> (notations  ¥is the servicest = <si, BPSZ BPS, Csz2 C, sz
l;,, PsZ P, HsZ Hi, RsZ R>, where interfacsis;contans only operations that can bepsu
ported by the intersected elements originally belonging to servanast.

Furthermoreto accommodate definition of metrics in Chapters 4 and 5 and to formalise
some of the impant characteristics of software servictge empty,disjoint, compositeand
atomicservicesan bedefined as fows:

f Empty serviceservices = <A, A> (notationA) is theempty service

{ Disjoint servicesservicess andtare said to belisjointif sz t=A
f Compositeservice:serviceswith SOR (s)8 OR (s), A is said to be aompositeservice
1

Atomic service:services with SOR (s)8 OR (s) =A is said to be aatomicservice

3.3.4 Different Types of SO Systems

This subsection defines servieariented syeems in the context of a modular desi@9].
Additionally, the definitions are separated into specific types of seovieated systemed
signs based on the conformance ofieey system to the key structural principles of SOC,
service encapsulatioand autonomy(described in Sectiof.4.2. That is, we introduce fe
mally a new structural (coupling) design property specific to sexnviemted paradignse-
vice-autonomy whichis based on theonformance of the system design to the principles of

6 The set operations are used in the theoretical validation of metrics basecbospineybased software engineering
measuremerftameworkof Briand et al[30].
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SOC in terms of structuring the software system as a collection of servicesallhemgle-
menation elements belong to one and only one service

DEFINITION 7 (Partitioned SO System

A system that is entirely partitioned into services (i.e. there exist no implementadion el
ments that do not belong to a service) is considerpdr@tioned serviceoriented system
(PARSOS)Formally,

PARSOS = <SOS, SER> [D7]

is a partitimed serviceoriented systemf and only if
- SOS=<S|, BPS, C, |, P, H, R> is a service oriented system a3qf@rition D6;
- ser= <Ske; BPSer Cser lser Pser Hsen Rser is a servicaf SOS(Definition D6.1);
- SERIs a collection of servicesersuch that:
" bpsi BPS @seri SER ppsi BPSe)) @" ci C ($serl SER ¢l Cser)) @
"l 1 ($serl SER {1 lser)) @" pi P @seri SER i Pse)) @
" hi H($seri SER fi Hser))

DEFINITION 7.1 (Pure SO System
A system hat is partitionednto a set of services, where:eyery implementation einent
is part ofone and only oneervice (i.e. all services in the system are disjpintiall inter-
service interactions are performsttictly via service interfacess considered to be jpure
serviceoriented system (PURSDE&ormally,

PURSOS = <SOS, SER> [D7.1]

is a pure serviceriented systemif and only if
- SOS=<SI, BPS, C, |, P, H, R> isservice oriented system €éfinition D6);
- ser= <Ske; BPSes Cser lser Pser, Hser Rser is a servicaf SOS(Definition D6.1);
- SER is a collection of servicegrsuch that:
" bpsi BPS @seri SER ppsi BPSe)) @" ci C ($serl SER €I Cee)) @
" il 1($serl SER (I lse)@" pi P @seri SER @I Pse)) @
" hi H($seri SER fi Hser)) @
" sersefi SER (sarZ ser=A)@
" serl SER OR(ser)8 IR(ser)=A).

Figure3-7 andFigure 3-8 illustrate examples of PARSOS and PURSYStem typeser-
spectively. For exampl@cademic Management System s h oRigare3i8 is an example
of a pure serviceriented system (PURSOS), where the systemsists ofnine fully inde-
pendenservices that communicate with one anostactly via service interfaces.
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Fiaure 3-7. Example Partitioned Service-Oriented Svstem (PARSOS)

Figure 3-8. Example Pure Service-Oriented System (PURSOS)

In contrast, the design shownHigure3-7 cannot be considered as PURSOS type&-ins
far as sevice elements are directly connected to the elements of other services (via OR or IR
relationships), andosne of the services share implementation elements. Nonetheles®-this d
sign can be considered as PARSOS since the entire system is partitioned into services.
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