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Abstract

Over the years, society has changed consideral@ytaltechnological changes, and
digital images have become part and parcel of weryeay lives. Irrespective of
applications (i.e., digital camera) and servicegofmation sharing, e.g., Youtube,
archive / storage), there is the need for high enggality with high compression
ratios. Hence, considerable efforts have been tadesn the area of image
compression. The traditional image compression egyst take into account of
statistical redundancies inherent in the image.ddtavever, the development and
adaptation of vision models, which take into acdotlve properties of the human

visual system (HVS), into picture coders have sstu@vn promising results.

The objective of the thesis is to propose the imgletation of a vision model in two
different manners in the JPEG2000 coding systejma g@erceptual Colour Distortion
Measure (PCDM) for colour images in the encodiragest and (b) a Perceptual Post
Filtering (PPF) algorithm for colour images in theecoding stage. Both
implementations are embedded into the JPEG2000r.cddhe vision model here
exploits the contrast sensitivity, the inter-orggrdn masking and intra-band masking
visual properties of the HVS. Extensive calibratwork has been undertaken to fine-
tune the 42 model parameters of the PCDM and Jastd®able-Difference thresholds
of the PPF for colour images. Evaluation with sgbye assessments of PCDM
based coder has shown perceived quality improvenwmr the JPEG2000
benchmark with the MSE (mean square error) and Qvit8ria. For the PPF adapted
JPEG2000 decoder, performance evaluation has lasenspromising results against
the JPEG2000 benchmarks. Based on subjective aialy when both PCDM and
PPF are used in the JPEG2000 coding system, tthrallbperceived image quality is
superior to the stand-alone JPEG2000 with the PCDM.



A Human Visual System Based Image Coder

Declaration

| certify that except where due acknowledgementhessn made, the work is that of the author alone;
the work has not been submitted previously, in wtwlin part, to qualify for any other academic
award; the content of the thesis is the result@fkwhich has been carried out since the official
commencement date of the approved research prograinany editorial work, paid or unpaid, carried
out by a third party is acknowledged.

Chin Soon Tan
23 March 2009



Acknowledgements

| thank my God, the Father of our Lord Jesus Chwsio has helped me throughout
my darkest hour. He helped me through my moste$spng state. He gave me
wisdom and encouragement so much so that | catheatay of the completion of my

thesis writing. To Him be the Glory, Amen.

I will also like to thank the various people: Préfong Ren Wu for his input, Dr.
Damian Tan for his guidance and patience througtiositperiod; my fellow research

mates, James Mei and David Wu, for their encouragemnd support.

A special thank you also to my two children, Claudnd Moses, who had been most
understanding when | had to spend hours sloggimy ow thesis; the brothers and
sisters in Christ who have prayed and encouraged mey dearest wife, Kok Nee, |

owe her for her support, patience, and understgndin



List of Publications by Author

. C. S. Tan, D. M. Tan, and H. R. Wu, "Perceptual i@gadf Digital Colour
Images Based on a Vision Model," Proceedings of IEEE International
Symposium on Circuits and SysteWancouver, Canada, 23-26 May 2004, pp.
V-441-V-444.,

. C. S. Tan and H. R. Wu, "Vision Model Based PemapPost Filtering of
JPEG2000 Coded Colour Images,'Proceedings of SPIE Conference: Visual
Communications and Image Processing 2Q0b 2005.

. C. S. Tan and H. R. Wu, "Common and Separate Pasaaaions of Vision
Model Based Perceptual Post Filtering for Digitabl@lir Images,” in
Proceedings of the TENCON2005 IEEE Region 10 Cenéer Melbourne,
Victoria Australia, Nov 2005.

. C. White, R. Martin, D. Wu, C. S. Tan, D. M. Tan, R. Wu, and J. Cai,
"Subjective Image Quality Assessment at Thresheidel," in Proceedings of
the TENCON 2005 IEEE Region 10 Conferendéelbourne, Victoria,
Australia, Nov 2005.

. D.M. Tan, C. S. Tan, and H. R. Wu, "Perceptualo€bhage Coding With
JPEG2000,TEEE Transactions on Image Processingl. 19, pp. 374 - 383,
Feb 2010.



Table of Contents

A S A == === = s i
Declaration---------==-mmm oo i
Acknowledgements----------mmmm oo oo e v
List of Publications by the Author ------------=— oo v
List Of Tabl@S-----nmnmmmm e oo e e IX
List Of FIgUreS--------=-mmmm oo Xil
List of Common Abbreviations--------=--=-=--m s XVi
Chapter 1 INtroOdUCLION .........cooiiiiieeiisceeeee e e e e e e 1
1.1 Research Areas in Image COMPIeSSION ..o eeeiiiiiiiiiiaree e e e e e e eeeeeeieenne 2.
1.2 Objective and Organisation Of ThESIS........cccvvvruiviiiiiiiiiiie e 3
1.3 CONMIIDULIONS ...t e e e e e e et e e e e e e ee e e enneeeeeseeennnnns 5
Chapter 2 Studies of Human Visual System... .. SRR o
2.1 Overview of the Human Visual System Physmﬂagwew ............................. 6
2.1.1 The HUMAN EYE ...ouuiiiiiiii e e e ettt e s e e e e e e e annanneeeas 7
2.1.2 The Visual PatNWaysS...........cooooe e e 12
2.1.3 The Primary Visual COMEX ..........uiieemeeeuuuuiiiiiiieeeeeeesreeeeeeeesnnnnnnnnnnn 16
2.1.4 Characteristics of Neural Responses - Otientand Frequency
Y=L 1)/ Y/ 18
2.2.1 VISUAI ACUILY ...ttt mmmmm ettt e e e e e e e e e e e e e e eeneeeeees 21
2.2.2 Contrast Sensitivity FUNCHON.........cuuceeiiiiiieieeeeeeee e 23
2.2.3 ViSUAI MASKING ...euuiiiiiiiiiie et snnees 26
2.3 Chapter SUMMATY ......covveiiiiiiiiie s mmmmmmm e e e e e e e e e e e e e e eennaaseeeeas 33
Chapter 3 Review of Contemporary Image COUeIS..........ccovvviveeiiiviiiiiiinieeeeeeeean 34
3.1 Overview of image compression SYSIEMS ... ..ccevvvvveeeviiiiiiiiiee e e e e e e eeee, 4.3
3.2 INfOrmMation TREOIY ....cceeeiiiiiiiie et e et eennneeeeeees 35
G700 N N g T=To ] VAo =T 11 (0] o ) 35
3.2.2 Rate distortion theory (R-D) ......ccoi oo 36
3.3 Elements of an Image CompresSion SYSteM..cccaa.uueeiieiiieeeeeeeeeeeeeeeeiiiinnnns 39
TR 700 R I = 0 £ 0] 1 o 40
a. Block-based TranSform...........uuueuuet e oo 47
b. Subband TransSfOorM ... e 48
c. Separable Image Transform .............oceeeeeercciiiiieee e 48,
d. Multiresolution TranSfOrM ..........oooiiiireee e 49
3.3.2 QUANTISALION ....cvvuiiieieieiice e et e e e e neer e 49

Vi



3.3.3 Bitplane Coding and Bitplane QuantisatiQn................ccceeeeeeeiiiinieeennnns 52

3.4 Hierarchical Bitplane COUers...........umimiiiiiiiiiiicieeee e eeeee 54
3.4.1 Embedded Zero-tree Wavelet (EZW) ... 55
3.4.2 Set Partitioning In Hierarchical Tree (SPIHT)........ccovvvviiviiiiiiicceeen. 59
3.4.3 Embedded Block Coding with Optimized Trun@afEBCOT)............... 62

3.5 Perceptual Coders and Psychophysical Quality Metric.................... 64
3.5.1 WaAtSON'S DCTUNE... ..ottt e et e 65
3.5.2 Subband Image Coder by Safranek and Johnstan..................c......... 67
3.5.3 Perceptually Tuned Subband Image Codinglmu@nd Li.................... 68
3.5.4 Locally Adaptive Perceptual-based Image CGpbynHontsch and Karam
.................................................................................................................... 69
3.5.5 EBCOT with Visual Masking by Taubman.................ccccceviiiiiiiiiinnnnns 72
3.5.6 Point-wised Extended Visual Masking by Zdbgly and Lei.................. 73
3.5.7 Wavelet Visible Difference Predictor by Bregl.................ccooevviiininnnnns 75
3.5.8 JND in DCT Subband Domain by Lin.......cccceeiiiiiiiiiiiiiiiin 79
3.5.9 Perceptual Distortion Metric by Liu €t @loce..coooeeevieeeeeeceie e, 83
3.5.10 Perceptual Image Distortion Metric by Ta@alet.............ccccceeeeeeeiennnnnnn. 86
3.5.11 Just Noticeable Colour Difference Model oG and Liu .................... 89
3.5.12 Comparison of Some Perceptual COders..cccauuuuuiiiiiiiiiiieeiiiiiieieiiiins 92

3.6 Chapter SUMMATY ......coovviiiiiiiiie s mmmmmmm e e e e e e e e e ennna e e e e e as 94

Chapter 4 Perceptual Coding based on Intra-bandrd@dorientation Masking ..... 96

4.1 INEFOTUCTION ...ttt e et e e e e e e e e e e e e e e e e s s smmnr e e e e e e e e eeeas 96

4.2 The Reference Model — JPEG2000 Coding Structure..............ccceeeeeeennn. 96

4.3 Proposed Vision MOdEl............oooreiieiiiieiiiiiei e 102

4.4 Model AdAPLatiON .......coooiiiiiiieieee et e e e e e e e e e e e e e e aee e mnaaneeeee 110

4.5 Model Calibration ..........ooooiiiiiiiiieeeee e 111
4.5.1 TSt CONAILION ....uuuiiiiiiiiii e eeeene e 112
4.5.2 Calibration PrOCESS ........ccooiiiiiimmmmmm ittt 112

4.6 Experimental Results and ANalysSis ..o 118
4.6.1 Subjective ASSESSMENT | .......ceiveiieeeeeeee e e e e e e eeaaaees 119

A TSt Lo e 123

D, TSt 2. it 123

4.6.2 Subjective ASSESSMENT 1l ......ccoiiiieiieeeiiiiiiiiii s 124

4.7 Chapter SUMMAIY .....uuuueieeiieeeeees e eeeeeeeeaeesnasaaeeeeeaeaeaseeeeesssennnneeees 131
Chapter 5 Vision Model Based Perceptual Post kigeof JPEG2000 Coded Colour
1 F=T0 [T 3PP PP 132

S0 R [T 0o U Tod 1 o] o U TR RURPPPP PP 132

A VA 1710 T 1Y/ o T = 11 o U 133

5.3 CodiNg AdAPLation .........uuiiiieeiee et eee e 133

5.4 Model Parameterisation and Thresholding e ..cvevvveveiciiiiiniieeeeeieiieennn... 138

5.5 Experiment and RESUILS .........iiiiiii i 144
5.5.1 IMpIementation |...............uuueen e eeeennneseseeeeeeeeeeeeeeeeesennnnnnnnnnnne 145

a. Evaluation of Round 1 TeSt Result .......coooeee i 149

b. Evaluation of Round 2 TeSt ReSult ..o 149

c. Evaluation of Round 3 TeSt ReSUIt ... 150
5.5.2 Implementation 1l.............cooiiiisicceeeiiiees e e e e e e e 150

a. Evaluation of Test 1 ReSuUlt...........oiceeeeeeiiiiiiiieee 154

b. Evaluation of TeSt 2 RESUIL..........eeiiieiieeiiiiiiiiiiiiee e 155

c. Evaluation of TeSt 3 ReSUIt.......uuemiee e 155
5.5.3 Discussion of Subjective Test RESUIRS ceoivveeeeeviiiccie e, 156

vii



5.6 Chapter SUMMAIY ......uuuueeiiiie ettt e e e e eeeeeee e e 162
Chapter 6 CONCIUSION.......ccciiiieee e i ceeeeeerc e e e e e e e e e e e e s 163
6.1 ReSearch FINAINGS .......uuuuiiiiii et eee e 163
6.2 Further RESEAICN ........c..uiiiiiiiieeee e 166
BIDOGIrapy ... 168

APPENAIX At e e e 176
APPENAIX B .ot e e e e e e e LT
APPENAIX C .ottt e e et e e e e e e e 182
APPENAIX Do e e, 184
APPENAIX E. o e e e e e 186
APPENAIX Fooe i e e e e e e e 188
APPENIX Gt e e et et e e e e e e 189
APPENIX H...e e e e 191
APPENAIX Lo e e e e e e 192
Y 0] 01T TG P £ |

viii



List of Tables

Table 3.1:A(l,g) for wavelet 9/7 basis fuUNCHIONS. ............cccccvvevrvereeieeeereieieenen, 84
Table 3.2: The constant parameters for the basetdNBhold, JND(1,g). .............. 84
Table 3.3: Vision Model Parameters. ........cceeeeoiiiiiiiiiiiiiiiiie e 89
Table 3.4 Comparison of Some Perceptual Coders..........cooovvvviiiiiiiiiiiiiiineenn, 2.9

Table 4.1: The Daubechies 9/7 wavelet filter d¢at€: This is the un-normalized

. . . L 1
version. The normalized version involves a multggive factor ofv/2 andﬁ

for the analysis filter and synthesis filter, respeely.) .......oovvvviiiiiiiiiiiieeeeen, 98
Table 4.2 SET-A Sub-optimal CSF weights and modeameters. ...............cc....... 117
Table 4.3 SET-B Sub-optimal CSF weights and modehpeters.............ccccceeennn. 117

Table 4.4 Comparative Forced-Choice Subjective Results. A — JPEG2000-
PCDM coder, B — JPEG2000-MSE, C — JPEG2000-CVI&st T for
JPEG2000-PCDM against JPEG2000-MSE. Test 2 for 20B8GPCDM
against JIPEG2000-CVIS. ... .ot eeeaeaeees 120

Table 4.5 Criticat [155] at 95% 1(.05), 99% €0.07) and 99.5%t( 005 confidence

(1010 4= IR 121

Table 4.6 Comparative Forced-Choice Subjective Restategorising according to
images. (By summing up the preferences of bitrade@.5, 0.25 and 0.125 for
each type of images. Note: A — JPEG2000-PCDM cdgler, JPEG2000-MSE,
C- JPEG2000-CVIS. Test 1 for JIPEG2000-PCDM agdirEiG2000-MSE.
Test 2 for JPEG2000-PCDM against JPEG2000-CVIS.)......cccccveeevvnvrnnnnn. 122

Table 4.7 Comparative Force-Choice Subjective Resiults, categorising according
to bitrates. (By summing up the preferences of &ges for each of the bitrates.
Note: A — JPEG2000-PCDM coder, B — JPEG2000-MSE JEEG2000-CVIS.
Test 1 for JPEG2000-PCDM against JPEG2000-MSE. Z &st JPEG2000-
PCDM against JPEG2000-CVIS.) .......cuuuiiiimmmmmniiieeeee e esiiiieee e niineeee e 122



Table 4.8 The-values. (P - categorising according to image fiicable 4.6. Q -

categorising according to bitrates from Table 4.7).......ccccccceeeeeeiiiiviiieinnnnns 123

Table 4.9 Comparative Forced-Choice Subjective ReSU.............ocevvvvvieiiiinnnnnn. 125

(A — JPEG2000-PCDM coder, B JPEG2000-MSE, C — JRBGZVIS. Test 1 for
JPEG2000-PCDM against JPEG2000-MSE, Test 2 for 20BGPCDM against
JPEG2000-CVIS) ... iiiiiiiiee ettt ettt a e et e e e e eennnne s 125

Table 4.10 Criticat at 95% {5.05), 99% (0.01) and 99.5%t§ o059 confidence interval.

.................................................................................................................. 125
Table 4.11 Computetdvalues based on different bitrate categoriesdbiective

ASSESSMENT L] .o 126
Table 5.1 Predetermined threshold valuesTglt, |, g). .....ccovveveeveeeeereceeeeenn, 144
Table 5.2 Predetermined threshold valuesTigle, |, g). ......cccooveenrviriiniincinniens 144

Table 5.3: Comparative Force-Choice Subjective Restults
(A — preference for JPEG2000-PCDM-PPF, B — prefegdar JPEG2000-PCDM,
C- preference for JPEG2000-MSE, D — preferencd®iG2000-CVIS)....... 146

Table 5.4 Criticat at 95% {p.05), 99% (0.01) and 99.5%t§ 009 confidence intervals.

Table 5.5: Comparative Force-Choice Subjective Restults, categorized according
to images. (By summing up the preferences of leitta®, 0.5 and 0.25 for each
type of images. Note: A — preference for JPEG2BQIDM-PPF, B — preference
for JPEG2000-PCDM, C — preference for JPEG2000-M5E preference for
JPEG2000-CVIS) ...utttiiiiiiiiiiiiiiiiieeee e aeeaea e e e e e e s s s eeeeeeesanenenes 148

Table 5.6: Comparative Force-Choice Subjective Restults, categorized according

to bitrates. (By summing up the preferences ofmi@ges for each of the bitrates.



Note: A — preference for JPEG2000-PCDM-PPF, B fepeace for JPEG2000-
PCDM, C — preference for JPEG2000-MSE, D — prefeedar JPEG2000-

Table 5.7 The-values. (P) — categorising according to image,mated from Table
5.5. (Q) — categorising according to bitrates, coteg from Table 5.6. d.f.

donotes degree of freedom. ..........oooiiiceeeeemriiiii e 149

Table 5.8: Comparative Subjective Test RESUIL.mmm..voeeieeeeeeeeiiieeeeeeie 152

(A — preference for JPEG2000-PPF with SMP modet,Beference for JPEG2000-
PPF with CMP model, C — preference for JPEG2000,dxeference for neither
A nor B. Note that goldhill, sail, pepper, lenaddulip were encoded by
JPEG2000 with MSE, while zelda, bikes, buildingghthouse2, and stream
were encoded by JPEG2000 With CVIS) .....ccccceeeeeiiiiieeeeeeeeeeeee 152

Table 5.9: Comparative Subjective Test Result,gmateed according to different
source images. (By summing up the preference ddtbitl.0, 0.5 and 0.25 for
each type of images. Note: A — preference forlGEIE0-PPF with SMP model,
B — preference for JPEG2000-PPF with CMP model,pgteference for
JPEG2000, N — preference for neither A nor B. Nbé& goldhill, sail, pepper,
lena, and tulip were encoded by JPEG2000 with M@tie zelda, bikes,
buildings, lighthouse2, and stream were encodedP#G2000 with CVIS.).. 153

Table 5.10: Comparative Force-Choice Subjective Results, categorized according
to bitrates. (By summing up the preferences ofmifges for each of the bitrates.
Note: A — preference for JPEG2000-PPF with SMElehdB — preference for
JPEG2000-PPF with CMP model, C — preference foGERIBO, N — preference
for neither A nor B. Note that goldhill, sail, peg, lena, and tulip were encoded
by JPEG2000 with MSE, while zelda, bikes, buildingghthouse2, and stream
were encoded by JPEG2000 With CVIS.) ..ccoiccceeeeeiie e 154

Table 5.11 Theé-values. (P) — categorising according to sourceggsacomputed
from Table 5.9.(Q) — categorising according to bitrates, comptitech Table

Xi



List of Figures

Figure 2.1 Visual pathways: retina to Cortex--———-----==-====-=mnmmmmmmmmemeeeeeoo- 7
Figure 2.2 A generalized cross section of a hunyar-e------------------=-----------—- 8
Figure 2.3 Absorption spectra of the three typesoofes----------------=--=-=-==------- 10
Figure 2.4 Cross section through the retina--———------=--=-=--s-mmmemmmomoceeoe 13

Figure 2.5 (a) Schematic depiction of on-centréksafround (left) and off-centre/on-

surround (right) receptive field structures---——------------m-mmmmmmmm oo 14

Figure 2.5 (b) Contrast processing of receptiviel§ie-------------------m-mmcommccee 14

Figure 2.6 Anatomically and physiologically subdiains of the visual system-----17

Figure 2.7 Bar Stimuli of different orientationgff) and the responses they evoke

from a simple cell in primary visual cortex (right}-----------=-=-=-=-==m-msmmmmemme 19

Figure 2.8 lllustration of the idea that simplel€eésult from the feed forward

convergence of a set of center-surround cells-————------=-=-===m-memmmmmeeeme o 19
Figure 2.9 Point spread function-------======-——mmmm e 22
Figure 2.10 Modulation transfer function of the lameye-----------------------—-—-—- 23
Figure 2.11 Contrast measures of simple pattefas----------------=-=-m--mommmeueuo- 24
Figure 2.12 Contrast sensitivity of sine-wave grggk-----------------=----=-=-=--o-m--- 26
Figure 2.13 Target contrast threshold vs masketrasin(TvC curve)----------------- 27

Xii



Figure 3.1 A typical rate distortion (R-D) functicnrve---------------------=--------- 39

Figure 3.2 Structure of an image compression System---------------=--==-------- 40

Figure 3.3 Structure of subband coding- the rasudtcollection of M x N numbers of
SUDDANAS === oo oo e 44

Figure 3.4 Block based decomposition. An input im&gsub-divided into blocks of

M x N pixels before decomposition takes place. dugput is a set of blocks of M x N

COEfICIENTS-===mmm e e m e e e e 45
Figure 3.5 Frequency decomposition in multiresolutiepresentation--------------- 46
Figure 3.6 Different classification of quantisefs—-----------=---=---=-=-=-m-mmvmu--- 51
Figure 3.7 An example of bitplane quantiser aneitsoding order------------------- 53
Figure 3.8 Parent-child relationship in EZW---———---mmmemmmmm oo 56
Figure 3.9 Flow chart for encoding a coefficientloé significant map--------------- 58
Figure 3.10 (a) Parent-child relationship in SPIHF--------------=-memmemmmm oo 61

Figure 3.10 (b) Shaded region indicates coeffis@mthe LLs (the lowest DC level)

that have no children------=--=-=--me-sme e e 61
Figure 3.11 Rate distortion curve with bitplane-——---------=-=-=-=-=-mmememe - 64
Figure 3.12 Casual neighbourhood coefficients——---------=---------m-mcmceeeee 75
Figure 3.13 The structure of wavelet visible difiece predictor 76
Figure 4.1 Coding Structure of JPEG2000-------=============mmnmmmmmmmmm oo 97

Xiii



Figure 4.2 A 5-level Multiresolution Mallet decongitbon--------------=-==----------- 99

Figure 4.3 JPEG2000 coding structure with the psedd®DM replacing MSE

(o =] 0] B e e PE 101
Figure 4.4 Example of 5-level dyadic wavelet decosifon structure-------------- 108
Figure 4.5 Neighbouring coefficients around cemtraefficient--------------------- 109
Figure 4.6 Presentation of subjective test imagepdrarmeter calibration--------- 113
Figure 4.7 Calibration of parameters in the contéxdoder---------------- ---114
Figure 4.8 Arrangement of paired images on a mofite---------------------=----—- 118
Figure 4.9 Pictorial view of force-choice comparatsubjective test----------------- 118
Figure 4.10 Cropped images of Lena------------——-=-=-=-=-memmmmmmmom oo 128
Figure 4.11 Cropped images of Tulip----------=-==m=mmmmmmm oo 129
Figure 4.12 Cropped images of Sail------------——--------memmmemmmm oo 130

Figure 5.1 Block diagram of the structure of thecBptual Post Filtering at the

@ COA B === = m e 134
Figure 5.2 Calibration of pararmeters in the contéxoder-------------------------- 139
Figure 5.3 (a) building2- original uncompresse@---—--------=--=-======mmmmmeuenmo- 158
Figure 5.3 (b) building2- PPF with JIPEG2000-PCDMEDpp)--------------------- 158
Figure 5.3 (c) building2- JPEG2000-PCDM (0.25bpp)—--======-=zzzzzzzzemmmm- 158

Xiv



Figure 5.3 (d) building2- JPEG2000-MSE (0.25bpp)—------<----x--nx=nmmzcmmen 158

Figure 5.3 (e) building2- JPEG2000-CVIS (0.25bpp}—------------------=--=----- 159
Figure 5.4 (a) lena- original uncompressed---———-----=-=-=-=-=-=-m-mmmmmmeev 159
Figure 5.4 (b) lena- PPF with JIPEG2000-PCDM (Obp 159
Figure 5.4 (c) lena- JPEG2000-PCDM (0.5bpp)--———-----------=---=-m-mmommem- 159
Figure 5.4 (d) lena- JPEG2000-MSE (0.5bpp)---———---=-=-=-=-=-=-m-mmmmmmmmmem- 160
Figure 5.4 (e) lena- JPEG2000-CVIS (0.5bpp)--———---------------mmmmemmmememm 160
Figure 5.5 (a) tulip- original uncompressed---——---=-===-=======mmmmmmememmmemeem 160
Figure 5.5 (b) tulip- PPF with JPEG2000-PCDM (1 0bp 160
Figure 5.5 (c) tulip- JPEG2000-PCDM (1.0bpp)--——--------=-=-=--=mmmmmmmmmmo- 161
Figure 5.5 (d) tulip- JPEG2000-MSE (1.0bpp)---——------=-====m-mmmmmmmmmmmmee 161
Figure 5.5 (e) tulip- JIPEG2000-CVIS (1.0bpp)--——-----=-=======mmmmmmmmmmmmmmeee 161

XV



List of Common Abbreviations

1-D One Dimension

2-D Two Dimension

bpp Bit Per Pixel

Cl Confidence Interval

CGC Contrast Gain Control

CMP Common Model Parameterisation

CSF Contrast Sensitivity Function

CVIS or VDM Visual Distortion Metric

DCT Discrete Cosine Transform

DCTune see page 65

d.f. Degree of Freedom

DFT Discrete Fourier Transform

DPCM Differential Pulse Code Modulation

DICOM Digital Imaging and Communications in Mediein

DWT Discrete Wavelet Transform

EBCOT Embedded Block Coding with Optimised Trunmati

EZW Embedded Zero-tree Wavelet

GQMF Generalised Quadrature Mirror Filter

HDTV High Definition TV

HVS Human Visual System

JNCD Just Noticeable Colour Difference

JND Just Noticeable Difference

JPEG Joint Photographic Experts Group

JPEG2000 Still Image Compression Standard develbpélde Joint
Photographic Experts Group

JPEG-LS Image Compression Standard for LosslesdlaadLossless
Compression of Continuous-tone, Gray Scale andu@all
Images

JBIG2 Image Compression Standard developed byoing Bi-level
Image Expert Group

KLT Karhunen-Loeve Transform

LAPIC Locally Adaptive Perceptual Image Coding

LGN Lateral Geniculate Nucleus

LSB Least Significant Bit

LSBP Least Significant Bitplane

LSF Linespread Function

LWT Lifting Wavelet Transform

M Cells Magnocellular Cells

MAE Mean Absolute Error

MND Minimally Noticeable Distortion

MSB Most Significant Bit

MSBP Most Significant Bitplane

MSE Mean Square Error

MTF Modulation Transfer Function

P Cells Parvocellular Cells

XVi




PCDM Perceptual Colour Distortion Measure

PCRD Post Compression Rate Distortion

PDF Probability Distribution Function

PDM Perceptual Distortion Metric

PIDM Perceptual Image Distortion Metric

PPF Perceptual Post Filtering

PSF Point Spread Function

Q MF Quadrature Mirror Filter

R-D Rate Distortion

RMS Root Mean Square

SMP Separate Model Parameterisation

SNR Signal-to-Noise Ratio

SPIHT Set Partitioning in Hierarchical Tree

TvC Target Contrast Threshold Versus Masker Cshtra
V1 Primary Visual Cortex

VDP Visible Difference Predictor

VQ Vector Quantisation

WITCH Wavelet-based Image/Texture Coding Hybrid
WVDP Wavelet Visible Difference Predictor

Xvil




Chapter 1 Introduction

Data Compression is concerned with the removal edundancies [1]. Data
compression has become prevalent since the adventheo digital age with
dependency on digital data. With the prevalencdigifal media in our everyday lives
and the use of images to convey information, imagesnow an integral part of our
modern lifestyle. One can relate how an image aftea country speaks louder than
a thousand words describing the scene. Moreovéh, the increase in popularity of
websites like Facebobkwhere one shares information and digital imagesly over
the internet, and the Google Edntthere one can find satellite images for maps and
directions, the need for image compression becahes.

With the surge of the internet and intranet userelexists a possibility that network
traffic volume may exceed its capacity, therebyetihg transmission speed. Some
have argued against the need for image compresasorihere is now greater

availability of high-bandwidth broadband cable netks. However, as the issues
surrounding the cost of providing and maintainingdalband access to the wider
community (e.g., who is to bear the cost, costulfsglies to Telcos) have been so
greatly contested at both the local and higher gowents, the need for image

compression still persists. This is evident witle tiotal switch of analog to digital

High Definition TV (HDTV) in the near future in s@rcountries, thus, the need for
picture compression looms greater. Limitation iacélonic data storage space also

dictates the need for data compression to preveoverflow of data storage [1].

Even at the individual consumer level, the needefectronic data storage space will
always exist. With the increased use of digitalges e.g., digital photography used
in cameras and mobile phones, there will always peoblem of “not enough disk

space” or “not enough memory space”. Hence thearekeof image compression has

! Facebook is social networking website launche&elruary 4, 2004.
http://www.facebook.com/facebook.

2 Google Earth is a virtual globe program. It mapsearth by the superimposition of images obtained
from satellite images and aerial photography. Hégarth.google.com.

% State or Federal Governments.



much bearing in the application for the world ohsomer electronics such as digital
image cameras. Furthermore, image compressiomlbaggyained inroads into other
areas in medical imaging such as JPEG-LS [2, 3]I@&DM [4] for medical field
especially in the areas of medical imaging [5-BJ Eompression for finger printing

[8, 9] for defence, security, and law enforcement.

1.1 Research Areas in Image Compression

Image compression involves the removal of datanmddncies in an image. This is
also referred to by Shannon as statistical redundesith “noise” [10]. In the premise
of this thesis, two approaches of image compresarenmost poignant: lossy and
lossless compression. Both compression philosopgee& to remove redundancies
within images. However, in lossy compression, imagelity is compromised to
allow for a higher compression ratio. The lossndbimation accompanying the lossy
compression is the result of quantisation. Convwerselossless compression seeks to
achieve an optimal compression ratio without compsing image quality. The JPEG
baseline [11] (established to standardise imagepoession techniques) uses the
block based DCT approach and concentrates on regdhe statistical redundancies
which are computed from the mean squared error (M8H. More recently, in the
JPEG2000 standard [12, 13], the embedded blockngodith optimized truncation
(EBCOT) [14] has been adopted. The EBCOT uses dtedistortion function to
achieve optimal quality for a given bit rate [12].1 Consequently, EBCOT’s main

features are scalability in quality and resolution.

However, there has been a growing research inrdee @ an image coder based on
the human visual system (HVS). Apart from the stetal redundancies, there are
some redundancies which are imperceptible to theamueye. These redundancies
are known as psychovisual redundancies. Remoualesk redundancies gives rise to
perceptually lossy [15] or perceptual lossless aasgion [16]. Being modeled after

the human eye, this vision model [15, 16] takes insideration the physiological

and psychological studies in relation to the humianal systems and the interactions
of these visual signals with our human brain [18], 1The neural responses that form

the visual images are arranged in a manner whidiotis frequency and orientation



selective [19-21]. One patrticular neural phenometi@t has direct bearing on our
visual perception is masking, which intrinsicallgaleases the strength of some neural
signals. This masking effect has been modelled dyesresearchers [22-26]. For
example, the contrast gain control model bootetayson and Solomon attempts to
incorporate the quantifiable properties of the HU\#&ymely contrast, frequency,

orientation and masking sensitivities [27].

Having established the HVS model, there is the st of applying the HVS model
to a coding structure. Several approaches haveideatified, such as pre-filtering to
reduce visual redundancies, post-filtering to redudistortions or designing
guantisation matrices specific to aspects of theSHW some cases, vision model is
incorporated into the distortion function. For opation of the vision model,
parameterisation is required, i.e., the parameaitthe model are calibrated to attain

optimal visual quality.

1.2 Objective and Organisation of Thesis

The objective of this thesis is to design a pencgptolour image coder based on the
Human Visual System (HVS). The proposed coder eysplhe JPEG2000 [12]
structure. As the coder is based on the HVS, tliera need to underline the
physiology and psychophysical studies relatinghi® hluman eye. Chapter 2 gives a
detailed account of the physical eye and its intevas with the human brain to form
neural images. Psychophysical experiments relateadammalian visual system are
outlined in the chapter [19-21, 28-30]. This chagvides insights into the human

eye and lays the premises relating to the HVS model

Chapter 3 begins with a general description of ithage compression systems,
namely lossy and lossless compressions and therlyimge theory of image

compression, i.e., Shannon’s theory of noiselesscsocoding and rate distortion
theory [10]. The rate distortion theory is concerndgth the relation between bit rate
and image quality. An overview of the various elatsein an image compression
system is also discussed, with particular emphasisthe various transform and

quantisation methods [12]. In particular, the blbesed transform and bitplane



quantisation forms part of the framework of thedeptual Colour Distortion Measure
(PCDM) discussed in chapter 4.

A comparison of the various image bitplane codeespaesented, beginning with the
Embedded Zero-tree Wavelet (EZW) [31], the Setifkaming in Hierarchical Tree
(SPIHT) [32] and the Embedded Block Coding with i@wged Truncation (EBCOT)
[14]. The EBCOT is regarded as superior to EZW &RIHT in terms of its Signal-
to-Noise Ratio (SNR) and resolution scalability J[1&@onsequently, the JPEG2000

which is based on the EBCOT structure is now halethe current state-of-art coder.

Since human observers are the ultimate judges afjérguality, perceptual image
coders based on the HVS have gained attentionmbliély, the goal of these
perceptual models is to improve perceived imagelityuaA literature review of

perceptual image coders is provided in chapter §ite an overview of the current
development of perceptual image coders. The modgigsed by Tan et al. [15],
which forms the basis of the development of the RIODodel for colour image and

the Perceptual Post-Filtering (PPF) algorithmJse presented.

Chapter 4 presents the Perceptual Colour Distorktasure (PCDM) coder for
colour image and the parameterisation of its HVSleholt is extensively calibrated
to improve visual quality at medium to low bit reteThe subjective assessment
results and the test images involving about thiryticipants are also presented to

ascertain the performance of the PCDM based coder.

In chapter 5, a perceptual post-filtering (PPFoathm based on the HVS model is
developed to attempt to recover the loss of visn@drmation. The preliminary

subjective assessment tests show promising rdsultise algorithm.

Finally, chapter 6 concludes with an overview o ttontribution of this thesis and

directions for future research.



1.3 Contributions

The contributions of this thesis are as follows:

a. An adaptation of the monochromatic based PIDM (Baral Image
Distortion Metric) into colour based PCDM modeltire YCbCrcolour space.
The resulting model, PCDM, is adapted to JPEG2@@@ic

b. The calibration of the 42 PCDM parameters. Two sétsub-optimal values
were obtained.

c. Subjective assessment of proposed PCDM based asdéPEG2000-MSE
and JPEG2000-CVIS was carried out with 30 subjdots performance
evaluation. Results showed that the PCDM produceage with better
perceived quality than the benchmarks.

d. Adaption of the PPF algorithm to the JPEG2000 dectmlrecover the loss of
visual information due to compression operation.

e. Threshold points of PPF were obtained through stibge experiment. The
thresholds are set at the Just-Noticeable-DiffexddblD) level.

f. Performance evaluations of the PPF based decodethenPCDM with the
PPF codec were conducted through subjective tegstimst JPEG2000-MSE
and JPEG2000-CVIS. Perceptual improvement in pectirality is obtained
for both proposed implementations against the JBBG»enchmarks.

g. Subjective evaluation of the PPF algorithm with asepe model
parameterisation (SMP) against the PPF algorithrth veiommon model
paramterisation (CPM). The SMP implementation diot show better
perceived picture quality than the CMP.



Chapter 2 Studies of Human Visual System

2.1 Overview of the Human Visual System - Physiolog ical view

Even at this moment, when one is reading this pamgelight that is reflected from
this page is focused by the lens of the eyes to fetinal images [18]. Light reaching
the retina must pass through all other layers efrdtina tissues before reaching the
light sensitive photoreceptors. The fovea, a swhgllin the retina about 1 mm away
from the posterior pole of the eye and near thdreeof the retina, has the highest
concentration of photoreceptors that are exposelight. Once illuminated, these
photosensitive cells response by converting thht lgnergy into electro-chemical
signals. These signals are further processed byipteuretinal connections before
being transported through the visual pathway vi aptic nerve, the axons of the
ganglion cells. The retina ganglion cells thendseheir signals to the lateral
geniculate nucleus (LGN), a part of the thalamughe midbrain, where further
synaptic connections are formed from the LGN toroesi that project to the primary
visual cortex (V1 region) in the occipital lobe thfe cerebral cortex. The visual
signals are then processed by the brain to prodimeal perception of object
structures, location, motion, colours, etc. Hetieehuman visual system (HVS) (see
Figure 2.1) can be seen in 3 parts: the eyes (ithdow to the outside world), the
visual pathway (the linkway where an image is cgedeand processed) and the final
destination — the visual cortex of the brain (whereges are perceived by the

individual).

Being one of the most sophisticated and intricgitesn of the body, it is impossible
due to limitations in technology and ethical isste$ully unravel the mystery of the
functional processes of the HVS. Instead much eftlieories postulated concerning
the HVS are based on empirical studies on prim&wig)es and other animals,

psychological studies of the HVS or even educatessges [17, 18, 33-36].
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Figure 2.1 Visual pathways: retina to cortex.
(Adapted from Forrester et al. [37])

2.1.1 The Human Eye

a. The physical structure of the Human Eye

Light enters the eye through the cornea, a thinsparent film which acts as a
protective barrier for the inner eye from the emétworld. It also acts as a refractive
surface of the eye whereby external light sourcesfisacted toward and away from
the lens. Eventually an image representing thereakevorld is formed at the retina as
an inverted retina image on the fovea. The corrreaiges two-thirds of the eyes’

refractive power [38].

In Figure 2.2, the area between the cornea antktiseis the anterior chamber which
is filled with a liquid substance called aqueousmbur. The aqueous humour
provides nutrients to the cornea, iris and lemsaddition, it keeps the eyeball rigid by
maintaining interior pressure at around 10 to 20 Hgr{38].
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Figure 2.2 A generalized cross section of a hunyan e
(Adapted from Malacara [39])

The iris forms an aperture in front of the lensit&tcentre is a circular opening called
the pupil. Though, the iris can dilate or consttite pupil to as little as 1 mm
diameter, it normally functions in the range ofo37% mm as the adjustment depends
on the prevailing light level and influences of gagtonomic nervous responses [38].
The dilation and constriction of the pupil size tohthe exposure area of the lens to
external light. This mechanism can change this Bseas much as a factor of 5. A
smaller pupil size has the effect of restricting #mount of light onto the lens to the
peripheral region of the retina, and hence redspéerical aberration and peripheral
blurring [40, 41]. Spherical aberration occurs doelifferent focal length variations
between the fovea and peripheral parts of theaetinile chromatic aberration occurs
due to different focal lengths for light of differe wavelengths [38]. However,
reducing the pupil size reduces the amount of liglaiching the retina and causes
more diffraction, and hence blurring as well. Thepip is automatically adjusted
according to light intensity to minimise the blmgi effect. The iris which regulates
the pupil size thus helps to control the overalirphess of the images formed at the
retina. T lens, suspended at the circular ciliamyscle, is made up of ribbon-like
fibres arranged in concentric laminae. Unlike th@nea which has a constant
refractive power, the refractive power of the leasies. It changes through a process
called accommodation. Accommodation is controbgdhe ciliary muscle, causing



the anterior surface of the lens to either bulgew&wd or backward, thereby
increasing or decreasing respectively the opticavgy of the lens. The purpose of
accommodation is to focus the image onto the retifiéae lens focus objects at a
distance from about 6.5 metres down to about lQireters. Containing yellow

pigments, the lens can also absorb light at ulbtaviregion near the wavelength of
365 nm. Hence ultraviolet radiation is usually sikle to the human visual perception
[38].

The interior area between the lens and retina mumied by the vitreous body
(vitreous humour). The liquid filled vitreous huaranaintains the structural integrity
of the eye by ensuring sufficient pressure is naan@d to prevent the collapse of the
cavity wall. The content of the liquid and its centration is similar to that of the
aqueous humour, and hence both have the sametredfrpower. The cavity wall
contains its neural structures and composes oé tlageers, the sclera, choroid and the
retina. For this thesis, the point of interesthe tetina which will be discussed in
greater details in the next section.

b. Retina

The retina is part of the central nervous systdéntohsists of five main groups of
neural cells arranged into three cellular layers @vo synaptic layers. The innermost
layer contains light sensitive photoreceptors datleds and cones, named according
to their physical appearances. (Refer to Fig. PL8). Each retina has about 100-120
million rods and 7-8 million cones [37, 42]. Thelsoare sensitive to light at low level
of illumination and are responsible for scotopisien (e.g. “night” vision). On the
other hand, being less sensitive than rods, thesare responsible for colour vision
(photopic vision) at high level of illumination. c&ording to Forrester et al. [37], both
the rods and the cones are sensitive to light welielengths from about 400nm to
700nm, with the rods having peak sensitivity atwhb498nm. The cones have
bandpass spectral response characteristics. Therthrae types of cones with three
different photopigments to absorb different wavgtés of light to different degrees.
The three types of cones, being sensitive to ligiftsshort, medium and long
wavelengths, are respectively labelled as S (aue’)l cones, M (or “green”) cones
and L (or “red”) cones. The sensitivities of thesmes cover the entire visible



spectrum of the human eye, with peak sensitivate$20nm for “blue” cones, 534nm
for “green” cones, and 564 nm for “red” cones. disibeen found that the S cones
have different spectral sensitivity than the L &idctones that share similar spectral

sensitivities.

The strength of the cone’s response is proportibmahe amount of light energy
absorbed by its pigment [18]. The perceptual gualftcolour relates roughly to the
wavelength’s physical properties, i.e., colour aspived in our nervous system is the
result of the differing profile of responses of ledgpe of cone [18]. Red colour is an
example of increased activity in the long waveléngbnes coupled with minimum

activity in the small and medium wavelength coreee(Fig 2.3).

Figure 2.3 Absorption spectra of the three typesooies.
(Adapted from Farah [18])

Apart from the nasal retina where the optic disw (blind spot where no rods and
cones are present) resides, the density and distiib of rods and cones are not
uniform throughout the surface of the retina. A¢ flovea, the cones density is the
highest but without any presence of rods. Witlmaasing eccentricity from the fovea,
the cones density decreases in an exponential manitieit reaches a constant low
level at about 20 degrees from the fovea, whilertiss concentration increases until
it reaches a maximum level at about 20 degrees fhmrfovea. Thereafter, the rods
concentration decreases to a minimum at about gBeds from the fovea [37]. It is

clear that the eyes are focused in a manner sahbatetina image of any object is
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always formed at the fovea where the concentratiooones is highest, and hence
sharpest vision and colour discrimination is pdssiBway from the fovea, the rest of
the retina is responsible for peripheral vision.owdver, at a very low level of

illumination, the image formation at the fovea mgidoes not ensure high visual
acuity because of the absence of the rods andditiséties of the cones at low levels

of illumination.

A closer observation of the structures of the presteptors and the optic nerve
reveals that some form of signal processing doesrrdoefore visual information is
transmitted to the visual pathway. Each photoreepbd or cone, is composed of an
outer segment, a narrow neck, an inner segmert| aady, and a synaptic base (see
Figure 2.4). The outer segment contains photopigsndfor the cones, there are 3
pigments that have maximum absorptions for blueegrand red. Photo-chemical
reaction to light illumination takes place at thetey segment to produce generator
potential. The retina are organised into two syicalplyers, i.e., the outer and inner
plexiform layers, which provide both direct andelal interconnections from the
photoreceptor to ganglion cell. The outer plexiidayer consists of horizontal and
bipolar cells. One bipolar cell forms a synapsentdtiple rods. In contrast, only one
cone makes multiple synapses to a bipolar cell. hbezontal cells in the outer
plexiform layer provide lateral interconnectiongvibeen photoreceptors. The second
layer consists of amacrine and ganglion cells. Bipelar cells in the outer layer are
synapsed to the ganglion cells in the inner layetsje the amacrine cells provide
lateral interconnections between the bipolar cellbie synapse of multiple rods to a
single bipolar cell increases the sensitivity obtamic energy since any response of
any connected rod would activate the bipolar ddbwever, less visual acuity is
evident as it is less likely to precisely identifgtween the responses of more than one
connected receptors. Hence the rods are moretisensi low level illumination but
less sensitive to discriminate sharper details)emfie converse is true for the cones.
In the inner plexiform layer, the axions of the gkon cells extend to form the fibers

of the optic nerve.

The differing photosensitive chemicals as well dfexdng patterns of connectivity to
other cells in subsequent layers give rise to fifferthg functions of rods and cones.

Farah [18] postulated a trade-off between sengjtita light and spatial resolution.
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Amazingly, the HVS multiplexes an image into twoachels: one that favours
sensitivity and one that favours resolution. Herlee,rods with higher sensitivity and
convergence onto bipolar collector and gangliotsagive us a low resolution image
when there is little light. Conversely, the condsge to their lower convergence,
provide us a high resolution image in the presesfogood lighting [18]. Moreover,

since colour relies on the cones, which tradesesfblution for sensitivity, there is the

phenomenon of achromative vision blindness that azayr when lighting is poor.

2.1.2 The Visual Pathways

As mentioned earlier, the visual pathway is thé&wiay that conveys information

from the eye to the visual cortex. The bundle afrex connecting the retina to the
visual pathway, also known as the optic nervetspito numerous pathways [18], of
which only two are crucial to visual perception.heTfirst is the geniculostriaye

pathway, consisting of the LGN and the primary aistortex. The other is collicular

pathway, which affects spatial orienting and eyevemeent. In this thesis, only the
geniculostriaye pathway will be discussed as thes most dominant pathway of the
HVS [18].

a. Retinal Ganglion Cells — Center surround RecegtiFields

The concept of center surround receptive fields wsesd by Kuffler [43] to describe
the interactions of neuron within the visual systeoi mammals. Before an image
leaves the eye, absolute levels of illuminationlatendered off, leaving a retinotopic
map of differences: points in the visual field wdhan illuminated region abugsdark
region. At the individual retinal ganglion cell iy this is represented as the center-

surround organisation of its receptive fields (S&pire 2.5) [18].
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Figure 2.4 Cross-section through the retina
(Adapted from Farah [18])

The human retinal ganglion cells comprise of thdestinct classes that are known as
X, Y, W cells [44, 45]. These cells are of diffetesizes. Both X and Y cells project
to the dorsal lateral geniculate nucleus and treteptum. The W ganglion cells
project to the superior colliculus and the pretectlt is also known that the X cells
have slower conduction velocities than the Y typlisc with the W cells having the
lowest of the three. It is believed that both Xdan cells contribute to high vision

discrimination. X cells are more likely to be reapible for resolving higher spatial
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frequencies, while the Y cells are more respongvaoving stimuli. The X ganglion

cells are concerned with central vision [46].

Figure 2.5 (a) Depiction of on-centre/off-surroyteft) and off centre/on-surround
(right) receptive field structures; (b) Contrasbgassing of receptive fields (Adapted
from Farah [18] )

As stated previously, the photoreceptors in thénaetransform light energy into
electrical impulses from the ganglion cells. Thedectrical impulses can be
determined by using microelectrodes [30, 34] whindasures the response as active
potentials or spikes over a time period, when doeptors are subjected to a stimulus.
The results showed that the spontaneous firingaiaéeerage rate of occurring spikes
increases when a neuron is subjected to a spagldf However, when the spot of
light shifts to the surrounding region, the spoetaus firing rates diminish [34, 38].
Referring to Figure 2.5, the “on-center” cells atamulated by light in a small area
throughout the visual field (on- center) while ibiteéd by light in the surrounding
areas (off- surround). Conversely, the “off-cente€lls works in the opposite way
[18, 47]. Hence, in the eventual visual perceptdrobjects, it is not the level of
absolute brightness, but the differences in brigbdén between central and the
surrounding regions of receptive fields that matier Figure 2.5(b), the greater
difference in brightness on the right hand sidéhefon-centre/off-surround receptive
field results in higher response (++) than the ‘response () of the left hand side
on-centre/off-surround receptive field pattern whitas the same absolute brightness
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in both the on-centre/off-surround regions. In siaene way, the perception of colour
images is also based on the groundwork of the éowpthe on-off receptors cells of

the various cone types [18].

b. The Lateral Geniculate Nucleus (LGN)

The Lateral Geniculate Nucleus (LGN) consists of layers - four parvocellular (P
cells) layers visible at the top and two layersmégnocellular cells (M cells) visible
from the bottom [17, 18]. Compared to the P ceahlg, M cells are larger and have
broader axons, resulting in a faster nerve conduactielocity and more transient
response. However, in terms of colour perceptioa R cells exhibit colour sensitivity
while the M cells do not. Moreover, the M cellsei® input from a greater number
of photoreceptors, giving rise to greater light sevity or in other words, better
temporal resolution. On the other hand, the P ce#lseive input from a smaller
number of receptors, producing better spatial td&oi. [18]. The temporal resolution
of the M cells creates the perception of motion egdirects spatial attention to any
unexpected stimulus (e.g., tracking), while thetigpaesolution, colour sensitivity
and pattern detection of the P cells caters foeahjecognition where pattern, colour
and texture are dominant characteristics [18, BAperiments carried out on primates
have also shown the above characteristics of thentM P cells. In the experiments,
sections of the monkeys’ LGN layers were lesiondth vibotenic acid to create
impairment in the M or P cellular layers. The prieg are then subjected to
psychophysical test to map their impaired and pvesevisual perceptual abilities
[48]. Recent Studies has also indicated the presehanother separate layer, the
Koniocellular layer [49], which exhibited similarebaviour to the P cells. The
Koniocellular layer bypasses the primary visualteor V1, and instead connects

directly to the V2 layer [50]. The functionality this layer is as yet unknown.

The neurons in the LGN layers exhibit the sameeagesurround organization as the
retinal ganglion cells. Though some researcherkttiiat the cells in the LGN layers
have more powerful inhibition towards the surroungdiegions [34, 51], there should
not be any major distortion of the neural imagetasoves from the retina to LGN.
Currently, researchers do not fully understandfthiefunction of the LGN though
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many concur that it is positioned to amplify visumgout to the cortex [51]. This then
leads us to our next section where the primaryalisortex is discussed [34, 38] —

(the final destination of the visual signal frone tletina and LGN) .

2.1.3 The Primary Visual Cortex

The optic fibers from the two retinas merge at apéic chiasm where the fibers are
separated into two groups that connect to each alidbde brain. Here the retinal
ganglion cells send images from the left opticdied the right side and of the brain
and vice versa. A large part of the visual sigmaht the retina and LGN is sent to a
single area in the occipital lobe of the cortexisTarea is called V1 or the primary
visual cortex [34]. Other cortical areas have ddsen identified by researchers over
the years, of which V1 through to V5 are most proent. V4 is generally associated
with colour while V5 with motion [18, 34, 37, 523B(See Figure 2.6).

The discussion here shall center on V1 and V4. disists of six layers based on the
differing densities of neurons, axons, synapsesiatedconnectivities with the rest of
the brain. According to Livingstone and Hubel [Sklyer 4B received signals from
the M cells, specializing in the motion and depénception. Layer 4C continues the
parvocellular processing, specializing in coloud ashape perception. These two
streams then project to different parts of V2 amenepossibly project to other higher
level of association cortices. However, recent issidhave shown that the

hypothesized segregation at each level of procgssinot always true [18].

V4 is commonly associated with the perception dben Perception of colour starts
with the absorption of different wavelength lightresponding to the three cone
types. The P cells in the retinal ganglion cellthwhe center-surround field responds
to the differing profile of responses towards coloColour contrast is further

processed and becomes more pronounced in the LGN.
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Figure 2.6 Anatomically and physiologically defineabdivisions of the visual
system (Adapted from Livingstone and Hubel [54] )

In the primary visual cortex, layers 2 and 3 cawiour information and project it into
V2 which in turn is translated to V4. Although margsearchers have accepted the
hypothesis of V4 being a main player in colour peton or even the colour centre,
nothing can be said about the exact nature of ¥Gl&s[18]. Thus this gives rise to a
hypothesis of the specialization of higher cortipadcesses in the HVS [18]. Similar
to the retina ganglion cells, the cells of the @y cortex exhibits some
characteristics - the orientation and frequenceaelity nature of the cells in the

primary cortex (discussed in the next section).
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2.1.4 Characteristics of Neural Responses - Orienta  tion and
Frequency Selectivity

a. Simple, center-surround and complex cells in themary visual cortex

When visual signals travel from the LGN through tisual pathway to the primary
cortex, there is a major change in the image reptason [18]. Hubel and Weisel
discovered in 1958 that the receptive fields ofwiseial cortex cells are different from
that of the retina and LGN when they conducted erpts on a cat’s eye [55].
Basically the cells in the visual cortex are clasdiinto 3 categories [21]: simple

cells, center-surround cells and complex cells.

Within a visual field, simple cells respond to eslgg certain specific locations and
orientations (see Figure 2.7). The excitatory arfdbitory regions are elongated and
thus spots of light or edges at the wrong orieotahiave little effect on their response
levels. As regards to center-surround cells, thegponse similarly to the retinal
ganglion on-off cells (discussed earlier), i.egd@fic regions of the visual field either
excite or inhibit them [18]. Complex cells, as ti@me suggests, have responses more
complex than the previous two types. Representiagemabstract visual information,
they are more selective to particular lengths aftcor and thus are sometimes called
“hypercomplex” or “end-stopped” cells [18]. In faétubel and Weisel [21] suggested
that there could be a feed-forward sequential amdatchical visual processing
between the three types of cells (see Figure ZBg responses of the cells are
specific to the form of stimulus (e.g., from cométauminance to an oriented edge or
bar) and the viewing conditions (from a point toaage of location in reference to a
fixation). Thus a simple pattern of excitation webwhannel signals from one level to
another, and the simple and center-surround cellddvconverge on a complex cell,
giving rise to object recognition at a higher lewal visual processing. From
experimental data, Hubel and Weisel found that gsheuli that incite strongest

responses from simple and complex cells were @tkatdges and bars [21].
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Figure 2.7 Bar stimuli of different orientatiorieff) and the responses they evoke
from a simple cell in primary visual cortex (rightAdapted from Hubel [56])

Figure 2.8 lllustration of the idea that simpédls result from the feedforward
convergence of a set of centre-surround cells. jjéethfrom Hubel and Wiesel [21])
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b. Orientation selectivity

A visual signal (electrode penetration) which isgaadicular to the cortical layer will
attune to cells with the same orientation prefegerd each level, there is a column
with a particular orientation preference [18, ZIhe orientation preferences of each
successive column vary in a smooth and systematycamd are by no means random.
Hence, Hubel and Weisel [21] used the term “colunagortray the organisation of

orientation selectivity in the human visual system.

On the psychophysical front, Valois, Yund and Hepl®] derived quantitative data
on the orientation and directional responses ofs del the striate cortex (primary
visual cortex of monkeys). Their studies reveat tha orientation bandwidth of cells
at half amplitude ranges from 6 to 36 degrees, withedian of 40 degrees. Most cells
also show excitations to some particular orienteticand inhibitions to other
orientations, with maximum inhibitions present siijeside of excitatory orientations.

Some cells are also found to be isotropic.

C. Frequency selectivity

Many psychophysical studies have shown that theualisystem operates in a quasi-
linear fashion over a realistic range of contrapt®ducing multiple, fairly narrow
tuned, spatial frequency channels. (Presumablys @k selectively sensitive to
different restricted portions of the spatial fregeyg spectrum).” [20]. Thus it can be
said that the HVS (up to the region of the primaigual cortex) performs a spatial

frequency filtering of the visual information.

2.2 Overview of Human Visual system — Psychophysica | View

Visual adaptations include changes over time in #neas of visibility, colour
appearance, visual acuity and sensitivity. Thesengbs can be be measured using
psychophysical experiments [37]. Therefore, thalgtof the HVS is not complete
without observing the psychophysical aspect. Thgchpsphysical studies and
experiments undertaken in the areas of visual ycodntrast sensitivity and visual

masking will be discussed in the following sections
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2.2.1 Visual Acuity

When an image is captured by the eye, three fa¢t@s optical filtering, receptor
sampling and the receptive organization at thenaktievel) determine the clarity of

the captured image. Thus visual acuity is the measent of this clarity [37].

Campbell and Gubish [57] measure the optical qualftthe eye by recording the
faint light emerging from the eye that was refléctsn the fundus. The basic idea
behind this is to capture the retinal image. Howgetlae to the problem of the double
passage of light (light entering and leaving the)egnd the optical imperfections
inherent to the eye, the clarity of an externaleobjis slightly diminished. For

example, an infinitesimally, self-luminous objecillwbe degraded to a smooth
illuminance distributiontermed as the linespreadcfion (LSF) [57]. Using Fourier

transform, the line images were translated to metci transfer functions (MTF).

Results show that the MTF gives rise to a bettéicalpquality estimate. Other studies
have also confirmed that for a given pupil size, ttinal image of a thin line is twice
as broad as the line’s diffracted image [57-60]rébwer, a further study by Campbell
and Gubisch [57] not only shows that the retinahge is a blurred version of the
original input image due to imperfections of therfan’s optic, but it also shows that
the linespread function is related to the pugksii.e., a larger pupil will give rise to

more blurring of the image.

However, as most images do not consist of weigisteds of line, Wandell [34]
suggested the use of a set of points as betteripess for two-dimensional (2-D-
image. Thus the use of the point spread functioBFJP[61] is a more general

representation for real life images (see Figur¢g [34).

The derivation of the MTF either from the LSF oetRSF is an optical transfer
function which defines the scale factors applieddoh spatial frequency. The MTF is
the magnitude of the Fourier Transform of the PS&e to difficulty of determining

the MTF from PSF, a common approach is to deterrtiieeMTF by taking the Fast
Fourier Transform (FFT) of the LSF at various asglén Manos and Sakrison [62],
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the MTF of the PSF has been used to measure pemejstortion of images. Based
on the modulation curves of the HVS, derived thioegperiments, the MTF could
serve as a good estimate of optical sensitivitgdgtive to frequency. According to
Mannos and Sakrison [62], the MTF which is an erogirmodel often used in

experiment to fit CSF data is shown as,

MTF» 2.6(0.0192+0.114f, )e ©1141)" (2.1)

where f =,/fZ+f?. f and f, are the horizontal and vertical spatial frequesicie

measured in cycles/degrees.

Figure 2.9 Point spread function (Adapted fiddfandell [34])

From the characteristics of the MTF (See Figur®g.the human optics have a band
pass characteristic with a peak sensitivity esttiab be about 8 cycles per degree of
visual angle. This sensitivity attenuates rapidly both the lower and higher
frequency band with a cut off frequency at aroufdcycles per degree. This is
consistent with the contrast sensitivity functi@3]64]. The low frequency cut-off is

due to lateral suppression in the retina gangliglitsc The high frequency cut-off is
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due to the MTF of the optics and the integratioocpss of the retina photoreceptive

cells (i.e., the cones).

2.2.2 Contrast Sensitivity Function

The HVS is able to perceive very minute differenicekiminanceContrast threshold

is thus defined as the contrast needed to eliorisaal response in the wake of
differences in intensity/luminance. By inversing tbontrast threshold, the contrast
sensitivity function is obtained [34]. Contrast daa measured at the luminance level
and has several forms of expression. Two commosiyl wefinitions are the Weber-

Fechner contrast [65] and the Michelson’s conti@sttions [66].

Figure 2.10: Modulation Transfer Function of theman Eye.
(Based on MTF function of Mannos and Sakrisor])[62

Weber’s contrast function is derived from a psyeisual experiment. An observer
looks at a stimulus like the one shown in Figurgl2.The stimulus consists of a
constant uniform background with luminance L anghgying patch in the foreground

with luminance L + L. As the foreground luminance increase in brightheéhe Just
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Noticeable Difference (JND) -L/L which is the minimum luminance needed to see

the patch, is measured. Thus the Weber’'s conatantion is defined as
Cooper =— =K (2.2)

where L is the background luminandejs the Weber-Fechner fraction, and the JND

is 1-3% for a constant region &f values between 0.1 — 1000 cd/m

Michelson’s contrast is usually used to measurdrashof sinusoidal grating:

C — I-max - I‘min (23)

Michelson —
I-max + I—min

wherelL,, and L, are the maximum and minimum luminance, respegtivel

Figure 2.11 Contrast measures of simple patterns

However, both Weber-Fechner and Michelson’s confi@sctions are designed for
simple patterns. As the images in our real worldehaore complex patterns, these
functions have limited effectiveness. In fact, Werk[67] highlighted that both

Weber’'s and Michelson’s functions are affected bgrges in luminance extremities
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and fluctuations. Note that, as reported by Pe#i] [@lthough both definitions of
contrast are similar, they are not equivalent &eddynamic range for both are not the

same.

Peli provided a definition for contrast for complexages — the band-limited contrast
(C"°) [68], which defined contrast at any frequencydaFhe band-limited contrast,

C’°, at any spatial frequencly, is as follows,

crx)= 202 2.4

wherel,(x,y)>0. In the space domaim, (x,y) is the bandpass-filtered image, and
Ii(x,y) is the low pass filtered version of the image aomhg all energy at bands

below the current scale. In Peli’'s work [68], agwidal structure of 1-octave wide
bandpass filter centred at different scales thatlanctave apart is used. A definition
of the bandlimited contrast with the pyramidal stase is included in Appendix H.

Interested readers may refer to Peli’'s work [68]do extensive coverage.

Contrast sensitivity is a function of spatial fregay, temporal frequency and mean
luminance [34]. Van Nes and Bouman described t8& @ two parts: “the optical
modulation transfer function responsible for theg®a formation on the retina, and a
retina-perception-center contrast sensitivity fiorct [64]. The contrast threshold
increases according to mean luminance [64]. SiheeQSF is the inverse of the
contrast threshold, when the mean luminance inesgdlse contrast sensitivity of high

spatial frequency signals decreases (Fig 2.12).
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Figure 2.12 Contrast Sensitivity of sine-wave grgsi Cross for lower
mean luminance. Circle for higher mean luminanadagted from
Wandell [34])

2.2.3 Visual Masking

In the presence of other visual stimuli, the stthraf a visual stimulus can be either
enhanced or diminished. The enhancement or dedéoarof the visual stimulus is
due to the responses of receptive fields in thealigortex being triggered either
positively (excitation) or negatively (inhibitionJhe enhancement and deterioration
of visual stimulus in this manner is commonly knoas facilitation and masking,
respectively. In the experiment conducted by Leggé Foley [22] with sinusoidal
gratings, the frequency and orientation of the @¢argjgnal and masker are closely
related as to affect the level of facilitation amésking. In Figure 2.13, the target
contrast threshold versus masker contrast (TvChl@rano masking occurs at low
masking contrast level (masking contrast below &Rgilitation occurs between cl
and c2, and masking occurs beyond c2. It has bmerdfin [22] that for high contrast
maskers and signals at medium and high spatialuémcjes, signal threshold
elevation increases when the frequency and orientaf the target signal and masker
are similar, and being maximal when both signal andsker have the same
frequency. The effect of masking diminishes asmiasking frequencies deviate away

from the target signal frequency.
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The masking model proposed by Legge and Foley deduboth low contrast

detection and high contrast discrimination in alim@ar transducer as follows,

F(r)= (2.5)

Figure 2.13 Target contrast thresold vs maskerash(TvC) curve.
No masking is observed to the left of C1. Fadilita occurs between C1 and C2.
Masking occurs to the right of C2. (Adapted frongge and Foley [22] )

where r is the input signal (signal + masker or signalhaiit masker) to the
transducer. It is derived from the output of a pheg linear filter.a, anda, are
constants.p and q are the exponents for the excitatory and inhilgitterms,

respectively, withp >q. The exponentp andq are set to 2.4 and 2, respectively,
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at low input to account for low contrast>a,, F(r)» a1|r|0'4. At high input, which

a1|r|2.4
2

accounts for high contrast,< a,, F(r)»
aZ

The output,F(r), from the transducer is added with Gaussian neiseo account for
observers giving the same response in identicakfohoice trials. The output of the
detector isE(r)=F(r)+e. The force-choice trials are conducted whereby an

observer is presented with one interval contaitarget signal plus masker, and with

another interval containing masker alone.

Essential, the decision rule is basedE{n, +r)- E(r,), wherer, andr,, are input

signals representing target signal and maskereotisply.

a. Foley's Model

Based on the work of Legge and Foley [22], Foley] [@onducted experiments to
investigate two prediction (1) a change in spatiaveform of the masker causes a left
or right shift of the TvC function by a multipligaé constant, and (2) a shift of the
TvC function to either left or right by an additinstant in the presence of an
additional constant masker. However, tests withagglatterns for both the target and
the masker did not support the above predictiomstebd, Foley developed two new
models incorporating a divisive inhibition that deked better fits to observed data
than that of Legge and Foley’'s model [22]. The rmewdels were based on the
finding that cells in the visual cortex have botte texcitatory and a broadband
divisive input. In one of the proposed models, ¢leitation function,E , is the half-
wave rectified sum of the individual excitation @on, of which the individual

excitation function is defined as the product ompmnent contrastC,, and the

sensitivity due to the normalized luminance profilg, of componentj , that is,

E= Cs. (2.6)

The contrast component, , is defined as

28



C = - (2.7)

whereL,(x, y),. andL, are the maximum and average luminance, respegitifa

component; .

The broadband divisive inhibition functioh,, is defined as the sum of the product of
individual inhibition. The individual inhibition faction is defined as the product of

the component contrasl; and sensitivityS; for patterni .

= Cs, (2.8)

The response function is given by,

ED
[9+Z

(2.9)

where p and g are constant exponents, with=2, and Z is a positive constant
parameter to prevent any likelihood of division z8ro. In generalg? | , S;, and

S, , due to excitation and inhibition, respectivelse different, in general.

An elaboration of the above model gives rise to tla@o model that includes
components from the same orientation as well as pwoled from different

orientation, j, as part of the sum for the division term in tlesponse function.

Hence the inhibition becomes,

I, =max Cjs; , 0 (2.10)

wherei is the index for components of the same orientatind j is an index for

orientation. The response is defined as

29



EP
R=———— (2.11)
1 +Z

]

The inhibitory input terms are summed together ¢omponents with the same
orientation, i , as in equation (2.10). For pattern componentosacrdifferent

orientations, the input is raised to a powgy,before it is summed across different
orientations,j . The elaborated model with response function qnation (2.11)

resulted in better fit to experimental data thaat tf equation (2.9).

b. Teo and Heeger’'s Model

Teo and Heeger [23, 69] developed a perceptuartimh measure based on the HVS
that fits empirical psychophysical data of spati@sking experiments [70] . The
model is closely based on the work of Heeger [1@]which the neuronal response is
the result of an accelerating nonlinear responsa odrtical neuron’s excitation and

suppressed divisively by pooled responses of atbeical neurons.

The model consists of a front-end linear transfosqguaring of the transform
coefficient, a divisive contrast normalization (§anto that of Legge and Foley [22])
across orientations, and finally a detection stafjee model initially uses the
Hexagonal QMF filters [72] for frequency decompiasit creating subbands of 0, 60
and 120 degrees orientations for each resolutiogl.leHowever, the bandwidths for
the 60° and 120° orientations were too wide to igdegood fit to data. The frequency
transform is subsequently replaced by steerablanpyg transform. The steerable
pyramid transform is used to decompose the imate several spatial frequency
levels, each of which is further divided into siemtations at 0, 30, 60, 90, 120, and

150 degrees. The neuronal response function takeerm as follows,

%:KT%%}F (2.12)
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whereil {12,...,N} denotes the contrast discrimination band witt 4. X, is the

transform coefficient at orientatio,, ands;is the saturation constantk; is the

scaling ~ constant. | = f(Xf)z is the inhibition  function,  with

={0,30°,60°,90°,120°,15(°} as the orientations. Since each normalized sezzsor

only discriminate contrast differences for a narroentrast range, the contrast

discrimination level is set thi=4 so as to cover the full range of contrasts. \hih

inclusion of numerator ternx , as part of the f(Xf)z, ands; >0, the range for

the response functioR,, is [0,k ).

The final detectionp , adopts thd, norm,

D=‘

R - R”H (2.13)

where R? and R? are the vectors of normalized responses due tdisierted image

(a) and the reference imagé §, respectively.

c. Watson-Solomon’s Model

While Foley’s model [25] mainly considers spatiahsking localised with individual
oriented bands, that is, masking contribution doecéamponents within the same
spatial frequencies, but without components frora #ame spatial but different
orientation subbands, Teo and Heeger's model [23, dhly considers masking
contribution from across different oriented sublsnout does not include masking
contribution from different spatial frequencies. or@Giderations of both spatial
frequencies as well as across different orientatempooled candidates in the divisive
inhibitory function are necessary to achieve befiteto psycho-physical data. All
these considerations are subsequently included atsd-solomon’s model [27]
through the contrast gain control (CGC) processWatson-solomon’s model, the
inhibitory function includes multiple channel ingufrom spatial, frequency and
orientation domains. The input signals of two-dmsienal image are filtered
according to the contrast sensitivity of the HVSIdwed by either the cortex
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transform or the Gabor Array into frequency domaneating multiple frequency and

orientation subbands.

The neuronal excitatiorE(av;#), similar to that of Teo-heeger's model [23, 69]isl

defined as,
Einr) =) (2.14)

wheret(a’;#) is the transformed coefficient of the input imagbtained by either

cortex transform (see Appendix I) or Gabor fiItgirﬁ=(L,Q) refers to the subband
of frequencyL and orientationQ, X the spatial locationf the phase, ang the
excitation exponent. The phage, refers to the four hypothetical phases (0. 9@, 18
270 degrees) of the individual receptive fields][2

The inhibitory function,l , pools transformed coefficients from within indivial
frequency subband, across different orientation dbamnd between different
frequency bands. It is computed as a convolutidth & pooling kerneH(a;f) as

follows,
Vo) = tnn)  Hisr) (2.15)

where H (s.57) is the pooling kernel, and = 2 is the inhibitory exponent.

u,X,

The overall responsey ), after pooling is defined as,

Blix) 216
r(ﬁ,?,f) T bY+] i (2.16)

u,x,f)

where b >0 prevents the response from saturating. In genegrak .
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2.3 Chapter Summary

This Chapter presents an overview of the humaral/sygstem. The physiology of the
human eye is discussed in detail. Of particuleeradt is the process of how an image
is transformed from a light image to a neural imdéyethe human visual system
(HVS). The three aspects involved in this transfation are discussed in detail
namely, the retina (where an image is first captyrthe visual pathway (where the
image is conveyed and processed through LGN) amadtimary cortex (where the
image is perceived by the human brain). Some nexelid responsible for image
formation in the HVS are frequency and/or oriemiatiselective [19-21]. One
particular neural behavior that has direct beanngvisual perception is masking.
Some of these properties are important visual charatics which are taken into
account during the development of the perceptuatieiso presented in the later

chapters.

The study of the physiological mechanisms of the# eye establishes the basis of
visual adaptation. Examples of visual adaptatioredude changes over time in the
areas of visibility, colour appearance, visual acwaind sensitivity. Some of these
changes can be observed and quantified with pgygisical experiments [37, 42].
Therefore, the study of the human visual systemademplete without observing the

psychophysical aspect.

The psychophysical studies and experiments undartakthe areas of visual acuity,
contrast sensitivity and visual masking have beemtudsed in this chapter. The
Contrast Gain Control Model by Watson and Solonmdf [s an example of a vision

model which attempts to incorporate certain qui@tlie properties of the HVS such
as contrast sensitivity, frequency and orientaielectivity of neurons, and masking
phenomenon. Other models following this approaehadso discussed [22, 25, 69, 73,
74]. These models formed the basis of the Perce@okur Distortion Measure

(PCDM) and Perceptual Post-Filtering (PPF) algaomitteveloped in chapters 4 and 5.
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Chapter 3 Review of Contemporary Image Coders

3.1 Overview of image compression systems

Digital images or pictures are prevalent in modeay life. However, they require
significant storage and transmission bandwidthr é@mple, a 512x512 resolution
colour image with 24-bit per pixels occupies 78@,48tes. Thus, at a resolution of
1024x1024, the size of the image becomes four tiasekarge. With the increased
need for digital storage and the use of images iostmapplications, image

compression then becomes important [12, 75, 76].

There are two approaches to image compressiony lessl lossless. Lossy
compression allows for some loss of informationiyencoding. On the other hand,
the lossless compression maintains integrity obrimftion during the encoding
process, i.e., the reconstructed image from adesstompression is identically equal
to the original uncompressed image. For losslesgoession, statistical redundancies

in a given data set are removed.

Given that there are limitations in transmissiomdwidths and storage capacity, a
higher level of compression ratio is desirable gmethaps necessary in some
applications. Inevitably, there is a need to acaptertain amount of distortion
(information loss) in order to achieve higher coegsion as evident in the Rate
Distortion (R-D) Function [12], i.e., compressioatio is related to the level of
distortion. As the encoding process in the logsyression is selective, meaning not
every single piece of information is encoded, lossypnpression can achieve higher
compression ratio as opposed to the lossless casipre The general approach for
lossy compression is to encode information accgrdim importance, i.e., most

important information over less important.
In recent years, another school of thought for ienagmpression (i.e., perceptual

coding) [77] has emerged which strives to maintaétter perceived image quality

(vis a vis that of the lossy compression) whilgtiaging a higher compression ratio
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(compared to that of the lossless compression)ertisdly, “perceptually lossless
compression is achieved by removing informatiort thdperceptually irrelevant to
the HVS. Perceptually lossless compression atterptgsemove statistical and
psychovisual redundancies

The focus of the discussion in this chapter isréwéew of the various image coders in
the literature (sections 3.4 and 3.5). An overvigimhe information theory which

forms the basis for image coding is also provided.

3.2 Information Theory

3.2.1 Theory of entropy

Image compression is achieved through the remdvstiatistical redundancies in the
data set. Shannon theory of entropy [10] describesrelationship between data,
information and redundancy. All data contains é¢eréanount of information which is

measured in bit per pixel (bpp). If data useddsaidibe the information exceeds the

entropy, redundancy exists. Given a data set miliferent symbols of probability of
occurrence,p={pl,p2,...,pn}, where fpi =1, there is a minimum amount of bits

required to represent each symbol. This is refetoegs self information [10], and is

defined as,
l; =-log, p, (3.1)

Hence, symbols with higher probability can be repreéed with shorter length code
words and vice versa. The summation of all selfiimfation in a data set is equal to

the entropy,H . H and is defined as,

n

H=- plog,p, (3.2)

1
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The entropy for a given input source is the minimaverage number of bits required

to represent each data sample. When all symbasdata set have equal probability
. : 1 .
(i.e., the worst case scenarit¢j,=-log, — corresponds to the maximukh. The

n

redundancyRy) in data is defined as,

n i

1
Rd=-logzﬁ- - plog, p; =log,n+ plog, p, (3.3)

1 1

If no redundancies exist, e.g., random noise, Rewould have been zero, resulting
i
in log,n+ p,log, p, =0.

1

Since that for a certain interval of finite lengihcodes, fixed length coding cannot
ensure that all source outcomes are representietepfly, variable length codes are
used [12]. Examples of variable length codes ae#¥PCodes [78, 79], Unary Code,
Golomb Code [80] , Shannon-Fano Code, Huffman (8tlpand Adaptive Huffman
Code [82], Arithmetic Code [83-85]. For most praatiimplementation of lossless
compression, Huffman Coding, Adaptive Huffman Caggliand Arithmetic Coding
are widely used . Similarly, examples of fixed-ldngodes are Run Length Encoding
[80], Tunstall Code [86].

While the theoretical coding efficiency is at therepy, in practice, coding at entropy
has never been achieved due to practical limitatafrmodelling accuracy and coding
overhead. However, the entropy bound can be nemntyeved with the use of
arithmetic coding to the extent that source siatistan be accurately modeled.

3.2.2 Rate distortion theory (R-D)

“The primary goal of lossless compression is toimire the number of bits required
to represent the original samples without any losénformation” [12]. However,
there are three reasons why information loss is@eble: (1) Loss of information is
allowed as long as it is not perceptible by the H{Z3 lossless compression is unable
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to provide high compression ratio for many pradtagplications. Consequently, the
existence of compression standards, such as JP&flirea[11] and JPEG2000-lossy
[12] came to being, and (3) in the first place, ahgital input to the compression

algorithm is itself not a perfect representatiothaf original image.

Given that small errors or distortion are permittedsy compression thus strives to

provide a balance between distortion levels vecsuspression ratio [12].

Consider the case of the mutual informatibfy) ;V), between two random variables

U andV, which is defined as:

1U:v)=H{U)- HU V) (3.4)
where the entropyH(U)=- R, (u)log,R,(u), and the conditional entropy,
HUV)=- R/(v) PR, (uv)og,R,, (uv). R,(v)and R, (u)are the probabilities

of occurrence fow andU, respectively.PUN(u,v) is the joint probability. The mutual

information | (U V) in equation (3.4) becomes,

U V)= PVlU(v,u)XPU (u)iog,, v (3.5)

uv V

In source coding with lossy compression, the Idssformation is most notably due

to quantisation. Consider a source samp}é,:{xl,xz,...,xN}, subjected to
quantisation process such that=Q *(Q(x)), where Q() and Q*() are the
guantisation and dequantisation operations, resedct The distortion measure
based on square error betweerand % is given asd(x ,% )=(x - %)’. The mean

square error betweeK and X is computed as:

N

1
N o

d(x ,3<i)=%_N (x - %) (3.6)

=1

MSEX X )=
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Applying equations (3.4) and (3.5) with square eerdistortion, d(xi,3<i), to a
memoryless source, the rate distortion (R-D) fuorctis obtained by solving the

minimization problem as follows:

inf I(X;)A()
R(D)= P | Pix Py (%) P, (x)>d (x,% ) £ D (3.7)

The discrete case in equation (3.7) can be extetwdd#e general case for continuous
function. Typically, the R-D function is a contmus and monotonically decreasing
convex function in the interval [@Qmad as shown in Figure 3.1Dnaxis the value of
D after whichR(D)=0. R(D=0) is the rate at which distortion is zero, and iis tase
for lossless compression. The inverse of R-D foncts the distortion rate (D-R)
function which sets the theoretical limit on disimn, subject to the constraint of a

given coding rate.

For a memoryless source, X, with squared erronisiertion measure, Shannon lower

bound states that:
R(D)2 h(X)- h(D) (3.8)

Whereh(D) is the differential entropy of a Gaussian randamable with variance,

D. Consequently, for the memoryless source wrigr@) is Gaussian with variance,

s?, subject to the constrainE[(X - X)ZIE D, the R-D function is as follows:

N

log,>* O0£DEs? (3.9)

R(D) = S

N

The function in equation (3.9) has a similar shagein Figure (3.1). The rate
distortion theory essentially shows us that any p@ssion system can only perform
within the shaded area in Figure (3.1). For a gigiestortionD, it is the design of a

lossy compression system to attempt to operatelas® ¢o the R-D curve (i.e.,
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reaching the lower bound). Note that in transfdyased image coding [87, 88]
distortions are usually generated as a result @ngsation noise. (This will be

discussed further in section 3.3.2).

Figure 3.1 A typical rate distortion (R-D) functicnrve

3.3 Elements of an Image Compression System

Figure 3.2 shows the elements in an image compressystem. The following

sections focus on each of the main elements dheg@rocess of image compression.

Pixels of natural images are usually correlatech wiiteir neighbouring pixels [12].

The first step in a transformed based image corsfmessystem is to project these
correlated pixels into a representation so thatsdraple data are decorrelated [87]
with a large quantity of the image energy compaeied few coefficients (i.e.. DCT

transform). The transformed samples are then sigujdo a process of quantisation
which essentially decreases the precision of timepkadata, and thereby reshaping
the probability distribution function (PDF) and leenthe entropy [89]. Quantised

coefficients are then entropy encoded to form threressed bit-stream.
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Figure 3.2 Structure of an image compression system

During the de-compression process, the compressedrdam is entropy decoded,
followed by dequantisation, and then the invers@dform to reconstruct the input
image. While quantisation contributes to compr@ssgain, it is also the main

contributor to distortion due to quantisation error

3.3.1 Transform

A linear transform T())) on an input signalx, and its invertible transformT(*(.))

on the transform coefficientX, can be expressed as,
X =T(x) (3.10)
x =T }(X) (3.11)

In transform based image coding, where a recovesggss is required to reconstruct
compressed images, it is desirable to have antibleetransform kernel [90], i.e.,

perfect reconstruction. Both the orthogonal andrbiogonal transforms [89-92] are
classes of all invertible transform. The perfeciorestruction Quadrature Mirror Filter
(QMF) [93] which has been used in both audio anagencoding [94] in the literature

is also invertible.
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From matrix perspective, orthogonal transforms nfui§tl the following conditions:

AXAT =al (3.12)

whereA is aM "M square matrix| is the identity matrix, ane is a diagonal matrix.

Both A anda are of the form,

&, 8 . A
a'21 a22 aZM

A: . . . . , (313)
aMl aMZ aMM
a, 0 0
0 a, 0

= ' ' (3.14)
0 0 .. aw

Orthogonality of a transform can also be viewedrfreector perspective as inner

product of two vectors satisfying the conditiondve|

N 0, whenit j .
T\ = xa' =ad. = for"i,j, 3.15
> - e a, wheni=j : (8.15)

wherea, is the row vector oA, with i = {1,2,...,M}, ajT is the transpose &, and

al R. Ay is the square matrix equivalent to equation (3.13)

Matrix A in equation (3.13) is orthonormal &, = .1 Consequently, the analysis

vector @) and the synthesis vectoSE A = AT) of orthonormal transforms are

equivalent in a sense that the analysis filterstisme-reversed, complex conjugate
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versions of the synthesis filters, and they areuallyt orthogonal with a unit length
[12]. Thatis,

ACAT = | (3.16)
or
N 0, whenit j .
cary= _xal =d = for"i, 3.17
<a| j > ot a‘lk jk ij 1’ Wheni — ] J ( )

All orthogonal transforms are linear. An importasitaracteristic of an orthogonal
transform is the energy preserving property alsowknas Parseval’s relationship [12,
90, 91, 95]. In short, this means,

|AX| = (Ax)" Ax = xTATAx = xTIx = x"x =|X| (3.18)

where x is the input signal vector in the time domain, #e is the transform
coefficient vector and\ is the orthogonal matrix. Hence, if the MSE in thensform

domain is minimised, the MSE of the reconstructathde is also minimised.
Examples of well-known orthogonal transforms in fiedd of image coding include
the Discrete Fourier Transform (DFT) [90], Discréesine Transform (DCT) [96],
Hadamard Transform, Haar Transform [97], Slant $famm and the Karhunen-
Loeve Transform (KLT) [98].

A Biorthogonal transform [90] is invertible, like na orthogonal transform.
Specifically, for a non-orthogonal mati(i.e.,B™* * B"), if there exists a dual basis

non-orthogonal matri>8 (i.e., B'1 B",andB ! I§), that satisfies the condition,
BB = |, (3.19)

it is said that matrixB and B are biorthogonal, wheral A . From the vector

perspective, vectoB and its dual basi8 , are biorthogonal if,
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<b,51>:aa’.. - 0 Th (3.20)

If a =1, matricesB and B are said to be biorthonormal, and the analysis and
synthesis filters are dual basis of each otherortBogonal filters do not preserve
vector length. Also, Parseval’s relation no longetds for biorthogonal system,
therefore, it is important to design a biorthogosydtem so that the norms are close
[91].

Biorthogonal transform is advantageous over thieagonal transform with respect to
regularity and phase linearity. Regularity is &efilcharacteristic which measures the
degree of filter smoothness under iterations. Timeans minimum fluctuation,
resulting in better reconstructed image. A filtdesgth affects its regularity and the
longer the filter length, the more regular theefilwill be. However longer filters

increase the computation load of transform [90].

Though regularity is desirable, Rioul [99] arguéattexcessively regular filters are
not needed in image compression since they do ffi@t significant improvement in
the quality of reconstructed images. Since thethamonal filters allow for phase
linearity, they eliminate phase distortion espdgialong the sharp edges of images.
Though phase misalignment can occur during an gahal transform, this problem

can also be avoided by using symmetrical filte@0F102].
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The various spectral decomposition structures cancétegorised into: subband,
block-based, and hierarchical structures. The sudlstructure organises the spectral
coefficients into groups of frequency bands, subht tcoefficients of the same
frequency band are grouped together (See Figuje F8r a block-based structure
(see Figure 3.4), an image is first divided intodidls of M x N size, each of which is
independently decomposed into spectral coefficiefdsming M x N number of
subband coefficients. The hierarchical structurBoves the wavelet-based multi-
resolution analysis (see Figure 3.5) according &tlédl decomposition [103] .
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a. Block-based Transform

The Discrete Cosine transform (DCT) Transform [98he Karhunen-Loeve

Transform (KLT) [98] and the Haar transform [8D41 105] are the various common
block-based transforms. In theory, the KLT is notéd its excellent pixel

decorrelation. Though KLT is the optimal transformterms of energy compaction
and decorrelation, it is nevertheless not used ractwal applications due to its
complex computation. As the KLT Kernel has to bepated for an individual image
and transmitted along with the compression strezaitulation of the KLT kernel is

slow and cumbersome [1] since there are no fasbritthgns. Furthermore, the
application of KLT becomes impossible in some ditues where the statistics of the
source data may not be known in advance, sinceghlimum transform kernel must

be constructed from the statistics of the sour¢a.da

In terms of decorrelation and energy compactioa,DICT transform [106] is second
only to KLT [12]. With good decorrelation and theadability for fast algorithms, the
DCT [106] has been used extensively in picture aasgion applications such as
JPEG [11] and MPEG [107].

The 2-D DCT [1] is defined as,

X[k,l] = |2 3CkC, M_lN_lx[i, j]cos (2 + 1)k Ccos (2i +1)d (3.21)
M VN

0 =0 2M 2N

_ i’ f=0
C,= 2 (3.22)
1, f>0

whereOEKEN- landOE£I£M - L x[i,j] belongs to the pixel element of an

MxN pixel block, an({i, j] denotes the position of the pixel element in theck
Usually, an image is divided intio blocks of 8x8 pixels [11].
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The inverse DCT [1] is defined as,

xi, i] :\/%\/%M_“HCKCI xx[k,l]cos% cos% (3.23)

k=0 1=0 2

b. Subband Transform

The main disadvantage of the block-based transferthat the images are processed
in independent blocks. These blocks are seen gsndex blocks, and thus assumed
to be uncorrelated with neighbouring blocks. Howetlas assumption does not seem
plausible as neighbouring pixels may show highealation. Generally, the correlation

decreases when the block size increases [12].

Subband transform uses input from multiple vectbrsugh a sequence of transform
matrices known as the filter bank [12]. It filtaise source data with a setrafbank
analysis filters. For each filter output, only timd" sample is retained through
decimation (or down-sampling) [108]. These decidatutput values of tha" filter
form them™ subband. In the reconstruction stage, coefficiemtsubbands are up-
sampled, then inverse transformed to reconstrectisita [12].

c. Separable Image Transform

Multi-dimensional signal processing uses both sspar and non-separable filters
[109]. In a two dimensional separable transforng #malysis vector is formed by
taking the tensor product of one dimensional amalysctors. Similarly, the synthesis
vector is the tensor product of one dimensionaltt®gis vectors. In separable
filtering, input signals can be processed separateh cascaded manner. Conversely,
input signals of non-separable filtering are apmplidirectly in all dimensions.
Specifically, consider the case of a separablerfifor a two dimensional image
arranged in a row and column form, a 1-D subbaaalsform is first performed on the
input image along each row to produce an internted2zaD array. Then the 1-D

transform is applied to each column of this intediate 2-D array to produce the final
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samples. This structure is illustrated in Figur8. Since the implementation and
computation of separable filters are less com@atahan that of the non-separable

filters, separable filters are most widely usedhiost image coders.

d. Multiresolution Transform

A commonly used subband transform is the hieraattsabband transform based on
the multiresolution representation of Mallat [10@hlike uniform subband transform,
this tree-structured transform subjects each ssoee$ow frequency band to further
decomposition to form a hierarchical resolutionich&igure 3.5 illustrates a dyadic
hierarchical decomposition. A feature of this tfans is that a compressed image
can be partially reconstructed with higher suceeseesolutions of the source image.
The “resolution scalability” feature in these dyadiecompositions thus makes this

transform desirable for image compression appboati

3.3.2 Quantisation

Scalar quantisation is most commonly used in lagsypression systems. A scalar

guantisation function maps each eleme@i, A, on the real line to a particular value

within the same subset of data [12]. For a giveal number line that is divided into a

set of M disjoint intervals) :{IO,ILIZ,...,IM}, with 1, :[xq ,xq+1) andO£g£EM,
the scalar quantisation process maps all real nuriripait values,x, 1 A , with
X, £ % <X,y and g being the integer-valued quantisation index, iatgarticular
value in X, , where x, £X, <x,,. Hence scalar quantisation is a many-to-one
mapping. Specifically, the quantisation maps &k tvalues in theM disjoint
intervals, | ={l,1,1,,...1,,}, withl, =|x,,X,.;), into a subset oM single-real-
valued numbersk, ={%,,%.%,,...%,}. In practice, the quantisation inde, is
being transmitted after a scalar quantiser is adplAt the receiving end, an inverse
quantiser is applied tq to produce the outpuk,. If we denoteQ and Q! as the

operators for the uniform linear quantiser and isgegjuantiser, respectively, then,
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1]

q=Q&J=mmh07; (3.24)
and
%, =Q*(a) (3.25)

where s is the quantisation step size. A scalar quargtisan be classified as either
uniform or non-uniform quantiser, and mid-rise ord+thread quantiser [110] as
shown in Figure 3.6. Due to the many-to-one mappihguantisation process, both

the input valuex, and its output valuex, are not equal in general. The error

between the input and the output valuess x - X, is known as the quantisation

q?

error.

Quantisation contributes significantly to the atw@mpression of data by decreasing
the precision of the input data, leading to a rpsita PDF which alters the entropy
[89]. The distortion due to quantisation is comigocomputed by either the mean-

squared-error (MSE) or mean-absolute-error (MAEjJrio& For a set oN sample

input data (X ) and its quantised output valuex I, the MSE and MAE are defined

as,
MSE:%:(X(U)- X (u)f (3.26)
and

MAE:%M‘X(U)- X (u) (3.27)
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Figure 3.6 Different classification of quantisers

The Lloyd-Max quantiser [111, 112] provides an oy scalar quantiser when the
probability density function of the source input kmown. Under the optimal
conditions, the Lloyd-Max quantiser minimises theSEB [12, 111]. The other

commonly used quantisation scheme for image corsjmess vector quantisation
(VQ) [113], whereby, it selects a codeword,= {quczfqn} from a codebook,
C ={c1 ,cz,...,cn}, such that, the selected codeword gives the hgmbaimation to

the vector of input datax ={x,,x,,...x,}. The key to VQ lies in the vector

codebook. Therefore, optimizing this codebook wathd to error minimisation — a
process that can be accomplished by the Linde-Baray algorithm [113] . A

51



detailed coverage of VQ can be found in [114]is ihoted that the scalar quantisation

is a special case of vector quantisation with veletogth equals 1.

3.3.3 Bitplane Coding and Bitplane Quantisation

Bitplane coding [115] is an approach for encodinigldyers of data, starting from

most significant bit layer to the least significdnt layer, in a progressive manner.
Each coefficient is represented in a series of rigirthgits, starting from the most
significant bit (MSB) to the least significant {itSB). When all the data set are
represented in their binary representation, thdlectvely form layers of bitplanes,

starting from most significant bitplane (MSBP) tbetleast significant bitplane
(LSBP) as shown in Figure 3.7.

For instance, with a block of coefficientX, and henceXy, being the magnitude

portion of the coefficients of arranged in a row and a column format as follows,

Xa X e Xin
Xor Xop wn Xop

X, = C e (3.28)
Xn1 X X

where x,, is the coefficient in locatiofiu,v) in Xy. If all elements inXy can be

sufficiently represented bk-binary bits, there will bek binary bitplanes forXy
starting from the MSBPpE (k-1)™) to the LSBP §=0), and hency can be arranged
in bitplane layers as,

Xy =X X pren X0 X, X} (3.29)

52



A set of 3x4 magnitude
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Figure 3.7 An example of bitplane quantiser an@itsoding order on the magnitude
bitplane. Encoding begins at the MSB Plane, thegnessively reaches the LSB
Plane. Within each bitplane, scanning order befyora top left corner at the first
row until it reaches bottom right at the last rawai zig-zag scanning sequence.
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Figure 3.7 shows an example of a group of 3x4 ghathaeir bitplane representation
and a possible order in which they may be encodeskentially, the bitplane

representation re-organises the source symbolditgtane symbols that are encoded
within each bit plane successively with traditioealtropy encoding techniques [81,
104, 105], resulting in either information-presexyi(i.e., lossless) operation or
information-destroying (i.e., lossy) operation. the case of lossy operation, where
successive bitplane coding with bitplane levels dowhan| are truncated, the

distortion is equivalent to having a scalar quamti® operation, and the quantised
vaIue,)A(q(m,n), of coefficient,X(m,n), produced by the bitplane quantisation
amounts to

X ,(m,n) = sigr(X (m,n)) |X(;1n)| ' (3.30)

where  means rounding down to the nearest integer vétuequation (3.30), the

bitplanes used are magnitude bitplanes of sign-madm representation. With partial
bitplane truncation, it is obvious that some casédiits may be zero while others with
lower significant bits being set to binary ‘O’s laese of bit rate constraint as in the
case of EZW[31], SPIHT [32], and EBCOT[14]. Hencegressive encoding with
bitplane quantisation has the effect of successpmroximation [116]. Consequently,
encoding from higher bitplane levels first befoogvér bitplane levels result in lower
MSE. Examples of hierarchical bitplane coders idellEeZW [31], SPIHT [32],
EBCOT [14], JPEG2000 [12].

3.4 Hierarchical Bitplane coders

This section shall focus on the discussion of havaal bitplane coders (i.e., EZW,
SPIHT, and EBCOT) that share some common principbeing strategies in the
following way:

(a) wavelet transform the image data,
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(b) encoding transform data in progressive bitplanentis@tion scheme, and thus
provides bit streams that have rate scalabilitygawW and SPIHT coders, and
rate, resolution and quality scalability for EBCOIhe core coding design
principles of EBCOT have been adopted by the statbestrt JPEG2000

image compression standards [12].

3.4.1 Embedded Zero-tree Wavelet (EZW)

Shapiro [31] has noted that zeros symbols in sulibaan be predicted from low
resolution level to high resolution level acrosalss, and hence he proposed the EZW
algorithm with a hierarchical bitplane coding scleefor still images. It is found that
wavelet coefficients at the higher resolution sufdisa of the same orientation
belonging to the same spatial location have higibability of being insignificant if
the corresponding wavelet coefficient at the lovwemolution subband is insignificant
with respect to a given threshold,[31]. From this empirical evidence, a zero-tree
data structure is used to define the relationslgpveen coefficients across scales.
Dependencies between wavelet coefficients acrosbasuls at different resolution
levels are depicted in Figure 3.8. In Figure 3\grg coefficient in the LL3 (i.e.,
isotropic DC band at the lowest resolution leveldirectly related to coefficient in
the three orientation bands (LH3, HL3, HH3) at twme spatial location. Each
coefficient in the orientation subbands of HL3, LH&d HH3 is related to four
coefficients in the HL2, LH2, and HH2 subbandspestively. The dependencies of

coefficients across resolution levels are classifis,

(1) Parent — Any coefficient at a lower resolution safo of the tree with same
spatial and/or orientation position than the curcaefficient. In Figure 3.8, a
coefficient in LL3 is a parent of coefficients inLB, LH3 and HH3 at the
same spatial location. A coefficient in LH3 is @argnt of four coefficients in
LH2, and a coefficient in LH2 is a parent in LH1However, all the
coefficients in LH1, HL1 and HH1 cannot be pareadshey are the leaves of
the tree.

(2) Child — a coefficient is a child if it has a pareatefficient in the next lower

resolution subband at the same spatial and/ortatien position. The children
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in HL2 have a parent coefficient in HL3. In theseaof coefficients in LL3,
they have no parents.

(3) Descendants — For a given parent, the set of a@fficeents at all higher
resolution subbands of same spatial and/or orientdédcations are defined as
descendents. A coefficient in HH3 in Figure 3.8 B@sdescendants (i.e., 4 in
HH2 and 16 in HH1).

(4) Ancestors — For a given child, the set of coeffitseat all the lower subbands
of the same spatial and/or orientation locations ealled ancestors. A
coefficient at LH2 has two ancestors (i.e., 1 estchH3 and LL3).

LL3 HL3 HL2 HL1

N

_

LHSL\ \kgHD3\ \E

LH2 \ \EEHHZ
H

AN

LH1 HH1

Figure 3.8 Parent-child relationship in EZW.
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The bitplane encoding process starts at the lovesstiution band, denoted by kL
and the orientation bands in the order of,LHL,, LH,, and HH at resolution leveh.

It then moves on to the next higher resolutinfl) at HL,;, LHy1 and HH,.1. During

the scanning process, no coefficient is scannedréefs parent and all coefficients
within a subband must be scanned in a raster foheftre scanning moves to the
next subband. The bitplane encoding involves apga&s process, namely a dominant
pass followed by a subordinate pass, commencing fre MSBP and ending at the
LSBP. At the highest bitplan®ma, the dominant pass updates the significant map
by determining if a coefficient is significant oothwith respect to a threshold level,

T, . Aninsignificant coefficient is one whose magui¢ is below a threshold level,

T, . Once the status of a coefficient is determinedyill be updated on the

significant map with one of the four coding symbaégined for dominant pass.

For any other bitplanep, coefficients that have not been found to be S$icamt
during the previous bitplane will be scanned dutimg dominant pass to determine if

they are significant or not with respect to thrédhtevel, T, =(Tp+l)/2, where

bitplanep+1 is higher than bitplang.

The four coding symbols defined for the dominantspai® (1) zerotree root (ZTR),
(2) isolated zero (1Z), (3) positive significant (BY) and (4) negative significant
(NEG). The ZTR is used when a coefficient and ald#éscendants are insignificant,
but itself is not the descendant of a previouslynfib zero-tree root. If an insignificant
coefficient has significant descendant(s), it islem with IZ symbol. The POS
symbol is used for coding a significant coeffici¢hat has a positive value, and the
NEG symbol is used for a negatively signed significeoefficient. In addition, a
Magnitude Refinement (MR) symbol, which is usedha subordinate pass, is used
for coding the bitplanes of coefficients that avarfd to be significant in the dominant
pass. Figure 3.9 shows the flow chart for encodingpefficient of the significant

map.

The zerotree coding effectively reduces the coginabding the significant map with

the use of self-similarity that exists between Gomhts across scales as the
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appearances of insignificant coefficients acrossescare not strictly independent
events. When a zerotree root is coded, all theethesmts following the “zerotree
root” symbol of the insignificant coefficient needt be coded. Effectively, only the
significant map and the significant coefficienttbé current bitplane along with their
children are coded. The two-pass approach in th@abieé coding also allows the
different PDF to be used in the dominant pass amdrslinate pass separately. This
provides a better statistical model and thus egtrapding is expected to be more

efficient.

Coefficient

Is
coefficient
significant

? Yes
+
™) Code
POS
Descendant Don't Symbol
of zerotree code )
root ?

Code

NEG

Symbol

Has Yes
significant

descendant

Code 1Z
Symbol

Code ZTR symbol

Figure 3.9 Flow chart for encoding a coefficientlod significant map.
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Undoubtedly, EZW represents a significant contidoutand novelty in the design of
hierarchical bitplane coders. Subsequent improveémkthis algorithm can be found
in [117]. Its popularity has motivated the develgmnof SPIHT [32] and the EBCOT
[14] coders. Monro et al. [118] has also extentdtedEZW approach to block-based

transform coding, where zero-tree coding for DCe&ffioients is proposed.

3.4.2 Set Partitioning In Hierarchical Tree (SPIHT)

The SPIHT coder [32] offers an extension to the EAer [31]. In the EZW coding,
there is the partial ordering of the transform &omnts with respect to a set of
threshold values. In SPIHT, however, a set pariiigisorting procedure is used, and
a significant test is performed on the partitionset, C, of coefficients. The

magnitude of the maximum coefficient in the givemtptioned setC, is tested against

a thresholdT,, and the set is considered significangmiy){‘ci j‘}s T,. Ifthe testis
ijict! "

insignificant, all the other coefficients in therfiioned set are also considered as
insignificant. With the exception of the relatibis in the LLp (the lowest isotropic
DC band), the parent-child relationships in theF8IPare similar to that of the EZW.
Referring to Figure 3.10 on the SPIHT, one quarfethe coefficients (with even
horizontal and vertical coordinates) in thepLlhave no children, while the rest of the
coefficients each have four children. For the otheee regions, the HH, HL and LH,
the parent-child relationships for SPIHT are simitathat of the EZW.

There are three ordered lists in SPIHT:
1) List of significant coefficients (LSC)
2) List of insignificant coefficients (LIC)
3) List of insignificant sets of coefficients (LIS)

The set of coordinates of immediate children, dederts and non-immediate-
offspring descendents are representediag), D(i, j), andD,, (i, j) = D(i, j)- 1(i, j).

respectively.
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Beginning with the highest bitplane, each bitple#eated with the significance and
the refinement pass. At the initialization stades LSC is reset as an empty set, the
coordinates(i, j) of all coefficients in the Lk region enters the LIC, and those
coefficients with children are added to the LIS ra®ts of Type A. Next, all
coefficients in LIC are examined and coded startirgm the MSB plane. For
significant coefficients, their signs are outpubdathe significant coefficients are
moved to LSC. All the set of coefficients in theSLare also examined and coded in
sequential order, one set at a time. If a set effments in the LIS is significant and
belongs to type A, two possible outcomes arise:

(a) if the set of its immediate childrei(i, j) is significant, the coordinates of
children coefficients are moved to LSC and the sightheir coefficients
are output. Otherwise,

(b) the coordinates of the immediate children coedfits are moved to LIC.

If the set only has immediate children but no ottlescendents, the set would be
removed from LIS. If the set has non-immediate offsp (i.e., D,, (i, j)1 0), the
coordinate i( j) is moved to LIS as type B. If a set of coeffite in the LIS is
insignificant, a O bit is coded. If a set of cag#ints (, j) in the LIS belonging to type
B and the set of its non-immediate-offspring dedeeits ©,, (i, j)) are significant,

the coordinates of its immediate children are addetthe end of LIS as type A. The
entry of the set of coefficients () is removed from LIS.

At the refinement pass, all LSC coefficients arelemh except those that have just

been added to LSC. The coding proceeds for thé loger bitplane by visiting
entries in the LIP, LIS and LSC.
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Figure 3.10 (a) Parent-child relationship in SPI). Shaded region indicates
coefficients in the Lk (the lowest DC Level) that have no children.
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Similar to the EZW, encoding can halt at any timeew the desired coding rate is
achieved. Empirical studies too have shown that SR#HT has achieved better
coding results than the EZW [1, 12, 32]. Whileréhare 3 coding passes in SPIHT as
opposed to 2 coding passes in EZW, the extra cquisg in SPIHT can provide fine
embedding of information which can potentially bepleited for HVS-based rate

control scheme.

3.4.3 Embedded Block Coding with Optimized Truncati  on (EBCOT)

The EBCOT [14] algorithm employs DWT with either theallt dyadic [103] or
packet wavelet decomposition structure [90]. Th&Dsamples are then bitplane
quantised and encoded with context arithmetic apdi8imilar to EZW and SPIHT,
the EBCOT is a scalable coder. While EZW and SPIHT igeaditstreams that are
rate scalable, the EBCOT produces bitstreams tbeafuality and resolution scalable.
The output bit stream consists of embedded subsetielflock layers) which are

independently compressed.

Resolution scalability translates to the ability reconstruct an image at different
resolution levels. Quality scalability means thaiages can be reconstructed with
different quality levels, relative to some qualmeasure. When the bitstream is both
resolution and quality scalable, it means that ¢tbenpressed bit stream can be

decoded to different resolution or quality levelg,[14, 103].

EBCOT utilizes a two-tier coding strategy. Duringr tane coding, each subband is
divided into independent code-blocks of 32x32 ox@4 samples each. Each
codeblock is encoded bitplane layer by bitplanedajzach bitplane layer is further
segregated to fractional bitplane layers to formdigah truncation points on the R-D
curve. Associated with each fractional bitplaneelais the rate (in bits) required to
encode the layer and the distortion reduction tegufrom the encoding of the layer.
The rate increase and the distortion reduction lfdruncation points are then used in
the Post Compression Rate Distortion (PCRD) opttios in the tier two coding to
optimise the final bitstream. The Partitioning afdeblock has the advantage of
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minimising the use of memory [14]. Compressingvilal blocks as opposed to the

whole image is more resource efficient.

Every sample in the codeblock is coded by four diffé types of coding primitives:
Zero Coding (ZC), Run-Length Coding (RLC), Sign @ud(SC) and Magnitude
Refinement (MR). While it may be reasonable taiassthe correlation between the
current codeblock and its neighbours as insignifiggn order to ensure that each
block’s bit-stream remains independent), this dusshold for the neighbours of each
subblock. In the presence of an insignificant damime ZC is used. However, if a
horizontal run of insignificant samples is encouatke the RLC is used instead of ZC.
SC is employed to determine the sign of the sarapteis used only once for each
sample. Conversely, significant samples are sudgletd the MR primitive coding

operation [14].

Starting from the MSB, bitplane coding is carrieat ¢through four coding passes,
each generating its own truncation point. As shawfigure 3.11, more truncation

points do provide finer approximations to the RiDve.

The four coding passes are described as follows:

1) Forward Significance Propagation Pasg XPThis pass proceeds through the sub
block samples in a scan-line fashion, omittingsalinples which are insignificant.
Here, the ZC or RLC is employed to identify thengigance of the sample, and
if found to be significant, the SC coding operatipexecuted.

2) Reverse Significance Propagation Pas§){/Similar to the coding pass in Iy
this scanning is done in the reverse order. Samplesh are coded in the
previous pass are omitted, while samples with atlene significant neighbour
(of the 8 immediate neighbours) are added.

3) Magnitude refinement Passs{P All samples which were previously found to be
significant are coded with the MR coding operation.

4) Normalisation Pass ¢{B: The least significant bit of the remaining saespl
which were not visited by the preceding three pmssecoded using the RLC
primitive, and if a sample is significant, its sigill also be coded immediately

with a SC primitive.
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Figure 3.11 Rate Distortion Curve with Bitplane.

3.5 Perceptual Coders and Psychophysical Quality Me  trics

Traditional transform coders achieved excellent casgion ratio by exploiting the
statistical redundancies exists in the image ddt#mwever, reduction of statistical
redundancies does not necessary equate to the timduof psychovisual
redundancies. Since the human observers are tingatd judges of picture quality,
picture coders should ideally remove psycho-viseslundancies, and thus retain
visually relevant information in image data. Hende would be beneficial to
incorporate aspects of the HVS into the coding @sedo improve picture quality of
coded images. Perceptual coders can be widelyifodassto rate driven or quality

driven.
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3.5.1 Watson’s DCTune

Watson’'s DCTune [119] is based on the standard D@e€rcwith vision modeling for
quantisation matrix. In the earlier publication Bwaterson et al. [120, 121], the
threshold for DCT basis functions is measureds found that there exists a smallest
coefficient that shows psychophysical visible distm for a certain DCT basis

function at index , V). This value is known as the threshaig, The highest

possible quantisation error at this threshold prsint

ewk=qw (3.31)

wheree,, is the maximum quantisation error fid? DCT block at indexu,V). If the

it will ensure that errors are

uv ?

element in the quantisation matrix is setggﬁzt

visually imperceptible. Hence,

q,, = 2t (3.32)

uv

The quantisation matrix (QM),.q is thus dependent on the visually perceptible
maximum possible quantisation errors at various D®adsis functions, but
independent of the image. Watson called it the §erandependent perceptual” (1IP).
However, Watson in DCTune [119] proposes an imaggeddent perceptual (IDP)
approach for formulating a QM tailored to specifitages. The IDP approach gives
rise to a given perceptual error, based on the B&fficients by considering both the
effects of contrast and luminance masking. The ehdor the masked threshold,

M, IS as follows,

g ) (3.33)

rnuvk = ma‘x(tuvk ! |Cuvk
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where w,, is the exponent having a value between 0 an, landc,, are the

luminance masking threshold and the DCT coefficieaspectively. Note that the
image is first divided into blocks of size 8x8, dndenotes the index of a block (size
of 8x8) of imageu andv are indices of the DCT frequency (or basis fumgtioThe

DCT coefficient,c,,, can be computed by equation (3.21) (i.e.,Xfiel] in equation
(3.21)). The luminance masking threshdg,, can be found by the formula supplied

by Ahumada and Peterson [122]. The perceptual rtistodue to quantisation error

when considering the effect of masking is thus egsped as,

d,, =k (3.34)
nka
Minkowski metric is used to pool the Just-Noticeablifferences (JND)d,,, for a
particular frequency ati(v) over all DCT block, k, as follows,
1

s b

Dy, = |du (3.35)
k

WhereD,, is the perceptual error at,(v). Pooling all the elements ofi,(\) of the

perceptual error leads to the overall distortion as

D= D,/ (3.36)

If the exponent/ ® ¥, D is max(Duv) , and the minimum bitrate for a givénh=y

is achieved whe,, =y , wherey is the perceptual error

The optimisation of the quantisation matrix (QMncae determined by assuming
/ ® ¥, and the QM becomes separate optimisation of iddal elements of the

matrix. Each entry of the perceptual errb,,, is an independently monotonically

increasing function of the respective elementhien@M.
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When coding Lena at 0.25 bpp separately by IDP IEh@pproaches, Watson [119]
has reported that the IDP approach produced bpéereived quality improvement

over the IIP approach.

3.5.2 Subband Image Coder by Safranek and Johnston

This coder [123] presents coding of wide selectibimages with rates of less than 1
bit per pixel (bpp). It employs differential pulsede modulation (DPCM), entropy

coding, perceptual-threshold calculation, and queasblock rejection.

Each image is transformed using the GQMF filterkofg#, 124] into four bandpass
sub-images. The RMS noise sensitivity threshalsb(aalled based noise sensitivity)
for each subband was determined through a seriggaymal sensitivity testing. By
adjusting the luminance level and base sensitiabgh frequency content and image
brightness for a flat-field image, which the hurmeyre is sensitive to, are accounted

for. The perceptual threshold calculation is exgedsn dB as follows:
pt(b,u,v) = B(b)- 0.15log(T (u,v))- W xC(u,v) (3.37)

whereb is the subbandy andv correspond to the pixel locatiorB(b) is the base

noise sensitivity for subban, W and C(u,v) are the brightness weighting factor and

the brightness correction, respectively, The bnghks factor takes into consideration

luminance variations. Notice also the function hasxture energy variabl&,(u,v),

for textural masking adjustment as Safranek anaston [123] generally believe that

textured regions are over coded. The texture erferggstion is:

15

T(u,v) = W, (b) ><E(b,u,v) +W

mtf
b=1

(O) war((u,v),(u + 1,y),(u,v + 1),(u +1v+ 1))

(3.38)

The weights, W, , are assigned based on the modulation transfetieuom(MTF)

[125]. Thevar(,,,) is the variance taken over a 2x2 area with thgetapixel in the
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upper left corner atu( v), E(b,u,v) is the local energy in the subbariy, except

subband zero. Essentially, the texture maskingtiomds the weighted sum of the

texture energy at each image location.

3.5.3 Perceptually Tuned Subband Image Coding by C  hou and Li

Chou and Li [126] propose a method to estimateJtiB and minimally noticeable
distortion (MND) profiles of monochromatic imageshe JND/MND profiles are
used to remove perceptual redundancy in their sublbading algorithm. The JND

profile is computed as follows,

IND, (x,y) = max f,(xy). f, (x.y)} (3.39)
f, = ag(x, y)(0.0001bg(x, y) + 0.115)+ / - 0.001xg(x, y) (3.40)
_ [bg(x,y .
( (xy)= T, x1- .| 1(27 ) +3, it bg(x,y)£127 (3.41)
g{bg(x.y)- 127)+3, it bg(x,y)>127

where ag(x,y) and bg(x,y) are the weighted average luminance differences and
mean background luminance around piéoely), respectively. The parameters,

T,, and g, were derived from subjective experiments and €titting. The values of
these parameters increase with increasing viewistarice. WhileJND,, profile

encodes images to an imperceptible difference JeéelMND profile encodes images
to a target bitrate while minimising visual distort. The MND profile is computed

as follows,
MNDg,fb(X!y): JNbe(X,y)Xg (3.42)

where gis the distortion index ranging between 1.0 and 4A@ter the JND or MND

have been computed from the image data, it is dposed into respective subbands
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(i.e., each JND or MND per subband) in the freqyedomain with their MTF
weights, where each MTF weight is the average Makuer of its subband. The
decomposed JNDs or MNDs in the subbands are usédeirDPCM encoding to

achieve the desired bitrate and visual quality.

3.5.4 Locally Adaptive Perceptual-based Image Codin g by Hontsch
and Karam

Hontsch and Karam’s Locally Adaptive Perceptual gm&oding (LAPIC) [127] is
an extension of their earlier work [128, 129] thaes adaptive quantisation scheme
with DPCM coding within the domain of Generalisedia@rature Mirror Filter
(GQMF) Bank [94, 124]. The earlier work is basedtbe concept of JND [130],
incorporating aspects of the HVS of contrast sessit luminance and contrast
masking. The quantisation scheme estimates thetifdShold at the encoding stage.
A similar process is carried out to estimate it®JNreshold during dequantisation at
the decoding stage without side information, andckeeliminating the need to
transmit adaptive quantisation step sizes. Thaiggudriven coder produces superior

quality images than its predecessor [123].

Being an expansion of the previous work [128, 12@jt are based on GQMF, the
LAPIC is based on discrete cosine transform (DG ases JND threshold for DCT
coefficients. Contrast sensitivity and contrast kirag are the two visual mechanism

employed in the computation of the JND thresholdaatied as,,,(b,n,,n,). It is

defined as,
oo (B, ) = toer (b 0, ) agy (0,0 1, (3.43)

where ty; (b,n, ,n,) and a,, (b,n, ,n,) are background luminance-adjusted contrast

sensitivity threshold and contrast masking adjustmeespectively. The indek
denotes the DCT subband numbrandn, identify the coefficient location within
the subband.

The contrast sensitivity threshold is derived as,
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MT, ; (n, n,)

3.44
2aiaj (Lmax - I—min) ( )

tDCT (b(l’ j)’nl ’nZ) =

Where'l'i’j(nl,nz) is the background luminance-adjusted contrastitsatys of the

luminance error due to quantisation of DCT coeéintj c. ., in DCT block (nl,nz).

(N
M being the gray levels,, and L, are the minimum and maximum display

1 z=0

luminances, anda, = with z={i, j; . 4, anda are the DCT
YNoer . 210 0.1} |

coefficient normalization factors. The block siZeD&€T, N;, is 8.

T,,(n,.n,) is based on empirical model [122] that was obthiite psychophysical

experiments of fitting CSF data, and it is compuasd

Ti,j (nl’ nz) — Tmin (nl’ n2) loK(W,nz)(bglo fi,;- 10010 fmin (nl'nZ))z

r+(1- r)xcog Q,

(3.45)

where f; ; is the spatial frequency corresponding to DCT fecieht in Iocation(i, j),

and is given as,

PR Sy N
" 2Nper | W Wi

X

+

(3.46)

the orientationQ, . , T,.(n,.n,), .. (n.,n,), and K(n,n,) are, respectively,

ij

computed as,

2f o1
Q,; =sint—5=L (3.47)
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L(n.n,) L
e S anden
(N n,) = ) (3.48)
L 1
réonz , L(n.n,)> L,
L(nn,)
lin)= B 0 L (3.49)
fo, L(nl 1”2) > L
L{n,m,) ™
Kinon)= L L(nn, )£ L, (3.50)
Ko L(n,n,)> Ly
The local background luminanck(n, ,n,), is computed as,
Som m,)
— I-max_ I—min Om M)l (0mmp)
L., ) = Lo + x +m (3.51)
(n,.n,) 0 N

This is based on a fovea region of about 2 degr@dean( ( ,nz)) that is taken as

follows,

”(( ,nz))= — (3.42)

where D, R andg are the viewing distance, display resolution, arglial angle,

respectively. The contrast masking adjustmexy, (b,n,,n,), is computed as

follows,
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0.6
Cc
max 1, re) bt 0
8o (b, ;) = toer (D0;) (3.53)
1 b=0
wherec( ) is the average magnitude of the DCT coefficiemts i ,, and

( n,) denotes the area centre at locaffjonn, ) in subband that covers 2 degrees

of visual angle.

For imperceptible quantisation errors, the uniforquantisation step size,

sJND(b,nl ,nz), is computed as,
SJND(b’nl ’n2) = 2,'EJND(b’nl ’nZ) (354)

WherefJND(b,nl ,nz) is the estimated threshold at Iocati@nnl,nz). fJND(b,nl ,nz) is
computed based on equation (3.43) except wjth ,, being replaced by a causal

fovea region. Compared with Watson’s DCTune [11@j Locally Adaptive
Perceptual Image Coding has improved image quagpecially, at low bitrate as
reported in [127] .

3.5.5 EBCOT with Visual Masking by Taubman

In EBCOT [14], the default measure for distorti@ntihe MSE. However, it is well
known that MSE is not a good measure for visudodi®n. Taubman proposes a
spatially varying distortion metric [14] that ingarates masking phenomenon within
the distortion function. Accordingly, the visuastbrtion metric (VDM), also known

as the CVIS, has the following expression,

o KX

VL st 359
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where Xz[k] and 3(2 [k] denote the subband sample and quantised represené
the subband sample, respectively, in code-bBgkat locationk = (k, ,k, ), wherek
and k, are the horizontal and vertical positions, respetyi for subbands HH, LH,
and LL. In the case of HLk andk,represent the vertical and horizontal positions,
respectively. w, is the L, norm of basis function of wavelet transform for

subband, ,which contains the code-blocB,, s, is provided for minimum level of

inhibition. Vz[j,k] denotes the visual masking strength, and is coolpas,

elu)
uf A, (K]

V,[k] = NS (3.56)

where/,[k| denotes the neighbourhood of samples abofk], and|f,[k]|denotes

the size of the neighbourhood. The neighbourh@odbtained by partitioning the

code-block,B,, into 8x8 blocks, and the exponemnt,, is set to 0.5. It is noted that

z

the normalized image samples with a range of Ohaslbeen used for the non-linear

operation above.

3.5.6 Point-wised Extended Visual Masking by Zeng, Daly and Lei

Embedded into the JPEG2000 coder [131], the PosedvExtended Visual Masking
coding [132] by Zeng et al. incorporates self-castrmasking and neighbourhood
masking effects by introducing a non-linear funetithat maps the wavelet
coefficients into perceptual domain. In contrastBBCOT’s Visual Masking [14]
where masking effects were considered after quatitis, here a signal that is subject
to masking is elevated by a power function and thafowed by a divisible
neighourhood masking weighting factor. The maskopgrator modifies the DWT
coefficients, and hence an inverse process is medjuat the decoder. While the
neighbourhood masking weighting factor could alsaclude neighourhood
coefficients from interbands, the final model thas been adopted by the JEG2000
standard only considers intra-band masking, whére meighourhood masking
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weighting factor includes neighbouring coefficiefrtam the same subband. The final

model maps the wavelets coefficients as follows,

sign(x, )%x, |
ykzgr(k—)?;(i(‘[ (3.57)
T

where x, is the wavelet coefficientg is the power factor for self-contrast masking
having a value between 0 and Slgr(xk) gives the sign of the wavelet coefficient,

X, , a being the normalisation factor. |fi| denotes the size of the causal
neighbourhood.|3<i| are the quantised coefficients of the causal reigthood for
coefficient, x,. The exponenty, is greater than zero. The typical values doand

b are 0.7 and 0.2, respectively. A proper choica ofb and|fi| enables the coder

to distinguish local sharp edges from a locally pter image region. Figure 3.12
shows the selection of causal neighbourhood caoeffis that are quantised

coefficientsx, prior to x,. From the perspective of coefficient recoverylyarausal

neighbouring samples are used. This is becausgetteder requires causal samples to
recover the modified DWT coefficients caused by kirag operator at the encoder.
These neighbourhood coefficients are chosen scetwt coefficient of the quantised

coefficients, x;, can be recovered prior to recoveryxQfat the decoder.

It is noted that the use of neighbourhood quantcseificients results in some degree
of masking inaccuracy especially when coefficiesmts coarsely quantised and only
the first few most significant bits of the quantisedexed are retained while the

remaining lower bits are truncated during bitplanding.
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Figure 3.12 Causal neighbourhood coefficiekt§the shaded boxd ) for signill
in a 7x7 Neighbourhood Whebe| =24. The non-causal coefficients (the unshaded
boxes) are not included as the coefficients for matation.

3.5.7 Wavelet Visible Difference Predictor by Bradl ey

In Daly’'s VDP, an algorithm is developed to detavenimage fidelity with a vision

model by also considering the effect of displayapaeters and viewing conditions.
The output is a probability detection map that jfes the location and the degree of
visual differences (in the perceptual sense). Hanethe VDP map does not attempt
to discriminate among different suprathreshold aiserrors. Three aspects are
considered in the VDP: amplitude non-linearity, ttast sensitivity function, and

detection mechanism. Basically, two images (agimail image and a noisy one) are
rescaled by the amplitude non-linearity and CSktions, before they are filtered by
cortex transform. A masked function is appliedHe filtered images to determine
their masked threshold elevations. The contreé&rdnce and the masked threshold
elevation between the two filtered images are used psychometric function to

compute the probability of detecting the contraecence. Probability summation is

used to pool data over the various cortex chanttelsreate the detection map. A
comprehensive coverage of VDP can be found in [1BB¢§ vision model used in the

VDP is also included in Appendix G as a reference.

The Wavelet Visible Difference Predictor proposeg¢ Bradley [134] is a
modification of the visible difference predictor [¥?), as proposed by Daly [133].
Unlike VDP which is based on the cortex transfovf/DP uses the linear phase 9/7
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biorthogonal filter within the hierarchical waveld¢tansform [135]. Other key

modifications are (1) no light adaptation prepreoas is considered in WVDP, (2)

adoption of a simplified definition of subband a@st, and (3) the CSF is assumed to

have applied directly in the transform domain.

In WVDP, both the original image and noisy image processed in the three stages

before a final probability summation is carried astoutlined in Figure 3.13. During

the first stage, discrete wavelet transform is i@ppto both the original and noisy

images. Their output are processed by the thresklelation (TE) function at the

second stage. The TE function determines the atrmfuuantisation error that can

be added without the error being visible after ithage is reconstructed. The TE is

defined as,
Xo
A
o |
N
Original
Image | wavelet ~__ .| Threshold R
Decomposition| ~/ | Elevation * Min(TE, , TE,)
A 4
Subband
| Wavelet ,| Threshold Probability |«
Noisy Decomposition Elevation detection
Image Xn
A 4
Probability
Summation
Probability

Detection Map

Figure 3.13 The structure of wavelet visible difiece predictor
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TE(g, f,mn)=max(d, (g, f),S,(f)4X(mn)) (3.58)

where g and f denote the orientation (LL,LH,HL,HH) and the freqog level of
decomposition X (m,n) is the wavelet coefficient at locationandn. The S, (f) is

a constant variable that varies according to teguency,f, of the decomposition.

S,,(f) can alter the slope of the masking function. tRercurrent modelS,_ (f) has
been set to one, which corresponds to the deriloge $or phase-incoherent masking

mentioned in Daly [133]. Togethesﬂ(fHX(m, n)| acts like self maskingd_ (g, f)

is a coefficient detection threshold defined as,

f
d.(g.f)= —kyg;z(._)l) (3.59)
q |

wherel is the decomposition level of the wavelet transfok, is either p’, p2, or
p, .p, for LL, HH, or LH/HH subband, respectively. The xmaum values ofp, and
p, are 0.788485 and 0.852699, respectively. Therderaior in equation (3.59) acts
like energy gain factors of a wavelet transform asdused to normalized the
minimum threshold elevation functiory(g, f). The minimum threshold elevation
function, y(q, f) , Is obtained from empirical model [122] in psychggical
experiments of noise added directly to wavelet foatefts and viewed from a gamma

corrected monitor.y(q, f) has the following expression,

k log

f
ylg. f)=ax0 %" (3.60)

wherea, k, f, are constants having values of 0.495 (minimun)6®, and 0.401,
respectively. g, has values of 1.501, 1, and 0.534 for LL, LH/HhgdddH subbands,

respectively. Equation (3.60) and the valuesdok, f, and g, are consistent with

those proposed by Liu e. al. in section 3.5.9.
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The third stage accounts for mutual masking betwieerthreshold elevations (TE) of

both the original TE,) and noisy TE,) images by taking the minimum of the two,

T..(g.f.mn)=min(TE, (g, f . m,n) TE, (g, f ,m,n)).

The probability,R, (m,n), of detecting the visible difference in each sutthor each

coefficient at locatior{(m,n) is computed as

d(mn) |°
Tem(mn)a

R,(mn)=1- e (3.61)

whered, (m,n)= X, (m,n)- X,(m,n), b anda are constants having values of 2 and
4, respectively. X, and X, are the transform coefficients of the original araisy

images, respectively.

The final output of WVDP is a probability detectiomap of each pixel at location
(m,n). It is computed by combining the probability oftelion in each of the

subbands as follows,

PWVDP(m7n) =1- O (1' Pb (m!n)) (3-62)

Due to aliasing and reduced spatial resolution @stad with critical sampling, the
critically sample version of WVDP is less accurathen predicting the masking
function than the overcomplete version of WVDP. Btorer, the use of 9/7 wavelet
transform in WVDP may not be as suitable as thdegotransform, (used in the
VDP), for modeling the HVS.

Although, the WVDP is not as reliable and accuiadethe cortex transform based
VDP, the WVDP can potentially be used to providguantitative measure of visual
quality in wavelet based coders that do not usethex transform. As suggested by
Bradley [134], the WVDP can be used to provideaanework for setting a perceptual

error below certain visual threshold across thegemaso that a wavelet based
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compression scheme could operate within this camtito achieve perceptually

lossless compression.

3.5.8 JND in DCT Subband Domain by Lin

A JND model incorporating CSF, luminance adaptatiotra-band and inter-band
frequency masking effects based on the HVS wasgsexpby Lin [136] to compute a

distortion measure in the DCT domain. The JN{hk,!), is defined as,

s(nkl) =ty o (k1O a (nk.1) (3.63)

wheres(nk,!) is the JND for a DCT subbant, . (n,k,1) is the base threshold due
to CSF, anda; (nk,!) is the elevation parameter for all tAd {lum,intra,inter}

due to luminance adaptation, intra-band frequenagkimg and inter-band frequency
masking.n denotes the position of BxN DCT block in an imageX , and (k,!)
denotes the position of a DCT coefficient withiD&T block. The base threshold,

ts_csf(n,k,l), is based on a modification of the formula devetbpby Ahumada et al.

[122], and can be traced back to Van Nes and Boodnexperiments on CSF [64].
The formula is modified to avoid over estimatiortlod base threshold for coefficients

in DCT subband at positiofn,k,I). The base threshold is computed as

t, o (nk,1)= 30 G T°(nk,l) (3.64)

max min)
where

T (1-b}T)mé”()(22)q(k,|) +K(n){og 1 (k1) log f,(n)f (3.69

logT°(nk,!)=log

f(k,l):—N +— (3.66)
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(3.67)

where L, and L, are the maximum and minimum display luminance eslu
w, and w, are the horizontal and vertical visual angles gfixel. f, is the spatial

frequency at which the minimum CSF threshold, () occurs. K(n) is a positive

constant that be empirically determined as repomefl36]. r is set to 0.7. The

normalizing coefficients, and 7, of equation (3.64) can be determined as follows,

\/I ,m=0
f = g , (3.68)
\/: ,otherwise
N

whereN = 8 andrT {k,I}.

As reported by Lin, the luminance adaptation initdlgimages is affected by the
ambient illumination on the display and the gammaection of the display tube.
With gamma correction, the luminance adaptatiagomputed as,

« 1. 2X(noo) : x(n0o) . 1
1. 22000 An09) 1
2,,(n00) = en, o2 (3.69)
—Zx(n,0,0) -1 otherwise
2 GxN ’

where k, and k, are constants values associated wik{n00)=0 and
X(n00)=GxN, respectively. G, N, and X(n00) are the maximum number of

grey-level, the size of DCT block, and DC coeffitieat the "™ DCT block,
respectively. Note that the a constant grey vakieot used as it tends to

underestimate the visibility threshold at dark oegi

The intra-band frequency masking,, ., , computed as
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x(nk!) |

Qintra (n’k’l) = max1 ts_ csf (nik!l)mlum(n’o’o)‘

(3.70)

where the exponent,, varies from 0 to 1.

The current model of the inter-band frequency nragska is determined by,

inter ?

1, for Low Maskingblocks
a, for MediumMaskingblocksand R (n)+ R, (n)£ R,
aimer(n) = d,, for MediumMaskingblocksand R, (n)+ Ry (n) >R,
1+M xd,, otherwise
2Xm, -

(3.71)

The inter-band frequency masking,, ., , for then™ DCT block depends on whether

the n™ DCT block belongs to a Low, Medium, or High Magkirblock.
Classification of the DCT block as either a Low, dten or High Masking block is

determined by the process outlined below,

Firstly, for then™ DCT block, the medium-frequency (MF) and high-fregcy (HF)

energy,E,.(n), is defined as

E,.o(n) = Ry (n)+ R, () (3.72)

and the relative low-frequency (LF) streng%d (n) is defined as

- (3.73)
Ry (n)
and the relative LF and MF strength,,_(n), is defined as

R, (n)
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whereR_(n), R, (n) and R, (n) are the sums of the absolute DCT coefficienthin t
LF, MF, and HF groups, respectively. The LF, MFHn groups are similar to those
in [137]. Their corresponding means &g(n), R, (n) and R, (n), respectively.

A DCT block is assigned to one of these classes, (Low Masking, Medium

Masking, or High Masking Class) according to thkofeing rules:

1. ForE,,(n)£ m : the DCT block belongs to Low-Masking class.

2. Form <E,,(n)£ m : if condition (3.75) or (3.76) is met, the DCTobk belongs

to Medium Masking class; otherwise it belongs tevtasking class.

3. Form <E,,(n)£ m : if condition (3.75) or (3.76) is met, the DCTobk belongs

to Medium Masking class; otherwise it belongs tgiHMasking class.

4. ForE,,(n)> m : if condition (3.75) or (3.76) is met fgr, =¢ % andc, =t xc
(wheret < 1), the DCT block belongs to Medium Masking clastheowise it
belongs to High-Masking class.

Conditions:
Esn(n)? Q (3.75)
ma>{|§d (n), Edm(n)}3 / and min{Ed(n), Edm(n)}3 c (3.76)

where the model parameters for determining, are set as; =125, m =290,

m =900,/ =7, ¢=5,¢=0.1,Q=16, R =400, d, =1.125and d, =1.25.

Together with the conditions specified in equatiqBs/5) and (3.76), the model

parameters 7, m, m) are use as for either lower or upper rangeshermedium-

frequency and high-frequency enerds;,, (n), so that the"™ DCT block can be
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classified as either belonging to low-masking, medimasking or high-masking
block. Once the block is classified, the interb&eduency maskingz, ., (n), for the
n"™ DCT block can be computed as in equation (3.71)oricg to the block

classification and its low-frequency and mediungfrency energies.

3.5.9 Perceptual Distortion Metric by Liu et al.

Liu et al. propose a Perceptual Distortion Metti8§] for the JPEG2000 coder with a
guality-driven encoding scheme. The distortion meis computed based on JND
threshold, which modelled the HVS with contrast ssvity function (CSF),

luminance masking adaptation and contrast maskdagtation. The JND threshold

in this instance is defined as,

t,no(l,g.m,n) = IND(1,g)>M _ (I,g,m,n)xM . (I,g,m,n) (3.77)

where JND(I,q) , M_(l,g.mn) and M.(l,g,m,n) are the base JND detection
threshold, luminance masking adjustment, and cshtnmasking adjustment,
respectively for subban{l,g) at spatial locationng,n). Variablesl andg specify the

frequency and orientation (i.e., the LL, LH, HL, Hiientation), respectively. The
JND(I, ) was acquired through data fitting of experimenta. It is expressed as,

X0 (3.78)

where A(l,g) is the amplitude of the wavelet 9/7 basis fundtiéor subband],qg)

(Table 3.1), and =dvxan AN dv is the visual resolution of the display in
180 573

pixel per degree. Thd andv are the display resolution in pixel/cm and viewing

distance in cm, respectively. The parametarsk, g,, f,, are obtained through

o

data fitting and listed in Table 3.2. THAD(,g) in equation (3.78) is essentially the

same model used fcﬂc(q,f) in equation (3.59) (note that one needs to suibstit
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equation (3.60) into equation (3.59) in order tosabe their similarity).

Consequently, the values far, k, g, and f, are the same for both WVDP model in

section 3.5.7 and the model presented in this@ecti

Orientation Decomposition Levell

q 1 2 3 4 5 6
LL 0.62171 0.34537 0.18004 0.0914(¢ 0.045943 0.02301
LH, HL 0.67234 0.41317 0.22727 0.11792 0.0597p8 3@0A8
HH 0.72709 0.49428 0.28688 0.15214 0.077727 0.03915

Table 3.1:A(l,g) for wavelet 9/7 basis functions.

9
Orientation,q
a k f, g=LL g =HL,LH g = HH
0.495 0.466 0.401 1.501 1.0 0.534

Table 3.2: The constant parameters for the basettiBhold,JND(1,g).

The luminance masking adjustment accounts for th& lresponse that depends not
so much on absolute luminance, but more on thenante variation relative to the
surrounding background. This phenomena can beridedcby the Weber-Fechner

law [139]. The luminance masking adjustment israpipnated by,

X, (m&nd ™
m

M, (I,g.mn)= (3.79)

where X | (m(,n() is the wavelet coefficient in the LL band thatresponds spatially

to location(l,g,m,n) wherebymé= m/2'="' andn¢= n/2"'  andm =128is

the mean luminance of the display for an unsignéd Bnage. The exponené; , has

a value of 0.649.
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The contrast masking adjustment accounts for tie tfeat the visibility of visual
signal can be affected (i.e., reduce or enhance}hbypresence of other visual

patterns. Here the contrast masking adjustnMQI(l,q,m,n), includes two factors,

the self masking and masking due to neighbourisgalisignals. It is expressed as,
M C (I !q'm’n) = M self (I ,q,m,n) le neighbor(I ,q,m,n) (380)

The self maskingM ., (I,g,m,n), is expressed as,

X (l.g,m,n)

Meas (L gumin) = max 1 <oy i gmn)

(3.81)

where X (i,g,m,n) is the wavelet coefficient of subbafidg) at location(m,n), and
the exponentg, is set at a value of 0.6. The neighourhood nmaskidjustment for

subband(l,g) at location(m,n) is expressed as,

j
(I,g,m,n)=max 1, L X,

v IND(i,g)>M  (I.g,mn)|

neighbor

ul neighborsof X(I,g,m,n) Nm,n

(3.82)

where all the elements specified Ky are neighbourhood coefficients with location

(,g.m,n) being at its centre, is a constant parameter. The total number of

neighbourhood coefficients is specified by, , for subband],g) at location(m,n).

For the HVS, the fovea region has the highest cameentration, and hence has the
highest visual acuity. This region covers aboui tlegree of visual angle. Hence the
distortion is computed by considering the spatigion, F(n,,n,), in the image
domain that is covered by the fovea region. Comsetly, the number of coefficients

in F(n,,n,) can be approximated by,
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0o

N(F(n, n,)) = 2dvtan27 »(2r ) (3.83)

wherer is the visual resolution for the display in pixgler degree. The distortion
appears in the form of the Minkowski metric asdual,

[

e,(,gmn)|” °

DF( tJND(I’q'm’n)

(3.84)

) T F )

Where eq(l ,g.m,n) is the quantisation error at locati¢hg,m,n). The distortion

measure,D, is determined by considering the highest proligbdf detecting a
distortion over all possible fovea region over émtire image. This corresponds to the

expression below,

D =maxDe, ) (3.85)

For a given target distortioB,, the minimum bitrate can be determined by ensuring

all Dg(, ) = D, is met.

3.5.10 Perceptual Image Distortion Metric by Tanet  al.

The Perceptual Image Distortion Metric (PIDM) prepd by Tan et al. [15] is based
on the Contrast Gain Control (CGC) model of Watsod Solomon [27], and the
model proposed by Teo and Heeger [23]. The PIDMileys CSF, intra-band

masking, and inter-orientation masking of simil@guencies to model the HVS. It is
adapted into the EBCOT encoding framework [14].nfreubjective test results, the
PIDM produces better perceived visual quality dafitdi monochrome images when
compared to those that used the MSE measure. DM Bses the Daubechies 9/7
biorthogonal filter set for its frequency decompiasi in a dyadic structure. There are

three stages in the CGC model:
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Stage 1: Dyadic transform with Daubechies 9/7 Hiragonal filters [140] is used to
approximate the frequency and orientation seleatiaire of the HVS. (Note that

cortex transform [141] will produce a more accuratdel for the HVS),

Stage 2: The effect of contrast sensitivity is agted for via a set of weights to
adjust the wavelet coefficients according to thesgaity of the HVS at various

spatial frequencies,

Stage 3: Intra-band masking and inter-orientaticasking are considered and are

represented by inhibition functions.

The neural respons®, , is defined as,

E,(l,g.mn)

(1,g.mn)+¢9 (3.86)

R,(I,g,m,n)=k

,-
I

where z1 {G,Q}, with C and Q denoting intra-band spatial masking domain and
inter-orientation masking domain of the similarguency coefficients, respectively.
E, and |, are the excitation and inhibition functions forethwo domains in
z1 {G,Q}. k, and¢, are the scaling and saturation constants, respécti The
term,r, >0, has been added to provide minimum level of irtihi (I,g,m,n)
denotes the location of the wavelet coefficienatige to spatial locationrfi,n),
resolution [) and orientation () within a codeblock, note that= {12,...5} being the
frequency level andy ={LH,HL,HH} being the orientation band. Tlg and]l,

for zI {G,Q} are defined as,

Es(l,g.mn)=(X,[l,g,m,n])" (3.87)
Eo(l,g.mn)=(X,(1,g,mn))> (3.88)
lhamn)= e (X Laud) +sil.amn 3:89)
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IQ(I,q,m, n): (XW[I,f,m, n])q (3.90)

A {LH ,HL,HH}
where
m+l  n+l
stlamn)=gox (X Jgud- s (3.91)
u=m-| v=n-1

XW[I g, m, n] is the CSF weighted wavelet coefficient, and set at 2. The inhibition
function, IG(I,q,m,n), consists of two components: (1) spatial maskihgt tis

computed based on a square neighbourhood areadatbelrxw[l,q, m, n], with the

area being,N(1)=(2 +1)*, and (2) the texture masking that is computed H®y t

neighbourhood variancs,?, , in equation (3.91)./7{m,n) represents the mean of the

square neighbourhood area. At very high activigiae of an image, the HVS is more
tolerable to noise. Therefore, the texture masksnopcluded in addition to spatial
masking to account for the HVS'’s ability to tolerdtigher distortion at very high
activity region, where tolerance to higher distamticould not be sufficiently

accounted for by spatial masking alone.

At the lowest frequency subband (i.e., the isotrdspi (DC) band) where very little or

no masking is envisaged, the response is compiffededitly and is defined as,

(X, (@LL,mn))*

RelLLL.mn) = ke V(xw(l LL,m,n))* +¢2

(3.92)

where )?W and X, are the quantised and unquantised DC coefficieatpectively.

The distortion for individual neural response ifimed as follows,

D,(.g.mn)=|rR,,(,g.mn)- R,,(I,g,m, n)‘2 (3.93)
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whereR, , and R, , are from the reference and processed images,atesgg. The

final distortion measure for codeblock, is the sum of all intra-band and inter-

orientation maskings,

D,b)=  (9sDs(l.4.i.)+9q Do (l.g.mn)) (3.94)

i

wherei :{1,2,..,Mb} and | ={1,2,...,Nb} are the row and column positions for the

codeblock,b. The various model parameter constants are listédble 3.3 below.

Parameters Parameters

CSF (LL-band) | 1.4800 Ko 0.9876
CSF(1 =1) 1.5500 5.5550
CSF( =2) 1.7700 tq 7.6800
CSF(=3) 1.6800 Ps 2.5800
CSF( =4) 1.2900 Po 2.3950
CSF( =5) 0.8050 9o 0.7588
Ke 1.0888 96 0.4834

Table 3.3: Vision Model Parameters.

3.5.11 Just Noticeable Colour Difference Model by C  hou and Liu

Chou and Liu [142] proposed a visual model for meag perceptual redundancy
inherent in colour images. The proposed modelbmadapted in the JPEG-LS and
JPEG2000 compliance coders. According to Chou land[142], the perceptual
redundancy of a particular colour can be determimgdhe radius of just noticeable
colour difference (JNCD) in all regions of the wmih colour space. The radius of
JNCD sphere is scaled by both the chroma of thecadsd pixel and the local
luminance properties, and it is expressed as asgapiCD (AIJNCD) as,

AINCD= JNCD,_, xa,,,(E(L),DL)xa.(ab) (3.95)
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wherelL, a, andb are components specified in the CIE-Lab SpadBlCD ,, is the

threshold for determining if two colours in the CGlBb space are considered
perceptually distinguishable if their Euclideantdicce between them exceeds this

threshold. a,,,, and a. are scaling factors which consider the effect bfoma

changes and masking effect due to local luminaextite, respectively. The scaling

factor, a , is determined as,

a.(ab)=1+0.045%/a® +b? (3.96)
The masking factorg,,,, due to local luminance texture, is defined as,
a,.(E(L),DL) =¢(E(L))xDL +1.0 (3.97)

where E(L) and DL are mean background luminance of the target pixel the
maximum luminance gradient across the target pisedpectively. 7(E(L)) is the
slope of the lines that fit the empirical data undéferent ranges ofE(L), and it is

determined as,

0.09 ,E(L)£20

007 21<E(L)£40
005 41<E(L)£60
008 61<E(L)£100

(3.98)

A lower colour boundk;, and upper colour boundk,, for colour, k ,have been
defined so that only colours within thAJNCD sphere and those which have
luminance components between the colour boukdsind k, are included as
candidates for estimating the perceptual redunddémcygolour, k. As consideration
for all colours within theAJNCD sphere can be prohibitively large, only limited
numbers of critical colours that are at the verfjbaing distinguishable from colours
are selected for setting the lower and upper bguartt$ the critical colour samples are

chosen as,
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/() =1{L, a +RdE, )b, +Im(E, ) (3.99)

/»(K)={L, a +RdE, %), +Im(E, =)} (3.100)
where

E, = \/AJNCDf - L (3.101)
E, = \/AJNCEf L, - [ (3.102)
g= glgmod % =0 (3.103)

where L, , L, and L, are the luminance levels for colouks, k; and k;, ,
respectively. TheAJNCD, is adaptiveJNCD for colour,k. n is the number of

critical colour samples fok, andk, .

The JND value for each colour componeft{Y Cb,Cr} for colourk is computed as,

IND, (k)= min (k)|°8 - ¢ (3.104)

d/4(KJE/
To incorporate into the JPEG2000 compliance cotther,distortion measure that is
used in the post compression rate distortion opttion is defined as perceptible

distortion,

D) = ﬂxcyi (un)- X2 (uw)- IND, (u,v)]2 xa ) (uv) (3.105)

(uv\’){ Bc,i
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1 ,‘X(u,v)- )A((?j”(/)(u,v)(>JNDC’i (uyv)

dncl(/) V)= R
(uy) 0 |X(uv)- X5 (uv) £ IND, (uy)

o]

(3.106)

where B, is the set of sequences in code blbok colour componenti {vch,cr},
X, (uv) is the wavelet coefficient at locatidu,v) within code blocki of colour
componentcT {YCb,Cr}, and X)(u,v) is the reconstruction oK, (u,v) by the
bit streams truncated at truncation pahg}(/ ) at optimal rate-distortion slopé,

which is obtained via the rate-distortion optimisat procedure in the JPEG2000

compliance coder.JND,, (u,v) is the JND value obtained as in equation (3.101) for

colour componenti {Y Cb,Cr} for sampleX_, (u,v) belonging to code block.

3.5.12 Comparison of Some Perceptual Coders

In sections 3.5.1 to 3.5.11, some perceptual intagers are discussed in detail. The
visual properties and features of different pengalptcoders are summarised and

tabulated in Table 3.4.

Perceptual Models | Visual properties Feature
considered
Watson DCTune Contrast and Selection of a quantisation matrix that
Luminance masking | can yield the best quality given the
desired compression ratio.
Safranek and Johnsan Luminance variatio@oding of images with rates of less
for the purpose of than one bit per pixel. Achieved using
textual masking a combination of the following
compression method: DPCM, entropy
coding, perceptual-threshold
calculation and quiescent block
rejection.

Table 3.4 Comparison of Some Perceptual Coders
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Perceptual Models

Visual properties
considered

Feature

Chou & Li

Average luminance
difference and mean
background around
pixel

Proposes a method to estimate the
Just-Noticeable-Distortion (JND) ang
Minimally-Noticeable-Distortion
(MND) profiles of a monochromatic
image.

The decomposed JNDs and MNDs i
the subbands are used in encoding t

|

n
0]

achieve the desired bitrate and quality.

Hontsch and Karam

Background-
luminance adjusted
contrast sensitivity,
contrast masking

Uses adaptive quantisation scheme

for DCT coefficients.

with DPCM coding and JND thresho|d

Taubman

Visual masking

Proposes a spatially varglistprtion
metric that incorporates masking
phenomenon within the distortion
function of EBCOT. Masking effects
are considered after quantisation.

Zeng, Daly and Lei

Intra-band masking
Self-contrast masking
and neighbourhood
masking effects

Incorporates self-contrasting maskin
yand neighbourhood masking effects
introducing a non-linear function that
maps the wavelet coefficients into a
perceptual domain. Masking effects
are considered by applying a signal
(which is subjected to masking) to a
power function and followed by a
divisible neighbourhood masking
factor.

by

n

9
a

Liu Contrast sensitivity, | Proposes a distortion metric based ¢
luminance masking, | JND thresholds (which incorporates
contrast masking CSF, luminance and contrast maskir

adaptation) in the wavelet domain in
dyadic structure with Daubechies 9/7
filters.

Tan Contrast sensitivity, | Considers the CSF, intra-band
intra-band frequency| frequency spatial masking, inter-
spatial masking, orientation masking of similar
inter-orientation frequencies within a Contrast Gain
masking of similar | Control Mode [27] that is adapted into
frequencies the EBCOT framework[14].

Chou and Liu Local luminance Incorporates adaptive JNCD into the

masking

distortion function for JPEG2000
compliance coder. Considers the
effects of chroma variation and
luminance properties on adaptive

JNCD.

Table 3.4 Comparison of Some Perceptual Coderg.(cpn
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3.6 Chapter Summary

This Chapter reviews the various coders used fagancompression (sections 3.4 &
3.5). Section 3.2 gives a brief overview of infotraa theory which forms the basic
foundation of data compression including image 1©gdiL0]. Picture compression is
categorized into lossy and lossless. Lossy comioresdlows for some information
loss during compression. On the other hand, losslesmpression maintains
information integrity during the encoding proceksssless compression systems are
centred solely on the removal of statistical recumaies which Shannon refers to as
noise [10]. For lossy compression, a balance betwedormation loss and
compression ratio must be established. Thus, ttee distortion theory is seen as
critical component for mitigating the tradeoff be®wn bitrates and distortion, i.e.,

picture quality versus file size.

Section 3.3 presents the structure of transfornedésssy image compression system,
which includes data transformation and quantisat®ecttion 3.4 presents the concept
of hierarchical bitplane coding, specifically th&\® [31], the SPIHT [32], and the
EBCOT [14] coders. Apart from improved coding efncy over the DCT based
image coder, i.e., JPEG baseline [11], these cods offer scalability feature.
EBCOT has been adopted as the core of JPEG20Didnstge coding standard [12].

A comparison of three wavelet based bitplane imeggers have been presented,
beginning with the EZW [31], then the SPIHT [32]dafinally EBCOT [14] coders.
Undoubtedly, EZW represents significant contribat@nd novelty in the design of
hierarchical bitplane coders. Subsequent improveinased on this algorithm can be
found in [117]. Its popularity has motivated thevelepment of SPIHT [32] and
subsequently the EBCOT [14] coders. Monro etH 8] has also extended the EZW
approach to block-based transform coding, whereo-tee coding for DCT
coefficients is proposed. Similar to the EZW, foe ISPIHT, encoding can halt at any
time once the desired coding rate is achieved. Mewempirical studies have shown
that SPIHT has achieved better coding results thahof EZW and thus is a more
efficient coding tool [1, 12, 32]. In the EBOCT alghm [14], encoding is performed
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on partitioned codeblocks. This involves bitplamemtisation with context arithmetic
coding. This is in contrast to EZW and SPIHT, whtte dependency nature of the
subbands means that coding is carried out acroakssaovithout subdivision.
Experimental results find that the EBCOT is regdrde superior to EZW and SPIHT
in terms of its Signal-to-Noise Ratio (SNR) andotaton scalability. Moreover, the
JPEG2000 which is based on the EBCOT structurevs hmiled as the current state-
of-the-art coder. The JPEG2000 coder is also talsethe benchmark for subsequent
image coders developed in Chapters four and fileetmeasured against.

In an effort to improve the perceived quality ofled images, picture coding systems
have been incorporated with HVS based models. Aewewf some of these
perceptual models [14, 15, 119, 123, 126, 127, 132, 136, 138, 142] in section
(3.5) highlights the visual properties considergdtlbe various perceptual models.
Some of these perceptual coders are either ratgiaity driven. A review of these
models serves as the backdrop for the developnfetiteoPCDM model for colour
images and the Perceptual Post Filtering (PPFYi#thgo presented in chapters 4 and

5. A comparison of the various perceptual modesh®wvn in Table 3.4.
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Chapter 4 Perceptual Coding based on Intra-band and

Inter-orientation Masking

4.1 Introduction

The JPEG2000 standard [12] represents the curtatd-af-the-art coder for still
images. The core coding structure of JPEG2006asbtock-based bitplane coding
paradigm adopted from the EBCOT [14] that has destrated superior performance
over other wavelet-based coders. The EBCOT and;eheghe JPEG2000 generate
independent bit-streams for each codeblock whiehpaicked into quality layers. In
both coders, the delivery of optimized bit streasnthe result of rate-distortion
optimisation and context arithmetic coding. Whifgbing the Mean Squared Error
(MSE) or masking sensitive distortion measure ,(tlee VDM of EBCOT) as the
distortion measure in the R-D optimisation produgesd quality performance for the
coded images, the MSE has long been recognized efisg ban inadequate
measurement of perceived image quality as repontdd43] and [144]. The MSE
only measures the raw mathematical distortion amelsdot take into account the
perceived distortions as seen by the human visisiés. It is true that while some
aspect of vision modeling design such as the CVil8ra has been incorporated into
JPEG2000 software verification model (VM8) for expeental testing, a more
comprehensive vision model can be used to imprbeevisual quality of the coded

images.

4.2 The Reference Model — JPEG2000 Coding Structure

The proposed model that is described in subsegsedtions is built into the
framework of JPEG2000 [14]. Figure 4.1 depictsi@opial view of the building
block in the JPEG2000 structure. The encoding gg®dnvolves a tier-1 and tier 2

coding.
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Figure 4.1 Coding Structure of JPEG2000. Tier #liGg: The bitplane quantised
DWT coefficients and the unquantised coefficiente ased to compute the
distortions for all coding passes. The bitplanardized DWT is also entropy
coded with context adaptive arithmetic coder. Bditiortion reductions and rates
for the coding passes are used to generate thedeleddit streams through Post
Compression Rate Distortion Optimizer. Tier 2 Gumgdi The Bit Stream
organisation forms the final embedded bit stream.

In the lossy compression mode with irreversiblédptte Discrete Wavelet Transform
(DWT) or the Lifting Wavelet Transform (LWT) [143,46] is applied to the image
data and decomposes it into kdevel multiresolultion representation by Mallat
decomposition [103] with the Daubechies 9/7 sepgaréilber set [140], which is the
symmetric and linear phase. In both the lossy cesgion mode with reversible path
and the lossless compression mode, a biorthogdB8ahteger filter set is used [12]
instead. Table 4.1 below and Figure Al in apperflishow the coefficients and
profiles of the 9/7 filter sets, respectively. Witklatively short filter lengths, the
filters enable relatively fast computational spe€wr each decomposition level, each
column of a 2-D image is first transformed vertigatith a 1-D analysis filter bank,
the results of the 1-D transformed coefficientsthen transformed horizontally along
each row with the same analysis filter bank. Hiwustration purpose, Figure 4.2
shows the multiresolution of a 5-level DWT decompos by the Mallat
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decomposition [103]. The 5-level decomposition pEs one isotropic and 15
oriented subbands at approximately O degree otientfor the isotropic band, and 90
and 45/135 degree orientations per level for tinerol5 oriented subbandsote the
proposed model operates within the lossy mode witbversible path of the
JPEG2000 structure.

Filter Analysis Filter Synthesis Filter

Taps Low Passh High Passg Low Passh High Pass,g
0 0.602949 -0.557543 1.115086 -1.205898
+1 0.266864 0.295636 0.591272 0.533728
+2 -0.078223 0.028772 -0.057544 0.156446
+3 -0.016864 -0.045636 -0.0921272 -0.033728
+4 0.026749 0 0 -0.053498

Table 4.1: The Daubechies 9/7 wavelet filter d¢at¢: This is the un-normalized
1
version. The normalized version involves a mulltigtive factor ofv/2 andﬁ for

the analysis filter and synthesis filter, respeadi)

Scalar dead-zone quantisation is applied to thestoamed coefficients. In the lossy
mode with irreversible path where the Daubechi@ss@parable filter set is used, the
choice of the quantiser step size for each bamel&ive to the nominal dynamic

range of the subband signal.

During tier-1 coding, the quantisation indices proed by the scalar quantisation for
each subband are partitioned into code blocks, ehalich has typical block size of
64x64. Each code block is then independently codsemhg bit-plane coding
beginning from the most significant bit plane te tleast significant bit plane. For
each code block, an embedded code is producedjstingsof numerous coding
passes. At each bit plane, it involves three apgliasses, namely significance pass,
refinement pass, and cleanup pass. The sampéschfcode block are scanned in the
same order by the coding passes. In each codsgy ffee bit plane encoding process
produces a sequence of symbols which may be entapgded by context-based
adaptive arithmetic coder, specifically, the MQ eoéfrom the JBIG2 standard [147]
is used. Each coding pass forms a truncation pdissociated with each coding pass

is the rate (in bits) required to generate the daenbols and the distortion reduction
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resulting from encoding the coding pass. The iatzease and the distortion
reduction for all truncation points are then usedthe Post Compression Rate
Distortion (PCRD) optimisation in the tier-2 encogliprocess to optimize the final bit
stream. The distortion criteria used in the JPHB28 typically the mean squared
error (MSE), or optionally the visual distortion me (CVIS) in the JPEG2000

software verification model (VM8). However, JPEGROstandard does not restrict

the choice of distortion metric.

Figure 4.2 A 5-level Multiresolution Mallat decongition. One Isotropic DC band
(LL1), and 15 orientation bands covering 90, 45/@l8§rees of orientations, where 1
denotes the lowest frequency level and 5 the higheguency level.
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In tier-2 encoding process, the PCRD optimisatioocess decides which coding

passes to be included or excluded (discarded) thenfinal bit stream.

The MSE as the distortion metric used in the JPEG2®der here (Note it is actually

weighted MSE) for a given truncation pointn code blockB, is expressed as,

D(tl\)/ISE :WqCSbe ) (Xi[j]' Xi(t)[j])2 (4.1)

il &,
where | represents the location of the coefficient wittive code blockB, for a
given truncation point, &k, includes all coefficients within the code blo&kthat
produces truncation poirtt, X,[j] is the transform coefficient valué(i(‘)[j ] is the
bit-plane quantized coefficient value for truncatjointt, G, is the squared norm of
the synthesis basis vectors for subbandhich contains the code blod, W;Sf is

the CSF energy weighting factor.

The distortion computation according to the CVI$ &given truncation poirtt in

code blockB, is given as,

a’G ik (Xi[j]' Xi(t)[j])z
Di(,tc)ws = T : — 29

2
1 1 g
1+ — — X[n
T e

(4.2)

where T, is the contrast sensitivity thresholds for subbamd N, is the

neighbourhood around location and the neighbourhood is identified with the
subblock of size 8x8 that contains locatipna is an arbitrary constant, the masking

gain ,g, has atypical value of 0.5.
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Perceptual Colour Distortion Measure

While both the EBCOT and the JPEG2000 encodingtheemean squared error
(MSE) or visual distortion metric (CVIS) as a digton measure in the R-D
optimisation function, the proposed coder usesdptual Colour Distortion Measure
(PCDM) - mimicking that of the perception of thenhan visual system (HVS) — as a
distortion measure in the R-D optimisation. Spealfy, the optical sensitivity at the
optical stage of the HVS represented by the respaisthe contrast sensitivity
function (CSF), and the responses of the variousking effects at the cortical stage

are considered in the formulation of the PCDM fiortt

Figure 4.3 gives a pictorial view of the PCDM. Radly, the PCDM is a replacement
of the distortion measure used in the JPEG2000ngostiructure where the proposed
PCDM has been incorporated. From Figure 4.3, blothdquantised and raw DWT
coefficients are weighted with CSF weights, and thaous masking functions are
applied to the CSF weighted coefficients to compléemasking responses (i.e., from
the raw coefficients and the quantised coefficieniBhe detection and pooling stage

computes the distortion by pooling the error betwie two responses.

Input Image (YCbCr)

Raw . r----- Perceptual Distortion Measure - - -------- Compressed Bit Stream
Coefficients

(YCbCr) : CSF Masking Dig;tortion T
Wavelet » ; B ' !
. | Weight '
Decomposition | | R-D
. i T Detection |i Optimisation
guafr;_tlsedq, & Pooling [ & Arithmetic
oefficients . ;
; Codin
v (vcher) 1 | CSF > Masking ™ E ’
Bitplane Code iy VWeight |
R ¥

Rate

Figure 4.3 The JPEG2000 Coding Structure with tiop@sed PCDM replacing the
MSE criterion.
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4.3 Proposed Vision Model

Several HVS based models have gained increasirgptwe as in [148] and [149].
The coverage of HVS perception and some of thes& If\del based coders are
explained in chapters 2 and 3, respectively. kapkcity, an HVS can be modeled
by two successive and separate stages: opticalcariital. The optical stage is
concerned with the limitation of the sensitivitytbe human optical system relative to
background luminance and spatio-temporal frequencieiscussion of some of the
properties of the human optics and the corticajedtaof the HVS can be found in
chapter 2 of this thesis.

4.3.1 The optical stage

The optical sensitivity has been described by Vas ldnd Bouman [64] as the
“contrast sensitivity function” (CSF). The CSF pesses the characteristic of a band-
pass filter. The visual sensitivity described bg CSF is highest at mid-frequencies,
and the lowest visual sensitivity is observed aty\agh frequencies. This implies
that visual signal components of high spatial fezgries cannot be easily identified
by the human visual system as compared to thostheoflower and mid-range

frequencies.

Hence, noises at those very high frequencies rangguced by quantisation during
compression will contribute lesser amount of ‘pered’ degradation in the visual
quality of reconstructed images than those of loared mid-range frequencies. The
reason for this is due to the weaker ability of hioenan optics to detect visual signals
at very high frequencies. Therefore, there is awicals advantage for the visual
signals to be moderated to reflect this limitatadrthe sensitivity of the human optics
SO as to improve the compression system. In topgsed model, the CSF is applied
as uniform frequency-specific weights on the visasamponents in the spectral
domain. The values of the weights are calibratecoarsely address the effect of the

band-pass profile of the human optics.
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4.3.2 Cortical Stage

The cortical stage is represented by the maskingalitation characteristics of the
HVS whereby detection of visual stimulus can beengd (i.e., masked) or enhanced
(i.e., facilitated) in the presence of other vispatterns (i.e., a masker), respectively
[22, 25]. Basically, the enhancement or impedinanthe visual response is due to
the responses of receptive fields in the visualesobeing triggered either positively
(excitation) or negatively (inhibition), respectiy¢19-21]. In the proposed coder, for

the purpose of image compression only maskingnsidered.

4.3.3 The Masking Model

The proposed masking model extends the grey scatkelnof Tan et al. [15] to the
YCbCrcolor space within the contrast gain control dtrites (CGC) described in [27]
by Watson and Solomon, and in [23] by Teo and ldeddnlike the proposed model
that separates masking responses into intra-bamd imter-orientation masking
domains, Teo and Heeger only considered orientati@sking, and Watson and

Solomon unified all masking domains into a singlsponse function.

Teo and Heeger used the shift invariant Steeralyf@nid transform [150] to
decompose images into different frequencies arehtation bands, thereby avoiding
aliasing. Watson and Solomon used either the xdrgasform [141] or the Gabor
array[27] for signal decomposition. All these transferiegre overcomplete, and the
basis of their use are due to overlapping natunecéptive fields of the HVS. The
receptive fields are likely to be non-orthogonaloaserved in [151]. The responses
of the receptive fields in the cortex are band<tele. The visual perception is
thought to be activated in multiple channels theg¢ aach selective in spatial
frequency, orientation and temporal frequency. Hamdwidths of spatial and
orientation channels are found to be around onavecand 40 degrees, respectively.
In addition, the data representation in the cortppears to follow that of
multiresolution representation, and it is thoughtoe covered by about 5 frequency
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selective channels and 4 orientation channels stderable pyramid transform, cortex
transform or Gabor array can provide the choicetwfing filters to specified
frequencies and orientations while avoiding aligsilue to down sampling, making
them excellent models for approximating the behavaf the receptive fields in the
cortex. They are excellent HVS models that can bedufor perceptual quality
assessment. However these filters are computdiijoc@mplex. Also Gabor array

has a much higher computational cost than the £tra@sform.

Although the cortex transform or the Gabor filtare better models for representing
the receptive fields of the HVS, they are not usedtransform kernels in the
JPEG2000 framework. Instead, the Bi-orthogonal i2ahies 9/7 filter set as the
wavelet transform kernel with dyadic decompositisrused in the proposed coder.
The choice of Daubechies 9/7 filter set comes witime problems. Firstly, there are
only 3 orientation bands at each frequency levsteid of 4 orientation bands (i.e.,
the HVS needs at least 4 orientation bands). dtdrdy one diagonal band at each
frequency level that effectively combines resporfsesn both 45 degrees and 135
degrees. Inaccuracy may arise with insufficienemation bands. Secondly, the
critically sampled wavelet transform can introdwd@sing errors. In spite of the

drawbacks, for the purpose of exploiting the ergptlPEG2000 framework, and at
the same time with reasonable approximation taribdelling of the receptive fields,

the coder described here uses the Bi-orthogonab&ashies 9/7 filters as the wavelet

transform kernel with Mallat decomposition [103].

All the above mentioned models and the proposed MQ@re have something in
common with Foley’s model as described in Chaptéh@ neural respond@) of the

cortical stage is modeled in terms of an excitafiomction E) being ‘masked’ by a

divisible inhibition Functionl( as in equation (2.9).

As the PCDM model discussed here is built intoabéing structure of JPEG2000, an
image in the discrete wavelet transform domainivsddd into several codeblocks,
each of which is hierarchically bitplane encodedhwseveral coding passes per
bitplane, beginning from the most significant bapé and ending at the lowest

bitplane.
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We first define a linear transforri,(.) , of a natural digital colour image, as:

X =T(x) (4.3)

where X is the frequency and orientation sensitive speatedral image. In the
proposed coder, the image data is decomposed iiteeel multiresolution spectral
representation according to dyadic Mallat decontmosi [103]. Transformed

coefficients are denoted as eithet[c,!, ,m,n] or X[cLLL,m,n], where
X[c,l,q,ml,n,] is the coefficient at spatial frequency Iocati{)m,n] in the
orientation bandg ={LH,HL,HH}, at resolution levell ={ 12345}, belonging to
colour componentc {YCb,Cr} . and X[cLLL,m,n] refers to the transform

coefficient for the lowest.L isotropic (DC) band.

The transform coefficient is then modulated by @®F weights according to the
sensitivity of the human optics. The CSF weigtssduhere are an attempt to roughly
reflect the sensitivity of the human optics. Thdigbof the human optics to detect
visual signals at very high frequencies is muchkeeahan at mid-range and lower
frequencies. Note that the technique of CSF waighfior different subbands to
account for their relative contributions for therpose of rate allocation is commonly
used. In the proposed coder, CSF weights are asbsigrcording to frequency levels.
A more accurate CSF curve is mentioned in Figude,2which is adapted from

Wandell [34]. The CSF weighted coefficients areresped as,
Xw[c,l,q,ml,nl]:CW[C,I]X[C,I,q,ml,nl] (4.4)
X, [eaLL,m,n]=C,[c LL]*X[cA LL,m,n] (4.5)

where Xw[c,l,q,m,nl] and XW[C,I, LL,ml,nl] are, respectively, the CSF-weighted
coefficients ofX[c,l,g,m,n] and X[c1,LL,m ,n]. C,[c.1] is the CSF weights for

color componentci {Y Cb,Cr}, at resolution level, ={ 12345}. C,[c,LL] is the
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CSF weight for color component] {Y,Cb,Cr} for the lowestLL isotropic (DC)
band.

The intra-band and inter-orientation maskings apessed as follows,

E,(cl.gm.n)
l(clgm,n)+s?,

Rz(c,l,q,mI N ) =k, (4.6)

where Ez(c,l,q,m,,nl) and Iz(c,l,q,m,,nl) are the excitation and inhibition
functions, respectivelyk,, and s¢, are the scaling and saturation coefficients,
z { } with Q and g represent the inter-orientation and intra-band kings
domains, respectively. Note that the resporRdc,l,g,m,n ), increases with

excitation but diminishes with inhibition. This a&ls the phenomena that the visual
pattern can be diminished by the presence of a imgagattern. The excitation and

inhibition functions for the inter-orientation masg are defined as,

EQ(Ciliq’ml’nl):(xw[c’liq'ml’nl])pQQ (4.7)

lhlclhgm.n)="(X,[clg.m.n]) (4.8)

k=1

The excitation and inhibition functions of the aipand domain are defined as,
Eg(c1|’q’m’nl):(xw[cllaQaml’nl])pc'g (4.9)

|g(C,|,q,rn| ’nl): XW[C,l,q,m ’n|]+

g m N (4.10)
W (XW[C,l,q,U,V])q [uv] [m.n] +sg,var(rnl ’nl)

) u=m-l v=n-I

In the current modelq is set to 2 with the conditiop, >q . Equation (4.8)

represents the inhibition function as a sum of sgpiaf the CSF-weighted transform
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coefficients spanning all orientations (i.k=1,2,3 for LH, HL, HH orientation band,

respectively) at spatial Iocatidm,nl]. Figure 4.4 depicts the inter-orientation and

intra-band masking coefficients at work. The intidn function in (4.10) comprises
of three terms. The second term is the sum ofreguaf neighbouring CSF-weighted

transform coefficients about the centroi, [c,I,g,m ,n |, and the neighbourhood is

defined as a squared region with sizeNdf) = (2 +1)* -1, and| = {12345} from
the lowest to the highest frequency level. The sizthe neighbourhood is described
pictorially in Figure 4.5. At this stage, littles iknown about what optimum
neighbourhood sizes are for spatial masking. Howewee can assume the
neighbourhood size to be much smaller than theregeeof 2 degrees visual angle
( ). Assume that an image of size 512x512 pixeks,(H=512, W=512) is to be
displayed on a monitor with a viewing distané® @t four times the image height

(H), the  vertical coverage  that  will reach the  foveais

2xD »an % = 2X{4x512)tan 27 = 4096><tan(1 ): 72pixels. For a 5-level Mallat

decomposition with downsampling of 2 each at hariaband vertical directions, the
coverage corresponds to area sizes of 36x36, 134%B, 5x5 and 3x3 pixels for
frequency level$ at 5, 4, 3, 2 and 1, respectively. The neighboodhsize for spatial
masking can only be smaller. Based on subjectiy@mixent, the coder is found to
achieve excellent visual performance at neighbadth@gions of 11x11, 9x9, 7x7,
5x5 and 3x3 pixels at frequency leveadf 5, 4, 3, 2 and 1, respectively, for a 5-level

Mallat decomposition. The third term in equatioh1(Q) is the local variance,

sjvar(m ,n, ), which accounts for the texture masking [123is llefined as

1 m +l n; +l

scz,var( N, ) = N(| ) st ven l(xw[c’I ,C],U,V] - ”(ml N, ))2 [uv] [m.n] (4.11)
1 m+l n+l
”(rnl Ny ) - N_(l)u:m ; V=n|_|XW[C’| J U,V] |[u,v] [m.n] (412)

where m{m,n,) is the mean value of the set of neighboring coieffits about
X,[c.l,g.m,n]. At very high activity region of an image, the H¥Smore tolerable

to noise. The texture masking is included in addito spatial masking to account for
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the HVS's ability to tolerate higher distortion\ary high activity region, where the
tolerance to higher distortion could not be suéfitly accounted for by spatial

masking alone.

The response function in (4.6) is applied to alilsands (LH, HL, HH) spanning from
all resolution levels except the lowest LL isotogDC) band, whereby only intra-

band masking is applied. The response functiothi®iL band is expressed as

(X,fex Ll m,n])*
" (XulextLmn]) +s3,(m.n,)

R,(cLLL,m,n )=k (4.13)

where )Zw[c;l, LL,ml,nl] and Xw[c,],LL,ml,nl] are the bitplane quantised and

unquantised DC coefficients, respectively.

| ql <‘\ . . .
— Inter-orientation masking
from coefficients of

orientation bands (LH, HL

/ and HH) at locatiofm,n,].
" 03 " Clz/
\
\/ HL5

| Intra-band masking from
neighbouring coefficients

A\

|

LH5 HHS

Figure 4.4 Example of 5-level dyadic wavelet decosifon structure. This diagram
also gives a pictorial view of how coefficients aised for the inter-orientation masking
and intra-band masking.
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n

(@) I=1 N=8 (b)1 =2,N=24 (c) I = 3,N=4¢ (d)1 =4,N=8C (e)lI =5,N=12C

Figure 4.5 Neighbouring coefficients around cemtrobefficientx[c,l,q,rn,n,]

for inclusion in computing intra-band masking. Trreaghbour coefficients are the
shaded region excluding the coefficie)(i[c,l,q,m ,nl]. The size of the square is

N(l) = (2 +1)* - 1, wherel is the resolution level from 1 to 5. Figures (a), (c),
(d) and (e) are the neighbouring coefficients éwels 1 to 5 respectively.

The difference of the masking response betweenrgfexence imagea) and the
processed image b) (i.e., bitplane quantised image) for each colour
component| {Y,Cb,Cr} is determined by a simple squared-errds rform) as

expressed below,

R.(clamn)-R,,lgm.n) (4.14)

D,(cl.q.m.n )=

In equation (4.14), theR,,(c,l,g,m ,n) is the response due to CSF weighted
unquantised coefficient,X [c.l,g.m .n], and z { ,} represents the inter-

orientation or intra-band masking domain, respetyiv TheR, , (c,l,q,m ,n,) is the

response due to CSF weighted biplane quantisediciest, X,[c,l,g.m .n ], at

certain bit plane levebl {B,B- 1,B- 2,...2,]} andB is the highest bit plane level.

In JIPEG2000, the bit plane encoding proceeds fl@rhighest bit plane to the lowest
bit plane, and multiple coding passes are involireaach bit plane level. When

computing R,,(cl,g.m ,n) , the CSF weighted quantized coefficient,

)?W[c,l,q,m| ,n,], is used instead of the use of the CSF weighteguamtised

coefficient, X [c,l,g,m ,n]. For abit plane levebl {B,B- 1,B- 2,...21}, andB is
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the highest bit plane level, the square differeincthe masking response of equation
(4.14) essentially accounts for the distortion med by the bit plane quantisation at

bit plane levelp, for the coefficient,X [c,l q,m ,nl].

Encompassing both the intra-band and inter-oriemtatnasking domains for all
subbands, except the LL band which only considetsiband masking, the final

perceptual distortion measur®,, of each codeblock for each colour component

ci {YCh,Cr}, is then computed as follows,

M N,

D, = (@Jc,r D,(c.l.g.i, )+ 9.0Do(c.l.qi, i) (4.15)

i=1 j=1

where g, ,and g., are the proportional contributing gains for botitra-band and
inter-orientation masking, respectivelyl, and N, represent the actual size for the
codeblock, at resolution level,. At LL band, g, is set to 1 and the term,
gc’QDQ(c,I,q,i, j) is omitted. Note that the perceptual distortiorasure,D_, is

computed separately for each colour compormén{Y,Cb,Cr}.

4.4 Model Adaptation

The PCDM is built into the coding structure of JPEGO, where an image in the
discrete wavelet transform domain is divided irtwesal codeblocks, each of which
is bitplane encoded [12]. In the proposed codeth bhe unquantised and bitplane
quantised coefficients are weighted according wrthespective CSF weights. The
masking function described in section 4.3 is apptiethese weighted output and the
distortion measure is then computed at the findea®n stage. The distortion

measure and the rate accumulated during bitplanedamy are used as inputs to the

R-D optimisation function to generate the compreégdsestreams.
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For a rate driven lossy coder, the purpose of tHe fRnction is to determine the
minimum distortion possible for a given bitrate snch a way that any further
reduction below the minimum distortion will not Ip@ssible without allowing an
increase in the specified bitrate. In the JPEG20@Mework, the R-D optimisation
uses the rate of reduction of distortion against fidite of increase in the bitrate to

obtain the best possible distortion for the leasmber of bits. LetR , be the
response of unquantised coefficient, aRd,, , be the response of a coefficient
quantised to th&™ bitplane atp™ coding pass, wherel {Y,Cb,Cr} denotes the
colour component andzi {Q,g} for inter-orientation and intra-band maskings

domains. The perceptual distortion that correspdondbitplane quantisation for the

k™ bitplane atp™ coding pass of colour componeri {Y Cb,Cr} is

Rcz,k,p(j)'Rcz(j)‘2 (4-16)

D ck,p = g cz

j Nc,k.p z

where g, :igC’ Je } refers to the proportional contributing gains fmth intra-

band and inter-orientation maskind\ denotes the set of coefficients that belong

ck,p
to the coding pasp" at k™ bitplane of colour componentl {Y Cb,Cr}. For the

JPEG2000-PCDM coder, the perceptual distortion gouagon (4.16) is used to
replace the MSE distortion described in equatiat)(4 The reduction in perceptual

distortion between successive bitplank® and (k+1)" for colour component

ci {ych,Cr} is

(4.17)

4.5 Model Calibration

The CSF weights and model parameters (see Tallemnd. 4.3) are calibrated to the
perceptual response of the HVS. For each modelnpeter value estimation, nine

natural images are derived as test images frone thets of images (i.ebarbarag
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barbara2 boats see appendix B), each of which is coded at lesratf 0.5, 0.3 and
0.25 bpp.

4.5.1 Test Condition

The calibration of CSF weights and model paramet&s conducted on a Sun Ultra
60 Workstation in a dark room with minimum illumtien. The test images were
viewed by one expert viewer on a 21-inch, 0.24mrh gitth Sun Colour Monitor

with its display set at 1280x1024 pixels resolutidihis display setting allows the

paired images (512x512 pixels each) to span theesatisplay horizontally. However,

the tradeoff of not having display set at its natihesolution is that some internal
interpolation does occur. The viewing distance wage times the image height
[152]. Between quality assessments of the imagebeoturrent estimated parameter
set and the next one, a break of at least 10 nsrnwés observed to avoid the effect of
fatigue during the subjective test. The presematif the test images is depicted in
Figure 4.6. Force-choice comparative subject assest was used to evaluate the

quality of the images.

4.5.2 Calibration Process

The set of model parameter values are taken frometal. [15] as the set of initial
parameter values for théCbCrcolor space. While no best way has yet been dévis
for parameterising the 42 parameteMd (), the current approach to optimising the
parameters is sequential tuning iteratively. Téguential tuning of parameters may
proceed for multiple passes (i.e., an approximapass and multiple refinement
passes) with different step sizes;J. While the approximation pass uses larger step
size, the refinement passes use smaller step Sibesapproximation pass aims at
achieving the parameter set close to the sub-opthaaes with fast convergence,
while the refinement passes attempt to calibrageptirameters to the sub-optimal set

at a finer resolution.
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Figure 4.6 Presentation of subjective test imagepérameter calibration.pel

lor and | represent the image with estimated parametertisetimage with
reference parameter set, and the original uncorspdeisnage respectively. The
images are sequentially presented in the ordea)f(lf), (c) and (d). For each
paired images, the position of an image on eitledtr or right is pseudo-
randomised. Each iteration uses four combinatisessnents, a, b, ¢, and d. A

decision is made after viewing all the images.

The model parameters are calibrated within the ecdnof the coder as shown in

Figure 4.7.

Let |, (G) represents the complete set of distorted imagéwmdges) produced by the
PCDM with parameter seG={P.(i),P.(i)}. P.(i) and P.(i) represent, respectively,

the estimate and reference parameter sets of thentuteration,. Consequently,

the selection of the reference parameter set iseegpd as,

Ri+1)=1,04(R0)1(RE) (4.18)
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where f_() is the force choice subjective assessment oparatibhe selection of
P (i +1) is subjected to the assessment setup as depictadure 4.6. Note that all
the 9 distorted images at bitrates of 0.5, 0.3 arib bpp ofPe(i) are evaluated
against those oP (i) with their original uncompressed images taken dditianal
reference set for force choice consideration. fFammeter set (i.e., eith& (i) or
R(i)) is selected as the better parameter set if itescohe higher number of

subjective preferences (a value between 0 andh@) bEtter parameter set is then used

in the next iteration i(+1) as the reference parameter siét(i +1). The next
estimated parameter sBi(i +1) is determined by the step siz#,, which varies

from 0.02 to 0.0001 depending on whether it isppraximation pass or refinement
pass. The force choice procedure applies to elhtbdel parameterdd ,, where,

M, ={c,[v.LL].c, [v.1).c leri]c lebl] k., S, Pess Oc.a) (4.19)

where z1 {Q,g} andl ={12,...5}.

PCDM R
images Subjective Decision finish
> Assessmen > >
PCDM R
N\ A
Pe (l ) Parameter
estimation |
step sizeo, Next iteration

Figure 4.7 Calibration of parameters in the contd#xtoder. (The step siz#,

for each parameter varies according to the appratkam and refinement
passes.)

The calibration process is described in detaifobews,
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a.l.

a.2.

a.3.

a.4.

a.b.

a.6.

a.7.

The values of the parameter 9@t for all theY, Cb andCr are initialised to

the same values of the parameter set from Tan ¢1%jl The step sizeg;,

varies from 0.02 to 0.0001, is expressed as,

d(i)=- (4.20)

1
i
Calibration begins witlY component with step size incrementdy(SO) and
initial C,[Y,LL]=0.6.

Equation (4.18) is used to determine the paranssgreitherP, (i) or P,(i),
that scores the higher subjective preferences.pan@meter value is increased
by the same step size increment until the visualityof the images degrades
in three consecutive step size increments. Thanpeter set that gives the
best visual quality is chosen as the new paranseteso that it will be used for
calibration for the other model parameter as wellrathe next iteratiomnt+1.
When calibrating a model parameter, the calibraivays begins by setting
that parameter to its initial value while the otlparameters use their ‘best
values’ obtained from the previous calibration.

Similarly, calibrate aIICW[Y,I] with initial value of 0.6 and step size increment
of d(50) with the same procedure as in step a.3.

Follow the same procedures in a.3 and a.4, catibtae CW[Cb,LL] and
C, [Cb,1] with initial value of 0.6 and step size incremehid, (50) for colour
componentCh.

Follow the same procedures in a.3 and a.4, cédibifae CW[Cr,LL] and
C,[Cr,!] with initial value of 0.6 and step size incremehid, (50) for colour
componenCr. K., 9.,,K.01 90

Calibrate thes ., P.q,S .4, P, With step sizedR(SO) by following the step

in a.3 in the order ofs ., , p.g,S., s Py, @nd colour component,

ci {YCh,Cr}, in the order o, Cb, andCr. When calibrating a parameter, it

is set to its initial value while the other paraerstuse the new set of values.
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The initial values fors ., p.q,S.,, and p., are set at 4.0, 2.0, 1.0, and 2.0,

cg’
respectively.

a.8. Calibrate thek Keo O With step sized,(50) by following the step

cg’ gC’g ’

in a.3 in the order ofk K.o » 9.0 » and colour component,

c.g ] gcvg )
ci {YCh,Cr}. in the order off, Ch, andCr. When calibrating a parameter, it
Is set to its initial value while the other paraerstuse the new set of values.

The initial values fork k.o,andg., are setto 0.8, 0.3, 0.8, and 0.3,

cg’ Yegr Kegs
respectively.

a.9. With the new set of parameters, calibrate the aiameters by following steps
from a.3 to a.8 with the step size being refinednrement ofd,(1000) .
When calibrating a parameter, it is set to itsiahivalue while the other

parameters use the new set of values. The initiales for theC,[c,LL] and

Cw[c,l] are set to 0.6k

Nez

to 0.8, p., at 2.0,s ., at the maximum value of
new set value minus 4.0 and 0s4,, at the maximum value of new set value

minus 4.0 and 1.0g_, at the maximum value of new set value minus 3d an

0.3.
a.10. With the new set of parameters, the calibratiorea¢p from a.3 to a.9 with

final step size of,(1000Q and initial values of those used while calibrating

with step size of,(1000).

It is noted that the calibration of each model peter ends when the next three
successive step size increments do not yield aVisyprovement in image quality of
any of the test images for each step size setfing,(50), d,(1000 and d, (10000 .

Tables 4.2 and 4.3 are the final output of calibrat The SET-A parameters were
calibrated with initial values taken from Tan et [455]. The SET-A parameters were
used in the subjective assessment |, the reswhih is reported in section 4.6.1. In
the hope of improving the visual performance of toeler, the parameters were re-
calibrated by following the steps from a.3 to akl@ with SET-A parameters as the
initial values. The result is the set of paraneetksted in Table 4.3 as SET-B

parameters. The SET-B parameters were used irecivg assessment Il as
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described in section 4.6.2. It must be mentiohed these two sets of parameters are
just sub-optimals due to the sequential naturéefclibration process that is used to
search through a rather large 42-parameter spddeas not been found that either
parameter set yields better visual performance thamther. It is believed that many
sub-optimal parameter sets could give rise to coaipa visual performance for the
coder. The calibration process could produce mileltsets of sub-optimal parameters

that could give comparable visual performance.

CSF weights and Model Parameters
Y Cb Cr Y Cb Cr
C,eLL] 095 [103 | 128 |s ., [6925 | 1502 | 10.11
C,[c]] 115 [ 123 [ 135 |[p |2145 [2040 | 2215
CJc2] 133 |139 | 140 [g [035 0.501 | 0.35
C,[c3 141 | 134 | 135 |k 109 1.11 0.98
Cye4 |130 | 110 | 113 |g =~ [2505 |11.00 | 1.505
C,[c5] 1.02 | 0.65 | 0.85 p., |2153 |2170 | 2300
Keo 0.9876| 0.9800 0.9300| g~ | 0.37 0.85 0.402
Table 4.2 SET-A Sub-optimal CSF weights and modehmeters.
CSF weights and Model Parameters
Y Cb Cr Y Cb Cr
CueLt] |o95 [103 | 128 |s ., [6925 | 1502 | 10.11
C,[c]] 1.15 | 1.23 | 1.35 Poo |2145 | 2040 | 2215
C,lc2] 133 | 139 | 140 | g, |0.346 | 0490 | 0.338
C,[c3 141 | 134 | 135 | g 1.053 | 1.092 | 1.005
cg
C,lc4 130 | 110 | 113 S., |2505 | 11.00 | 1.505
CJcs] 102 |o065 |08 |p ~[2153 [2170 [ 2.300
k 0.999 | 1.002 | 0.963 0.383 | 0.864 | 0.392
c,Q gc,g

Table 4.3 SET-B Sub-optimal CSF weights and modehmeters.
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4.6 Experimental Results and Analysis

The performance evaluation of PCDM has been coedudgainst the two
benchmarks metric, the MSE and the CVIS [12] witlire JPEG2000 software
verification model version 8 (VM8) coder throughrde-choice comparative
subjective tests [153, 154]. The evaluation wasi@amout in two parts: assessments |
and Il. For each assessment part, source images eamh coded at four different
bitrates of 1.0, 0.5, 0.25 and 0.125 bpp by thriéerdnt coders: JPEG2000-PCDM,
JPEG2000-MSE and JPEG2000-CVIS. Note that the mgsiain,g, is set at 0.5 for
the CVIS criterion (see equation (4.2)). Pairedgesagenerated by the JPEG2000-
PCDM and benchmarks are arranged side by sidesgsament on a monitor as
depicted in Figure 4.8. The viewing distance is amal a half times the image height
[152]. The position of images displayed either be teft or the right, is pseudo-
randomised. Figure 4.9 illustrates the force-ch@ssessment process.

Figure 4.8 Arrangement of paired images on a Monito
Left/Right position of images are pseudo-randomised

S | image
equence > (PCDM) >
generator [ Force- R Data .
choice Collection
.| image Decision
“| (Benchmark) [ |

Figure 4.9 Pictorial view of force-choice comparatisubjective test.
The sequence generator is pseudo-randomised badsstloimage and

bitrate. For each subject, bothlysence number will not be re-used after it
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The subjective tests were conducted in a dark radim minimum illumination. The
sequences of paired images were randomised froorNL whereN was either 20 or

24 for assessment | and assessment Il, respectively

4.6.1 Subjective Assessment |

Assessment | involved 6 participants viewing 20rgzhiimages generated from 5
different source imagesgdldhill, sail, pepper lena tulip). The PCDM in this
instance uses SET-A model parameters from Table Kn2ges (cropped at 512x512
pixels) were viewed on a 21 inch, 0.24mm dot pifin Monitor with display
resolution set to 1280024 pixels. The images were cropped after comjmesa
such a way that the important image features waekided in the cropped images.
For example, regions such as the face, the hatis hand their immediate
neighbourhoods are important features ften&’, so they were included in the
cropped image of lénd’. For “tulip”, several tulip flowers were included. For
“goldhill”, the cropped image contained several adjacemlibgs and the backdrop.
These are important image contents which were dadun the cropped images. This
is the policy used for cropped images in all sulbjecassessments mentioned in
chapters 4 and 5 of this thesis. The raw scoréiseofest results are presented in Table
4.4,
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Image | Bitratel Raw Scores
(bpp) | Test 1 Test 2
A B A |C
goldhill | 1.0 0 6 4 | 2
0.5 5 1 5|1
0.25 4 2 6|0
0.125 | 5 1 5| 1
Sall 1.0 4 2 5|1
0.5 5 1 6 | 0
0.25 5 1 6 | 0
0.125 | 6 0 6| 0
pepper | 1.0 1 5 2 | 4
0.5 5 1 5|1
0.25 3 3 5|1
0.125 | 4 2 4 | 2
Lena 1.0 4 2 3| 3
0.5 4 2 3| 3
0.25 5 1 6|0
0.125 | 5 1 6 | 0
Tulip 1.0 2 4 4 | 2
0.5 4 2 5|1
0.25 2 4 6 | O
0.125 | 5 1 51 1

Table 4.4 Comparative Forced-Choice Subjective Results. A — JPEG2000-
PCDM coder, B — JPEG2000-MSE, C — JPEG2000-CVIé&st T for JPEG2000-
PCDM against JPEG2000-MSE. Test 2 for JPEG2000-P@Dainst JPEG2000-
CVIS.

Evaluation of the test results can be achieved dgegt-test [155, 156], and the
value can be computed by,

. = (4.21)

where d; is the difference between raw scores of JPEG2@DANP and the
benchmark coders, and{1,2,..., N is the test sequence number. The critidat 3
and 4 degrees of freedom (d.f.) at 95%, 99% an8% % onfidence Intervals (CI) is

120



tabulated in Table 4.5. The evaluation is basecamparing thet-value and the
critical t at certain degree of freedom (d.f.) with certamnfidence Interval (Cl). If
the difference in preference for two coders undeasnrement hdsvalue higher than
the criticalt, the Null hypothesis is rejected and the Alterratpothesis is accepted,

and vice versa.

d.f. to.ot t0.01 to.00
4 2.1318 3.7469 4.6041
3 2.3534 4.5407 5.8409

Table 4.5 Criticat [157] at 95% 1(.05), 99% €0.07) and 99.5%t( 005 confidence
interval

As there were only six participants for assessneiwill be necessary to combine
the data sets before pairetest analysis can be performed. This is to enthakthe
data set has reasonable number of sample pointmdaningful statistical analysis.
This compaction of data also leads to diminishechedisionality, i.e., it cannot
measure performance for each image at each bifrhgedata sets from raw scores of
Table 4.4 are grouped as follows,
The scores of bitrate 1.0, 0.5, 0.25 and 0.125anebined up for each of the
five source images. This is tabulated in Table 4.68he 5 paired sets
correspond to 4 degree of freedom (d.f.). This ym&lonly provides the
overall performance according to different sournage.
The scores of the 10 images are summed up forlaaeke (1.0, 0.5, 0.25 and
0.125 bpp), and the data set is tabulated in Tdble The 4 paired sets
correspond to 3 degree of freedom (d.f.). This ples overall performance

analysis of PCDM for different bitrates only.

121



P

Image | Scores

Test 1 Test 2

A B A C
goldhill | 14 10 20 4
sail 20 4 23 1
pepper | 13 11 16 8
lena 18 6 18 6
tulip 13 11 20 4

Table 4.6 Comparative Forced-Choice Subjective Restategorising according to
images. (By summing up the preferences of bitrade A.5, 0.25 and 0.125 for each
type of images. Note: A — JPEG2000-PCDM coder, BREG2000-MSE, C -

JPEG2000-CVIS. Test 1 for JPEG2000-PCDM againEiGEP00-MSE. Test 2 for

JPEG2000-PCDM against JPEG2000-CVIS.)

Q

Bitrate Scores
(bpp) Test 1 Test 2

A B A C
1.0 11 19 18 12
0.5 23 7 24 6
0.25 19 11 29 1
0.125 25 5 26 4

Table 4.7 Comparative Force-Choice Subjective Resiults, categorising according
to bitrates. (By summing up the preferences of &ges for each of the bitrates.
Note: A — JPEG2000-PCDM coder, B — JPEG2000-MSE JBEG2000-CVIS. Test
1 for JPEG2000-PCDM against JPEG2000-MSE. Test 2R&EG2000-PCDM
against JPEG2000-CVIS.)

Thet-values are computed based on the group datafs€ables 4.6 and 4.7. For the
pairedt-test, 5 and 4 paired sets correspond to 4 andgBee of freedom (d.f.),

respectively. Thévalues are tabulated in Table 4.8 for Tests 12and

The Null hypothesis, K of the paired-test here assumes that “The perceived image
quality of JPEG2000-PCDM is equivalent to or wotlsan the benchmarks”, while
the alternate hypothesisy Hs “the perceived image quality of the JPEG20QTDBRI

is better than the benchmarks.”
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Types of| P Q

Category

d.f. 4 3
t-value Test 1 2.5082 1.4536

Test 2 6.3454 3.9821

Table 4.8 The-values. (P - categorising according to image fiicable 4.6. Q -
categorising according to bitrates from Table 4.7)

a. Test1l
From Table 4.8, in (P), thevalue (2.5082) is higher than the critid¢afor 4 d.f. at

95% CI. Hence the Null Hypothesis dHs rejected. Therefore, the JPEG2000-
PCDM is perceived to be superior to the JPEG200EEM& all source images.
Based on evaluation of (Q), the quality performarafe JPEG2000-PCDM is
perceived to be statistically equivalent to or veattsan the JPEG2000-MSE according

to bitrates category, as th@alue (1.4536) is lower than the critical

b. Test 2
In (P), thet-value (6.3454) is higher than the crititdbr 4 d.f. at 95% CI. Hence the

Null Hypothesis (H) is rejected. Therefore, the JPEG2000-PCDM isgieed to be
superior to the JPEG2000-CVIS for all source imagBased on evaluation of (Q),
the quality performance of JPEG2000-PCDM is peexito be statistically better
than the JPEG2000-CVIS according to bitrates cajegis thet-value (3.9821) is
higher than the criticdlfor 3 d.f. at 95% CI.

From thet-test analysis for Tests 1 and 2, overall, JPEGZODM produces images
with better perceived quality improvement than #HREG2000 benchmarks for all
source images. However, it cannot be establishad 3PEG2000-PCDM produces
images better than those of JPEG2000-MSE for aktei categories from1.0 to 0.125
bpp. Further subjective assessment with more giaattits is needed to investigate
visual performance of the proposed coder for ldtreategories as in subjective

assessment Il.

123



4.6.2 Subjective Assessment |l

Subjective experiment Il involves 30 participantewing a total of 24 images
produced from 6 different imagegaldhill, sail, pepper lena tulip, paintedhousg
each coded at bitrate of 1.0, 0.5, 0.25 and 0.1b brhe PCDM based coder uses
SET-B sub-optimal CSF weights and model paramdters Table 4.3. The images
(cropped at 500x500 pixels) are assessed on a d® @olour Monitor (Model:
Diamond Digital DV997FD) with resolution adjustet! #2280 1024 pixels. Due to
unavailability of the 21 inch Sun Monitor at thigge, the 19 inch Monitor is used
instead. To avoid displaying the outer region & thnages on the slightly curving
region along the boundaries of the Monitor, thegesaare cropped at 500x500 pixels
instead of 512x 512 pixels as reported earlier.efisure the quality of the subjective
assessment, the participants were fully voluntary lead to be 18 years and above.
They came from a varied range of profession, sottiegy are not all expert viewers in
the field of image processing. It is known thatocwl perception differs between male
and female. Hence a good mix of male and femalecgzants were involved in the
subjective assessment. More importantly, all pigdicts are not known to have
colour deficiency. For those who did wear glassksy were asked to view the
images with their glasses on. Each participant prasented with the questionnaire
set out in Appendix C. Basically, the participartad to choose one of the
randomized images according to their preferenceseliminate the fatigue factor,
they were given a break before they were presemi¢ill the next sequence of
randomized images. The complete set of test imagesontained in the CD in

Appendix H. The raw scores of the test resultpaesented in Table 4.9.

Again, the same Null hypothesisy,Find Alternate hypothesisgHrom Assessment |
were assumed. Evaluation of the test results sedan (a) all the twenty images
covering all the four bitrates, and (b) per bitratgegory (involving six images per
bitrate). For the pairetitest, 24 and 6 paired sets correspond to 23 aehbees of
freedom (d.f.), respectively. Table 4.10 showsdhtcal t for 23 and 5 d.f. at 95%,

99% and 99.5% confidence intervals (Cl), respebtive
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Bitrate Raw scores
(bpp) | Images Test 1 Test 2
A B A C
Goldhill 18 |12 | 20 | 10
Sail 12 | 18 | 17 13
1.0 Pepper 18 12 17 13
Lena 18 12 12 18
Tulip 11 19 | 16 | 14
paintedhouse| 15| 15| 25/ 5
Goldhill 20 |10 | 26 | 4
Sail 17 | 13 | 26 | 4
0.5 Pepper 15 15 21 9
Lena 19 | 11 | 22| 8
Tulip 17 13 | 24 | 6
paintedhouse| 23| 7 25| 5
Goldhill 19 |11 | 27 | 3
Sall 19 | 11 | 27 | 3
0.25 Pepper 20 10 25 5
Lena 21 9 28 2
Tulip 23 | 7 27 | 3
paintedhouse| 27| 3 26| 4
Goldhill 25 | 5 27 | 3
Sail 26 | 4 29 1
0.125 Pepper 16 14 29 1
Lena 28 2 29 1
Tulip 23 | 7 28 | 2
paintedhouse| 27| 3 25| 5

Table 4.9 Comparative Forced-Choice Subjective Resu

(A — JPEG2000-PCDM coder, B JPEG2000-MSE, C — JRBGZVIS. Test 1 for
JPEG2000-PCDM against JPEG2000-MSE, Test 2 for 20BGGPCDM against
JPEG2000-CVIS)

d.f. to.05 to.01 t0.005
23 1.7139 2.4999 2.8073
5 2.0150 3.3649 4.0322

Table 4.10 Criticat at 95% {p.05), 99% (0.01) and 99.5%t( 005 confidence interval.

Thet-values are presented in Table 4.11. In the ALLakgt category, thevalues for
Tests 1 (5.1500) and 2 (9.6033) are higher tharctitieal t (2.8073) at 23 d.f. with
99.5% CI. Hence, the Null HypothesisgjHs rejected, and the JPEG2000-PCDM is

125



overall statistically superior to both the JPEG2008E and JPEG2000-CVIS coder
with 99.5% CI. At high bitrate (1.0 bpp) categaitye JPEG2000-PCDM is equivalent
to or worse than the JPEG2000-MSE and JPEG2000-Givit® the-values (0.2548
for Test 1, and 1.5936 for Test 2) are lower thHandriticalt (2.0150) at 95% CI. At
99.5% CI, from low (0.125 bpp) to intermediate &i@s (0.5 bpp), theirvalues are
higher than the critical except in the case against JPEG2000-MSE. Theréfar
perceived quality of the images generated by JPBGELDM from low to
intermediate bitrates are better than the two bmacks with 99.5% confidence
interval in all cases except against JPEG2000-MSB.a bpp. At 0.5 bpp, the
JPEG2000-PCDM is perceived to have better percequeadity improvement than the
JPEG2000-MSE with 95% CI.

Bitrate (bpp)| 0.125 0.25 0.5 1.0 ALL

d.f. 5 5 5 5 23
Computed t-value Test 1 5.1557 5.1657| 3.0502 0.25481500

Test 2 19.6214 27.6699 10.5097 1.59366033

Table 4.11 Computetdvalues based on different bitrate categoriesdbjective
assessment .

In short, the perceived quality improvements areolsws,
Overall, JPEG2000-PCDM produces images with beperceived image
quality than that of JPEG2000-MSE and JPEG2000-CVIS
When breaking down into individual bitrate categodPEG2000-PCDM
produces images with better perceived image quégn JPEG2000-MSE
and JPEG2000-CVIS from low (0.125 bpp) to interraeli(0.5 bpp) bitrate
with 99.5% CI except against JPEG2000-MSE at 0.p. bpAt 0.5 bpp,
JPEG2000-PCDM is better than JPEG2000-MSE with €3%
At high bitrate of 1.0 bpp, the force-choice subjex assessment does not
establish that JPEG2000-PCDM coder produces imaghsbetter perceived
image quality than both the JPEG2000-MSE and JPEGEY/IS.

At high bit rate of 1.0 bpp and above, it is difficfor the human viewers to identify

the quality differences of images produced by tagous coders: JPEG2000-PCDM,
JPEG2000-MSE and JPEG2000-CVIS.
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The objective measure, peak-signal-to-noise-r&®NR), for the JPEG2000-PCDM,
JPEG2000-MSE and JPEG2000-CVIS for the test imagattached in Appendix F.
It must be emphasised that images with higher P@NRn Appendix F do not
necessarily possess better perceived visual qual@y the contrary, some images
produced by JPEG2000-MSE and JPEG2000-CVIS withdnigSNR than those of
JPEG2000-PCDM were rated poorly than the JPEG2@IDNP during force-choice
subjective assessments. This re-affirms that tB&Mr PSNR as an objective quality
metric does not correlate well as far as perceueality by HVS is concerned, which
is as reported in Girod [143] and Wang et al. [144]

In Figure 4.10, better visual quality can be obsdraround the eyes t#naat 0.125

bpp for JPEG2000-PCDM coder. Ftena ‘clipped’ eye is observed for both
JPEG2000-MSE and JPEG2000-CVIS coders while JPEGRP@EDM coder retains
most of the details ofends eye. Shaper nose arealeha is observed for the
JPEG2000-PCDM coder than the two JPEG2000 benclsmd&téttern aliasing is less
obvious around the edges of lena’s hat for JPEGEIODM coder. In the case of
tulip in Figure 4.11, the image coded at 0.125 bpp byJ’REG2000-PCDM coder is
less blur with shaper details in the centreutip. Similarly, sail coded at 0.25 bpp by
the JPEG2000-PCDM coder is able to preserve numksails better than the other

coders as indicated in Figure 4.12.
Overall, the JPEG2000-MSE criterion somehow acladwetter visual performance
than the CVIS criterion. This is likely due to vaduveighting being used with the

MSE in the VM8 version of the JPEG2000.

A complete set of test images with various bitsaseprovided in the CD in Appendix
J.
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JPEG2000-PCDM coder (0.325 bpis) JPEG2000 with NGBE25 bpp)

PCDM coder produces better
perceived visual details around the
eyes oflgna

JPEG2000 with CVIS (0.125 bpp) Original Uncompesgsbnage

Figure 4.10 Cropped imagesleha

128



JPEG2000-PCDM co.dx\r (0.125 bpp) JPEG2000 with MISE25 bpp)

PCDM coder produces shaper details
around the centre of thelip.

JPEG2000 with CVIS (0.125 bpp) Original Uncompesgksbnage

Figure 4.11 Cropped imagestafip.
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JPEG2000-PCDM codgr (0.250pp) JPEG2000 with MBE5(bpp)

PCDM coder preserves number
details better than the other coders.

JPEG2000 with CVIS (0.25 bpp) Original Uncompreskeage

Figure 4.12 Cropped imagess#il.
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4.7 Chapter Summary

Applying R-D function ensures that picture quaigyptimised relative to bitrate. The
MSE is commonly used as the distortion measureweder, the standard MSE has
also been shown to be an inadequate measuremepstagived image quality metric
[143, 144]. 1t is true that while some aspects isfon modelling design have been
built into the VDM measure of the EBCOT, and alse €VIS of JPEG2000, a more
comprehensive vision models based distortion measam provide better estimation
of visual distortion and thus improve the perceiwadge quality of JPEG2000 coded

images.

The PCDM for colour image proposed in this chapterembedded within the
JPEG2000 [12, 158] core structure (Figure 4.1)tebd of using the MSE or the
CVIS [12] as distortion measure in the R-D optimtima function, the Perceptual
Colour Distortion Measure (PCDM) is employed. ThEDM considers contrast

sensitivity and the masking mechanism of the HVS.

The masking model considers intra-band and intentation masking for colour

images. The PCDM expands the monochromatic PIDMtimeed in chapter 3 to

colour spaceYCbC)). This involves substantial calibration of the mabgarameters.

While no best way has yet been devised for paramsetg all the 42 parameters, the
current approach to optimisation is carried outugedially in an iterative manner in
multiple passes. Subjective experiments conductiéld 30 participants have shown
superior perceived visual performance of the PC@Mhat of the MSE or CVIS

within the JPEG2000 coder.
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Chapter 5 Vision Model Based Perceptual Post
Filtering of JPEG2000 Coded Colour Images

5.1 Introduction

The coding paradigm of the JPEG2000 still imageirgpdtandard [12, 159-161]
partitions the discrete wavelet transform of imag® several codeblocks. Each
codeblock is independently bitplane encoded, s@rfrom the most significant
bitplane (MSBP) to the least significant bitplane&SBP) in multiple coding passes
(with the exception of the MSBP in only one codipgss) [12]. The distortion
reduction and the rate increase are collated absesuently used to determine what
coding passes to be included and/or excluded ifinraéembedded bitstream for each
codeblock through the Post Compression Rate-disto(PCRD) operation. For rate
and quality scalable mode, once decided, thosengopasses which are excluded
from the PCRD algorithm are simply discarded (iteincated) from the bitstreams.
Based on bitrate constraint, the bitplane encofliogn the MSBP to the LSBP and
the PCRD optimisation as the procedure to subselyudiscard coding passes of the
bitplanes, will likely result in more bits beingutrcated (discarded) at the lower
bitplanes than those at the higher bitplanes. whacation of lower bitplanes
provides an opportunity of restoring some of thet lgisual information through
bitplane recovery with a Perceptual Post FilteiRBF) algorithm. At the heart of the
PPF is a vision model that is used to perform tregptual recovery operation from
compressed images in the DWT domain. The PPF agseatithe decoding stage and
considers the contrast sensitivity, the intra-bandsking and inter-orientation
masking of the HVS.

The PPF assumes that there must be sufficient anedimformation in a compressed
image for it to operate effectively. For examplaages coded at very low bitrates
may not have sufficient information for bitplanecogery. PPF only operates on
“significant” coefficients in codeblocks. The visiomodel used here operates on

coded images as a reference set of data for bapkgovery.
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The Wavelet-based Image/Texture Coding Hybrid (WH)Gystem proposed by
Nadenau [162] works on the principle that most pesgive bitplane coders encode
bitplane starting from the MSB to the LSB, whereg lower bitplanes are truncated
to zeros under bitrate constraint. Implementechen3PEG2000 decoder, the WITCH
system injects stochastic noise generated basednaatel parameters from the
encoder. The noise essentially synthesises théekisire information at the decoder,
thereby improves the texture quality of the recartéd image. The stochastic noise
injection is limited to the lowest three bitplarsgérs of all subblocks of typical size
of 32 or 16 coefficients each (though other sizesakso applicable), and is applied
only to the two highest frequency resolutions. sTisi in contrast to the PPF based
decoder where the vision model is used to injetd tm recover perceived loss of
information over the bitplane layers starting froine lowest to the highest bitplane
subject to meeting some thresholds set at JNDdesa#r all resolution levels except
the isotropic (LL) band. The PPF algorithm is ooty limited to texture information
recovery alone, but also reconstruct perceived ddsdructural details such as edges

and lines.

5.2 Vision Modelling

The PPF utilises the vision model described in tdrap that considers the optical and
cortical properties of the HVS as discussed preshpin section 4.3. The contrast
sensitivity is applied as a set of uniform frequespecific sensitivity weights to

modulate the DWT coefficients. Inter-orientation skiag and intra-band spatial

masking are taken as ratio operators. Mathematiesicriptions are given in

equations (4.4), (4.6) to (4.12) of section 4.3.

5.3 Coding Adaptation

At the decoding stage, the perceptual post filge(PPF) algorithm (see Figure 5.1) is
applied through progressive bitplane recovery of DWoefficients for each
codeblock, starting from the least significant laihd then proceeds upwards to the

most significant bit.
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transform
coefficient —® CSF » Masking
X[c,l,q,m,,nl]

Condition me

Threshold

> Measure » Done

recovered CSF
transform
coefficient

Xb[c’l'q’ mI’nl]

A 4

Masking

Condition not me

4 Increase bitplane level

Figure 5.1 Block diagram of the structure of thecBptual Post Filtering at the
decoder. (The condition is met wh@R; , (c,l,q,m, N ) >T, (c,I,q) and

PR, (cl.g.m,n)<T,(cl,qg)is satisfied.)

For each decoded transform coefficierc,|,g,m,n |, and X,, [c,I.g,m ,n | being
the magnitude portion of the coefficienK[c,I,q,m,n,], and hereby we call

XM[C,|,C/,m| ,nl] as the magnitude coefficient, the recovered @tipl magnitude

coefficient, )A(b’M [c,I q,m ,n,], up to bit plane level, b, is expressed as,

Xom[Clg.m n]= X, [clgmn][(2°-1) (5.1)

wherebl 4 , and b={12,...B} is a set of bitplane level, anB is the most
significant bitplane of the magnitude coefficiext, [c,l q,m ,n,]. “I" denotes the bit-

wise logical OR operator. The variablesl, , are defined in section 4.3.3.

Similar to the CSF-weighted transform coefficiemw[c,l,q,rni,ni , In equation

(4.4), and the recovered CSF-weighted transfornfficamt is expressed as follows,

Xuolel.g.m,n]=C,lel]xX,[cl.g.m,n] (5.2)
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where Cw[c,l] is the CSF weight at frequency leveél,for colour componentg.
5(b[c,l q,m ,nl] is the recovered transform coefficient whose miagiei coefficient is

)A(byM [c,I,q,m, ,nl] which is computed in equation (5.1). Essentiathe bit plane

recovery is applied to the magnitude portion oftila@sform coefficient only.

The perceptual distortion recoverpR;, , of each recovered CSF weighted

coefficient for colour componentti {Y Cb,Cr}, is then defined as follows,

R,(cl.am.n)- Riclgm.n) (5.3)

DRr'b(Clliq’m’nl): ngZ

where R, is the masking response of CSF-weighted transfoomfficient at the
decoder, an®R,, is the masking response of the recovered CSF-teziginansform
coefficient at up to bitplane level b, amd {Q,g} with and representing the
inter-orientation and intra-band masking domaiespectively.g., are proportional

gain factors which are used to determine the xedasimount of contributions from
inter-orientation and intra-band masking domainsvatmls perceptual distortion

recovery. (Note that the relative amounts of themtributions are not equal.)

The equation for the responﬁg(c,l,q,m, ,nl) is taken directly from equation (4.6),

and R, (c,l,g,m,n ) is modified from equation (4.6), and is expresagd

Ez,b(C’I’qlrnl ’nl)
“1lehgm.n)+sg,

Rz,b(C'llqlrnl’nl): K, (5.4)

Currently,q, set at 21 Z(c,l,q,mI ,nl), is the inhibition function from equations (4.8)
and (4.10). The excitation functionEzvb(c,l,q,m,nl), due to estimated CSF-

weighted transform coefficient, are expressed Bewis, respectively,
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Eoolcligm,n)= (Xw,b[CJ ,g,m ,nl])p“Q (5.5)
E,o(cl.gm,n)= ()ZW’,D[C,I,q,mI ,n,])p” (5.6)

where p,, are the exponents for inter-orientation masking arira-band masking

domains withzl {Q,g}.

DR;, in equation (5.3) calculates the amount of peexigtistortion recovery when

the bits are added to the coefficient to form theowered coefficient as the bit plane
recovery proceeds from the lowest to the highestplaine level. As the bitplane
recovery proceeds from the lower bit plane to tighdr bitplane, care must be taken
to ensure that recovery process is not overdonker@tse, distortion may occur.
What mechanism is used by the HVS to determinbafgdrocess is overdone is also
not clear at this stage. Hence, a hypotheticatgmual percentage response,

PR,,(c.l,g.m,n ), is introduced. ThéR,,(c,l,g,m,n ) calculates the amount of

hypothetical neuron energy response ratio thaltéseal as a result of adding bits to
coefficients along the bitplane layers. The amoalbwed for the percentage
response cannot be too substantial as over cameatiay occur. The percentage

responsePR (c,l ,q,m,n, ) is defined as,

(cl.g.m,n)+R,(cl.g.m.n)
Ro,b(CJ,q,m ’n|)+ Rg,b(CJ,q,m ’nl)

PRp,b(chq’mI’nl): (5.7)

where R, (c,l,g,m,n ) andR,(c,l,g,m,n ) are the inter-orientation and intra-band

masking responses of CSF-weighted DWT coefficieegpectively. Similarly,

Ros(cl,g.m,n) and R ,(cl,g.m,n) are the inter-orientation and intra-band

masking responses of the recovered CSF-weighted DaEficient, respectively.

For each coefficient, the progressive bitplane vecpis achieved when the minimum

bitplane level,b, is reached for that coefficient such that the dion

min !
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DR, (cl.g.m,n)>T,(cl.g) and PR, (cl.g,m,n)<T,(clg) is satisfied.

Consequently, the final DWT coefficient is as follaw

)A(bmm[c,l,q,m,nl] Jif Jistrueand1£b , £B

X[c,l,g.m,n] else (.8)

>_([C’|'q,m|’n|]:

whereJ ={DR, (c.l.g.m n)>T,(cl,g) and PR, (cl.g.m n)<T,(clq)}

The perceptual distortion recovery threshof,(c,l,g) , and the perceptual
percentage thresholdl,'p(c,l,q), are pairs of predetermined thresholds for the
perceptual distortion recover)DRT’b(c,I,q,m,n,), and the perceptual percentage
response,PRp’b(c,I,q,m,,n,), respectively, at resolution levél={ 12345} and
orientation g ={LH,HL,HH} . T,(c,!,g) and Tp(c,l,q) are obtained through
calibration as mentioned in section 5.4. EquatmB)(ensures the bitplane recovery
is achieved up to bit plane levéki, such that thédR;, (c,I ,g,m ,n,) is just above

the threshodr, (c,1,g) but below the condition where over-correctiondaahed (i.e.,

PR,, (c.l,g.m.n) is below the thresholdl,(c,l,q)). In practice,T,(c.l,q) is

pbmin
very small andomin will usually be reached. Should bit plane recovamyve beyond

the highest bitpland3, no recovery is allowed, and the transform coedfit remains
unaltered. If at any time whereR, (c.l.g.m )3 Tp(c,l,q) is reached before
DR, (c.l.g.m n)>T,(c.l.g) , no recovery is allowed, and the transform

coefficient remains unaltered.

The progressive bitplane estimation is applied tb tehnsform coefficients,
X[c,l .q,m ,nl], at the decoder spanning all frequencies and tatien bands except

the isotropic low pass band (LL) which is too sewsitto be included for bitplane

recovery. The inverse DWT is then applied with theowered transform coefficients
and the unaffected coefficients at the isotropiw Ipass band to reconstruct the
compressed image.
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Note that the decoded sample values prior to bihglrecovery were obtained using
mid-point dequantisation rule. During implementatibuffers are created to keep the
samples after dequantisation, so that sufficiemipda coefficients were obtained

before they were bit plane recovered and thenvatbby inverse transform.

5.4 Model Parameterisation and Thresholding

The PPF utilizes the PCDM parameters in Tables 4oiveier, the set of thresholds

for TD(c,I,q) and Tp(c,l,q) requires some calibration to recover perceptually

relevant information. These thresholds were sethatJust Noticeable Difference
(JND) levels.

The calibration process involved a total of ninet iesages generated from three
different source imageddrbara2 bikes building2), each at three different bitrates,
namely, 1.0, 0.5 and 0.25 bpp. Test images wepdagisd on a 21-inch, 0.25 mm dot
pitch Sun Monitor with a display resolution setl280 1024 pixels. The test images
are attached in Figures B2, B4, and B5 of appeBdi®uring calibration, the images

were displayed on the Monitor as illustrated inure&5.2 below.

The calibration starts with thécolour component by adjusting the vaIueTg(c,I ,q)
andT,(c,l,g) sequentially while resetting the valuesTf(c,l,g) andT,(c,!,q) of

Cr andCb colour components to zero.
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Figure 5.2 Calibration of parameters in the contéxdoder. (step sizeg, is 0.0001
for T, (c,!,q), and varies from 0.05 to 0.01 fd/(c,1,q).)

Let Id(c) represents the complete set of images (nine imayeduced by the PPF
with threshold set,c ={T,(i).T,(i)} . T.(i) and T, (i) represent the estimate and

reference threshold sets of the current iteratipmespectively. Consequently, the

selection of the reference threshold set is expteas,
Tg(l +1): fs(ld(Te(I))’ Id(Tg(I))) (58)

where f_() is the force choice subjective assessment oparatibhe selection of
Tg(i +1) is subjected to the similar assessment setup [@stee in Figure 4.6. Note
that all the nine distorted images at bitrate &, 0.5, and 0.25 bpp dTe(i) were
evaluated against those ]SJ(i) with their original uncompressed images taken as
additional reference set for force-choice test. Pammeter set (i.e., eith@(i) or
T,(i)) is selected as the better threshold set if irescdhe higher number of

subjective preferences (a value between 0 and QN& level. The subjective

preferred threshold set is then used in the nestation (i +1) as the reference

threshold set',l'g(i +1). The next estimated threshold 3gfi +1) is determined by
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the step sizeg, which is set as 0.0001 fd, (c,!,g), and varies from 0.05 to 0.01 for
T, (c.l.q).

The calibration process is described in detaillsws,

a.l. All the values ofT, are initialized O while all the values df, are first
initialized to 1. The step size increment,, is set to 0.0001. Calibration
starts withT, of Y component.

a.2. Start with levell = 1 the T, for the three orientationg ={LH ,HL,HH} is
increased by the step sizg = 0.0001L With three orientations, there will be

seven possible sets ©f as follows,

T, set HH HL LH

Setl No change No change Increased byd),
Set 2 No change Increased by, No change
Set 3 No change Increased by, Increased by,
Set4 Increased bya), No change No change
Set5 Increased bya), No change Increased byaj,
Set 6 Increased byd, Increased by, No change
Set 7 Increased bya), Increased by, Increased by,

For each set of th&,, equation (5.8) is applied to determine the patame

set, eitherTg(i) or T,(i), that has the higher preference score at JND lawel

force-choice test. In the event that JIND level hatsbeen observed, thg is
increased by step siz&, =0.0001 starting from Sets 1 to 7 again. The
increment process of thE, is repeated until the JND level is reached. The
highest preference score of the seven sefs, ait IND level will be selected
as the new parameter set for the next iteratidn In the event of more than
two sets ofT, having the highest preference score at JND lahelT, set

with the highest index is chosen (e.g. Set 7 issehaf Set 6 and Set 7 are

having the same highest preference score).
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a.3. With the newT, set determined in step a.2, calibratefor levels 2,3,4, and
5 in that order with step size incremen = 0.0001 by following the step in
a.2.

a.4. Calibrate theT, for the Cb component with step sizeg, =0.0001 while
setting all theT, values ofY component to half their values so as to give

allowance for calibrating thresholds for other esleomponents. Calibrate

T, for Cb component by following steps a.2 and a.3.
a.5. Calibrate theT, for the Cr component with step sizg, = 0.0001 while
setting all theT, values ofCb component to half their values so as to give

allowance for calibrating thresholds for other esleomponents. Calibrate

T, for Cr component by following steps a.2 and a.3.

a.6. Next set theT, values ofCr component to half their values. Calibrdteof Y
component with step sizé, =0. 05

a.7. Start with levell = 1 the T, for the three orientationg ={LH ,HL,HH} is
decreased by the step sizg=0. .O0BVith three orientations, there will be

seven possible sets ®f as follows,

T,set |HH HL LH

Set 1 No change No change Decreased by,
Set 2 No change Decreased by, No change

Set 3 No change Decreased by, Decreased by,
Set4 Decreased by, No change No change
Set5 Decreased byy, No change Decreased by,
Set 6 Decreased by, Decreased by, No change

Set 7 Decreased by, Decreased by, Decreased by,

For each set of th&,, equation (5.8) is applied to determine the patanset,
either T, (i) or T,(i) , that has the higher preference score at JND leve

force-choice test. In the event that JND level hatsbeen observed, tﬁl?% is
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increased by step sizé, =0. @8farting from Sets 1 to 7 again. The
increment process of thE, is repeated until the JND level is reached. The
highest preference score of the seven seff, @t JND level will be selected

as the new parameter set for the next iteratt@n In the event that more than

two sets ofT, having the highest preference score at JND léveket with

the highest index is chosen (e.g. Set 7 is chdsseti6 and set 7 are having
the same highest preference score).

a.8. With the newT  set determined in step a.2, calibraiefor levels 2,3,4, and 5
in that order with step size decrementdjf=0. IBbfollowing the step in

a.r.
a.9. Calibrate ther, for the Cb component with step sizé, =0. QG&hile setting

all of the T, values ofY component to half the sum of 1.0 and their

previously calibrated values. Calibrate Tp €@ component by following
steps a.7 and a.8.
a.10.Calibrate theT, for the Cr component with step siz&, =0. Qghile setting

all theT values ofCb component to half sum of 1.0 and their previously
calibrated values. Calibratg, for Cr component by following steps a.7 and

a.8.

a.11.Next set theT values ofCr component to half the sum of 1.0 and their

previously calibrated values.

a.12.Finally, beginning withT, of Y component at levelFl, recalibrate thél,
andT, iteratively from steps a.2 to a.12 with incremehf, by step size of
d, =0.0001 and decrement of , by step size o/, =0. Olrespectively.

The manner in which th&, is set to half their previously calibrated values
andT, is set to half the sum of 1.0 and its previousdyibcated value from

iterationi to i+1 will ensure convergence of their threshold valaesIND

level.
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When calibrating the value of eadh (c,l,q) or Tp(c,l,q) values, the step size

increment is applied to that parameter only urté visual difference of the image

quality is just recognized. This is to ensure thatJND level is reached.

Once the thresholds &, (c,1,q) andT, (c.I,g) of Y colour component are calibrated,

their values are then set to half their values fgefbe calibration proceeds to the next

T,(c,l,q) or T, (c.I,g) parameter. The reason for setting thresholds,¢¢,!,g) and
T, (c,I,C/) of Y colour component to half their values is to préwarer correction of

the threshold values as observed in the actudiresibn experiment. It is found that
simply reversing to the earlier threshold set Yocolour component did not allow
proper calibration of threshold levels for bdiib and Cr colour components. The

calibration then proceeds sequentially by calibgi, (c,1,g) andT,(c,1,g) for all

the colour components according to the same proeeaY component.

The values of thresholds are presented in Tablesasd 5.2. Note that the set of
thresholds obtained are at most sub-optimal ledeésto the fact that only one expert
viewer was involved and only small sample of imagese used in the calibration
process. Hence, while the perceived visual qualithost images may be improved,
It is possible that visual quality of some otherages may be degraded by the
distortion introduced in bit plane recovery procasshe proposed PPF. Therefore,

care must be taken to avoid over calibratingTpéc,|,q) andT,(c,1,q) levels above

the JND levels, as higher values may introduceimgpgrtifacts.
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Colour | Orientation, Frequency Levell
component q 1 2 3 4 5
LH 0.0004 0.0006 0.0008 0.0010 0.0015
Y HL 0.0004 0.0006 0.0008 0.0010 0.0015
HH 0.0004 0.0006 0.0008 0.0012 0.0015
Cb LH,HL,HH | 0.0002 0.0004 0.0006 0.0008 0.0015
Cr LH,HL,HH | 0.0002 0.0004 0.0006 0.0008 0.0015

Table 5.1 Predetermined threshold valuesTip(c,|,g).

Colour | Orientation, Frequency Levell

component q 1 2 3 4 5
Y LH,HL,HH 0.90 0.85 0.75 0.5 0.35
Cb LH,HL,HH 0.90 0.85 0.75 0.5 0.35
Cr LH,HL,HH 0.95 0.90 0.85 0.80 0.75

Table 5.2 Predetermined threshold valuesTigc,|,g).

5.5 Experiment and Results

The PPF algorithm has been implemented in two ways:

PPF algorithm at decoder for recovering images geee by JPEG2000 with
PCDM coder (as implemented in Chapter 4), is helalpwn as JPEG2000-
PCDM-PPF,

PPF algorithm at decoder for recovering images g¢ee by JPEG2000 with

MSE or CVIS distortion criterion, is hereby knowa 3PEG2000-MSE-PPF
and JPEG2000-CVIS-PPF, respectively.

For both implementations, Comparative force-chaigbjective tests [153, 154] were
conducted on a total of 30 paired images generabed 10 different source images
coded at three different bitrates 1.0, 0.5, an® 0. The images were assessed on a
21-inch, 0.25 mm dot pitch Sun Monitor with a deplresolution of 12801024
pixels by a group of voluntary viewers. The paimd@ges were left and right pseudo

randomised and their sequencing of paired imageasbered from 1 to 30, are also
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randomised. The presentation of paired imagesthedorder of presentation are
similar to that depicted in Figure 4.8 but with tR&F algorithm, instead of the
JPEG2000-PCDM. The viewing distance is set atamd a half times the height of
the images [152] which were cropped to 5822 pixels. The force-choice tests were

conducted in a room with low illumination.

5.5.1 Implementation |

Implementation |: PPF algorithm with separate model parameterisa®&MP) at
decoder for recovering images generated by EBC@&KAE®00 with PCDM coder,
also denoted as JPEG2000-PCDM-PPF.

The 10 imagesgoldhill, sail, pepper lena tulip, zelda bikes building2, lighthouse2
and streanm) were first encoded with the JPEG2000 with PCDMnraplemented in
chapter 4 at three different bitrates, i.e., 1.(6 @nd 0.25 bpp. The compressed
bitstreams were then reconstructed with the PPrighgn with SMP at the
JPEG2000 decoder. Separate model parameterisati®RF refers to the use of three
different sets of model parameter values (as showrable 4.2) forY, Cb, andCr,
respectively. The subjective assessment involliesetseparate rounds of testing,
each with 30 pairs of images. There were nindgpaints for the first and the second
rounds and eight participants for the third rouf@. ensure the quality of the
subjective assessment, the participants were fulyntary and had to be 18 years
and above. There was also a good mix of male anuhlée participants. Each
participant was presented with the questionnairesein Appendix D. Basically, the
participants had to choose one of the randomizedgé® according to their
preferences. Fifteen minutes interval (or days $ome participants) was given
between each round of test so as to minimise vig\Watigue. The complete set of test

images is contained in the CD in Appendix J.
Rounds 1, 2, and 3 were designed to assess tharparfce of the images generated

by JPEG2000-PCDM-PPF against those generated byRBE}52000-PCDM as in
chapter 4 without PPF algorithm, (b) JPEG2000-M8kd (c) JPEG2000-CVIS,
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respectively. With the CVIS criterion of JPEG20@0e images were coded with

masking gaing=0.5. The results of the subjective test are tdbdlan Table 5.3.

Image Bitrate | Raw Scores
(bpp) Round 1 Round 2 Round 3
A B A C A D
goldhill 1.0 5 4 7 2 7 1
0.5 6 3 7 2 8 0
0.25 5 4 8 1 6 2
Sall 1.0 5 4 8 1 7 1
0.5 6 3 6 3 6 2
0.25 9 0 6 3 5 3
pepper 1 4 5 5 4 5 3
0.5 7 2 7 2 5 3
0.25 6 3 5 4 7 1
Lena 1.0 6 3 6 3 3 5
0.5 7 2 6 3 8 0
0.25 4 5 8 1 7 1
tulip 1.0 7 2 6 3 6 2
0.5 2 7 8 1 7 1
0.25 6 3 5 4 4 4
zelda 1.0 3 6 4 5 4 4
0.5 4 5 6 3 6 2
0.25 3 6 3 6 5 3
bikes 1.0 4 5 7 2 8 0
0.5 6 3 6 3 7 1
0.25 8 1 7 2 8 0
building2 1.0 8 1 7 2 6 2
0.5 9 0 6 3 8 0
0.25 9 0 6 3 6 2
lighthouse?2| 1.0 3 6 6 3 8 0
0.5 8 1 4 5 3 5
0.25 9 0 7 2 7 1
stream 1.0 6 3 9 0 7 1
0.5 7 2 8 1 6 2
0.25 7 2 6 3 2 6

Table 5.3: Comparative Force-Choice Subjective Resiults
(A — preference for JPEG2000-PCDM-PPF, B — prefszdar JPEG2000-PCDM, C
— preference for JPEG2000-MSE, D — preferenceR&G2000-CVIS)
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The paired-test [155] is used to evaluate the test resuitse criticalt for 9 d.f. and 2
d.f. at 95%, 99%, and 99.5% confidence levels &fd)tabulated in Table 5.4.

d.f. to.0 t0.01 to.00
9 1.8331 2.8214 3.2498
2 2.9200 6.9646 9.9248

Table 5.4 Criticat at 95% {p.05), 99% (0.01) and 99.5%t§ 009 confidence intervals.

As there were only nine participants for roundshd 2 tests and eight participants for
the round 3 test, it will be necessary to combime data sets before pairédest
analysis is performed. This is to ensure thatdh& set has reasonable number of
sample points for meaningful statistical analysSitie data sets from the raw scores of
Table 5.3 are grouped as follows:
The scores of bitrate 1.0, 0.5 and 0.25 are cordbioe each type of images
(i.e., categorising according to different images)d the data set is tabulated
in Table 5.5. The 10 paired sets correspond te@ea¢ of freedom (d.f.). This
analysis only provides the overall performance etiog to different source
images.
The scores of the 10 images are combined for eiactieb(1.0, 0.5, 0.25 bpp),
(i.e., categorising according to different bitrdfemnd tabulated in Table 5.6.
The three paired sets correspond to 2 degree efidra (d.f.). This provides

overall performance analysis of the PPF accordirdjfterent bitrates only.
Thet-values are computed based on the grouped datafs&€tble 5.5 and 5.6. For

the paired-test, 10 and 3 paired sets correspond to 9 arebeds of freedom (d.f.),
respectively. Theévalues are tabulated in Table 5.7 for all rounests.
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Image P

Overall Scores

Round 1 Round 2 Round 3

A B A C A D
Goldhill 16 11 22 5 21 3
Sail 20 7 20 7 18 6
Pepper 17 10 17 10 17 7
Lena 17 10 20 7 18 6
Tulip 15 12 19 8 17 7
Zelda 10 17 13 14 15 9
Bikes 18 9 20 7 23 1
building2 | 26 1 19 8 20 4
lighthouse2 20 7 17 10 18 6
Stream 20 7 23 4 15 9

Table 5.5: Comparative Force-Choice Subjective Resiults, categorized according
to images. (By summing up the preferences of leittad, 0.5 and 0.25 for each type
of images. Note: A — preference for JPEG2000-PCBR#, B — preference for
JPEG2000-PCDM, C - preference for JPEG2000-MSE pieference for
JPEG2000-CVIS)

Bitrate Q

(bpp) | Overall Preference
Round 1 Round 2 Round 3
A B A C A D

1.0 51 39 65 25 61 19
0.5 62 28 64 26 64 16
0.25 66 24 61 29 57 23

Table 5.6: Comparative Force-Choice Subjective Resiults, categorized according
to bitrates. (By summing up the preferences ofmMi@ges for each of the bitrates.
Note: A — preference for JPEG2000-PCDM-PPF, B fepemce for JPEG2000-
PCDM, C — preference for JPEG2000-MSE, D — prefeedar JPEG2000-CVIS)

Evaluation of the test results is based on (athall1l0 images covering all the bitrates
combined, and (b) all the three bitrates (1.0, @8 0.25 bpp) covering all image
types combined. For the pairédest, 10 and 3 paired sets correspond to 9 and 2
degrees of freedom (d.f.), respectively. Tivalues are tabulated in Table 5.7.
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Types of P Q

Category

d.f. 9 2
Computed t-value| Round 1 3.353¢9 3.270%

Round 2 6.1492 | 15.2542

Round 3 7.7500 | 10.1927

Table 5.7 The-values. (P) — categorising according to image, maed from Table
5.5. (Q) — categorising according to bitrates, coteg from Table 5.6. d.f. denotes
degree of freedom.

a. Evaluation of Round 1 Test Result

Let the Null Hypothesis (5} be “the perceived image quality of JPEG2000-PCDM-
PPF is equivalent to or worse than the JPEG2000NWCIand the Alternate
Hypothesis (H) is “the image quality of JPEG2000-PCDM-PPF istdrethan the
JPEG2000-PCDM.”

From Table 5.7, in (P), thevalue (3.3539) is higher than the criti¢g8.2498) for 9
d.f. at 99.5% CIl. Hence the Null HypothesisgXHks rejected. Therefore, when
categorising according to different source images perceived image quality
produced by JPEG2000-PCDM-PPF based coder is bgeatiktically superior to the
JPEG2000-PCDM based coder at 99.5% CI. For (Q)goaising according to
bitrates, the perceived quality performance of JPEIB-PCDM-PPF is statistically
better than the JPEG2000-PCDM for 2 d.f. at 95%Cihet-value (3.2705) is higher
than the criticat (2.9200).

b. Evaluation of Round 2 Test Result
The Null Hypothesis (k) is assumed to be “the perceived image quality of

JPEG2000-PCDM-PPF is equivalent to or worse thenJ®PEG2000-MSE”, and the
Alternate Hypothesis (H is “the perceived image quality of JPEG2000-PCBRIF
is better than the JPEG2000-MSE.”

In (P), thet-value (6.1492) is higher than the crititgB.2498) for 9 d.f. at 99.5% CI.

Hence the Null Hypothesis (Mis rejected. Therefore, when categorising acogytd

different source images, the perceived qualitygrentince of JPEG2000-PCDM-PPF
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coder is overall statistically superior to the J2BG0-MSE at 99.5% CI. In (Q),
when categorising according to bitrates, the peezkiquality performance of
JPEG2000-PCDM-PPF is statistically better than IREG2000-MSE for 2 d.f. at
99.5% Cl as théevalue (15.2542) is higher than the critic§9.9248).

c. Evaluation of Round 3 Test Result

The Null Hypothesis (b) is assumed to be “the perceived image quality of
JPEG2000-PCDM-PPF is equivalent to or worse thanJBEG2000-CVIS”, and the
Alternate Hypothesis (bl is “the perceived image quality of JPEG2000-PCBKNIF

is better than the JPEG2000-CVIS.”

In (P), thet-value (7.7500) is higher than the crititgB.2498) for 9 d.f. at 99.5% CI.

Hence the Null Hypothesis ¢His rejected. Therefore, when categorising adogrd

to different source images, the perceived quald@sfggmance of JPEG2000-PCDM-
PPF coder is overall statistically superior to dfEG2000-CVIS with 99.5% CI. For
(Q), when categoring according to different bitsatethe perceived quality

performance of PCDM-PPF is statistically bettemttize JPEG2000-MSE for 2 d.f. at
99.5% Cl as thévalue (10.1927) is higher than the critic§9.9248).

5.5.2 Implementation Il

Implementation 1l : PPF algorithm with (a) common model parametansatCMP)
and (b) separate model parameterisation (SMP) ebdde for recovering images
generated by JPEG2000 with MSE or CVIS distortiotegon.

While SMP uses separate sets of parameter valuesy,fcCb, and Cr colour
components, CMP uses the same set of parameteesvédu all the three colour
components. In CMP, The sets of parameter valueSh andCr colour components

are exactly those used in tfeeomponent.

The JPEG2000-MSE encoded images (geldhill, sail, pepper lena andtulip) and
JPEG2000-CVIS encoded images (izelda bikes building2, lighthouse2 strean)
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were reconstructed by the JPEG2000-PPF decoderUddgies of these JPEG2000-
PPF decoded images were evaluated against the srgagerated by JPEG2000-MSE
or JPEG2000-CVIS, respectively. In the case of &¥fiterion, masking gaimg=0.5,
was used. Three different subjective tests asridbestbelow were conducted with 5
participants, and their results are tabulated il &.8. Similar to the other subjective
assessments, to ensure the quality of the subgeaisessment, the participants were
fully voluntary and had to be 18 years and abover& was a good mix of male and
female participants. Each participant was presentiéid the questionnaire set out in
Appendix E. Basically, the participants had to at®one of the randomized images
according to their preferences. To eliminate thige factor, they were given a break
before they were presented with the next sequericeralomized images. The
complete set of test images is contained in tharCBppendix H.

Test #1

Force-choice Comparative subjective test [153, 1843 conducted between images
reconstructed by JPEG2000-PPF algorithm with CMPdehoagainst images
reconstructed by JPEG2000-PPF with SMP model. pdrécipants were asked to
evaluate if the paired images were of similar dqualilf they were not of similar
quality, the participants had to make a preferrediae of the two. (Please refer to

Part 1 of the questionnaire in Appendix E).

Test #2

Force-choice Comparative force-choice subjectia [&53, 154] was conducted to
evaluate the quality of images between those reéxaaied by JPEG2000-PPF with
CMP model against those generated by JPEG2000-MSEIP&G2000-CVIS,
respectively. The participants had to choose wimtage is of better quality when
they were presented with the left-right randomipanled images. (Please refer to Part

2 of the questionnaire in Appendix E).

Test #3
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In the third test, paired images between thosenstoacted by the JPEG2000-PPF
with  SMP model and those generated by JPEG2000-MSEIPEG2000-CVIS,

respectively, were presented to the participanihe participants were asked to
choose which image is of better quality. (Pleaserr® Part 3 of the questionnaire in

Appendix E).

Image Bitrate | Score (%)
(bpp) Test 1 Test 2 Test 3
A

>
@]
(o8]
@]

Goldhill 1.0
0.5
0.25
Sail 1.0
0.5
0.25
Peppe 1.0
0.5
0.25
Lena 1.0
0.5
0.25
Tulip 1.0
0.5
0.25
Zelda 1.0
0.5
0.25
Bikes 1.0
0.5
0.25
building2 1.0
0.5
0.25
lighthouse2 | 1.0
0.5
0.25
Stream 1.0
0.5
0.25 3
Table 5.8: Comparative Subjective Test Result.
(A — preference for JPEG2000-PPF with SMP model,Beference for JPEG2000-
PPF with CMP model, C — preference for JPEG2000,dxeference for neither A nor
B. Note that goldhill, sail, pepper, lena, andguwere encoded by JPEG2000 with
MSE, while zelda, bikes, buildings, lighthouse2d atream were encoded by
JPEG2000 with CVIS)

Awlw/ A n|aN A wwwww ol s S Awww] Z
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ghlWwwwon o~ pOawoaOgbdabOw ARl lddOwWlol|Oo1|01
O ININININ OO IFRIOIN|IO|ICO|IRP IRIFPIOINIFPIPINPIFRIFLRIOINIOIO|IO
g NDNOOGRMN RO~ AIN DDA IDDNDOINOD
ORPIOIRIWWOIOIRPIWRFRINIOIOIO|RIOCIOIR|IPIPINPFPIRFRPFPOIRIO|IRL

152



Similar to the argument made in implementatiorslffeere were only six participants
involved in the subjective test for implementatibngrouped data sets for paired
test is statistically more meaningful. The groupmkda sets derived from the raw
scores of Table 5.3 are grouped as follows:
The scores of bitrate 1.0, 0.5 and 0.25 are comdbfoe each of the source
images, and the data set is tabulated in Table Btf#s analysis only provides
the overall performance, categorised accordingéaifferent source image.
The scores of the 10 images are combined for eiactieb(1.0, 0.5, 0.25 bpp),
and the data set is tabulated in Table 5.10. piusides overall performance
analysis of the PPF, categorized according to miffebitrates.

Thet-values are computed based on the group data Jetbdés 5.9 and 5.10. For the
pairedt-test, 10 and 3 paired sets correspond to 9 andgeeds of freedom (d.f.),
respectively. Thévalues are tabulated in Table 5.11 for all Tedis 3.

Image P

Overall Preference

Test 1 Test 2 Test 3

A B N A C B C
goldhill 3 3 9 15 0 13 2
sall 2 2 11 12 3 13 2
pepper 2 1 12 11 4 11 4
lena 1 7 7 11 4 12 3
tulip 1 3 11 13 2 14 1
zelda 4 2 9 14 1 15 0
bikes 5 0 10 12 3 9 6
building2 3 2 10 14 1 14 1
lighthouse?2 | 4 0 11 9 6 8 7
stream 2 3 10 12 3 14 1

Table 5.9: Comparative Subjective Test Result,gmaieed according to different
source images. (By summing up the preference ddtbitL.0, 0.5 and 0.25 for each
type of images. Note: A — preference for JPEG2PBE with SMP model, B —
preference for JPEG2000-PPF with CMP model, C fepeace for JPEG2000, N —
preference for neither A nor B. Note that goldtshil, pepper, lena, and tulip were
encoded by JPEG2000 with MSE, while zelda, bikegdimgs, lighthouse2, and
stream were encoded by JPEG2000 with CVIS.)
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Bitrate Q
(bpp) | Overall Preference
Round 1 Round 2 Round 3
A B N A C B C
1.0 10 9 31 38 12 41 9
0.5 8 8 34 44 6 42 8
0.25 9 6 35 41 9 40 10

Table 5.10: Comparative Force-Choice Subjectiva Results, categorized according
to bitrates. (By summing up the preferences ofi@iges for each of the bitrates.
Note: A — preference for JPEG2000-PPF with SMRehdB — preference for
JPEG2000-PPF with CMP model, C — preference foGIRIDO0, N — preference for
neither A nor B. Note that goldhill, sail, pepplena, and tulip were encoded by
JPEG2000 with MSE, while zelda, bikes, buildingghthouse2, and stream were
encoded by JPEG2000 with CVIS.)

Types of| P Q

Category

d.f. 9 2
Computed t-value | Test1 0.4082 1.5119

Test 2 8.5903 | 9.2376

Test 3 6.5658 27.7128

Table 5.11 Thed-values. (P) — categorising according to sourcegasa computed
from Table 5.9.
(Q) — categorising according to bitrates, compditech Table 5.10.

a. Evaluation of Test 1 Result
Let the Null Hypothesis (k) be “the perceived image quality of JPEG2000-PRR w

SMP is equivalent to or worse than the JPEG2000\RBFCMP”, and the Alternate
Hypothesis (H) be “the perceived image quality of JPEG2000-PRth \BMP is
better than PPF with CMP.”

From Table 5.11, in (P), thevalue (0.4082) is lower than the critidg]1.8331) for 9
d.f.. Hence the Null Hypothesis gHcannot be rejected at 95% CI. Therefore, when
categorising according to source images, the perdeiquality performance of
JPEG2000-PPF with SMP is overall statistically gglént to or worse than the
JPEG2000-PPF with CMP. Based on evaluation of WDgn categorising according
to bitrates, the-value (1.5119) is lower than the critida{2.9200) for 2 d.f.. Hence
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the Null Hypothesis (b cannot be rejected at 95% CI. Therefore, the gieed
quality performance of JPEG2000-PPF with SMP is atstistically equivalent to or
worse than the JPEG2000-PPF with CMP.

However, based on the raw score percentage congutdhe overall percentage

preferences of JPEG2000-PPF with SMP and JPEG2B60ARth CMP are 18% and

15.3%, respectively, i.e., a 2.7% preference gaiobiserved for JPEG2000-PPF with
SMP.

b. Evaluation of Test 2 Result

The Null Hypothesis (b) is “the perceived image quality of JPEG2000-PHth w
SMP is equivalent to or worse than the JPEG20006 WMiSE and CVIS criterion”,
and the Alternate Hypothesis {Hs “the perceived image quality of JPEG2000-PPF

with SMP is better than JPEG2000 with MSE and C¥figrion.”

For (P),t-value (8.5903) is higher than the criti¢a3.2498) for 9 d.f. at 99.5% CI.
Hence the Null Hypothesis ¢His rejected. Therefore, when categorising adogrd
to source images, the perceived quality performaficBPEG2000-PPF with SMP is
overall statistically superior to the JPEG2000-MBte CVIS criteria at 99.5% CI. In
(Q), when categorising according to bitrates, thages produced by JPEG2000-PPF
with SMP has superior perceived quality to thosdREG2000 with MSE and CVIS
for 2 d.f. at 99% CI as thtevalue (9.2376) is higher than the critit#6.9646).

c. Evaluation of Test 3 Result

The Null Hypothesis (b) is “the perceived image quality of JPEG2000-PHth w
CMP is equivalent to or worse than the JPEG2006 MSE and CVIS criterion”,
and the Alternate Hypothesis {Hs “the perceived image quality of JPEG2000-PPF
with CMP is better than JPEG2000 with MSE and Cewfiigrion.”

In (P), thet-value (6.5658) is higher than the crititgB.2498) for 9 d.f. at 99.5% CI.
Hence the Null Hypothesis ¢His rejected. Therefore, when categorising adogrd
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to source images, the perceived quality performaicBPEG2000-PPF with CMP is
overall statistically superior to the JPEG2000-M&ttl CVIS criterion at 99.5% CI.
In (Q), the perceived quality performance of JPEGRPPF with CMP is statistically
better than the JPEG2000-MSE and CVIS for 2 d.f9a6% CI as the-value
(27.7128) is higher than the critida9.9248).

5.5.3 Discussion of Subjective Test Results

The subjective test results of implementation Igasgs that the images constructed by
JPEG2000-PCDM-PPF is overall statistically supetmrthose of the JPEG2000-
PCDM. In comparison to JPEG2000-MSE and JPEG200(5Cthe JPEG2000-
PCDM-PPF has also shown an overall improvement grcgved quality
performance. This result is consistent with thejesttive test result presented in
chapter 4 for JPEG2000-PCDM. Hence, it can be refethat JPEG2000-PCDM
coded images’ perceived quality can be further oupd with PPF algorithm at the
decoder. When comparing JPEG2000-PCDM-PPF with Z2RBMSE and
JPEG2000-CVIS, the JPEG2000-PCDM-PPF producesrlpetteeived visual quality
images at bitrates between 0.25 and 1.0 bpp.

As a reference, the objective measure, PSNR, oftdbeimages produced by the
JPEG2000-PCDM-PPF, JPEG2000-PCDM, JPEG2000-MSEIBE®#2000-CVS is
attached in Appendix G. It must be emphasizedithages with higher PSNR as in
Appendix G do not necessarily imply better percéivisual quality. On the contrary,
some images produced by the JPEG2000-PCDM-PPpdsaess lower PSNR were
rated better perceived image quality than JPEG208&- and/or JPEG2000-CVIS in
the force-choice subjective assessments. It revaffthat the MSE or the PSNR as an
objective quality metric does not correlate weltwihe HVS’s perception of image
quality as reported by Girod [143] and Wang ef&14].

The subjective test results of implementation Itaamt for the quality preference
between two different model parameterisations efRIPF algorithm: common model
parameterisation (CMP) and separate model paraisetion (SMP). From the
paired t-test analysis at 95% CI, there is no evidenceuggsst that the SMP is
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superior to the CMP. However, if the test resutts @lculated by overall percentage
preferences of the raw scores, the computation shbat there is a 2.7% gain in
preference for the JPEG2000-PPF with SMP over dfidhe JPEG2000-PPF with
CMP. This suggests a very small but thus insigarifiqreference of images operated
on by the JPEG2000-PPF with separate model parasagien. Given that there is no
significant statistical evidence to suggest SMPapueaterization to have produced
superior results than the CMP parameterization, rimel with CMP may be
desirable since the optimisation load is signifttaneduced as only one third of the
model parameters and thresholds are involved incHiration process for CMP.
Tests 2 and 3 results also suggest that the PIFthalg alone without the PCDM can
produce images with improved perceived quality these of JPEG2000-MSE and
JPEG2000-CVIS.

Notwithstanding, both models, PPF with SMP and Chtifsistently produce images
with improved visual quality, as perceived by thartgipants, than both of the
JPEG2000-MSE and JPEG2000-CVIS coders. Some exampleoded images by
PCDM-PPF are shown in Figures 5.3, 5.4 and 5.50Aptete set of test images with

various bit rates is provided in the CD in AppenHix

In Figures 5.3b, 5.3c, 5.3d and 5.3e where ciralesdrawn around the region with
“WKS”, the word “WKS” and the leaves around it alearer for Figure 5.3b than the
others. In addition this region is enhanced fouFégs.3b. Forlend where an oval is
drawn around here eyes, it can be seen that shaypsrare observed for Figure 5.4b
than the others. In the case tflip’, the centre of the flower (i.e., the stigma) isca

more visible and enhanced for Figure 5.5b.
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Figure 5.3abuilding2 - original uncompressed Figure 5.3bbuilding2 - PPF with JPEG200-PCDM (0.25bpp)

Figure 5.3cbuilding2— JPEG2000-PCDM (0.25bpp)  Figure 5.3dbuilding2 - JPEG2000-MSE (0.25bpp)
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Figure 5.3ebuilding2- JPEG2000-CVIS (0.25bpp)  Figure 5.4alena- original uncompressed

Figure 5.4blena- PPF with JPEG2000-PCDM Figure 5.4clena— JPEG2000-PCDM (0.5bpp)
(0.5bpp)
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Figure 5.4dlena- JPEG2000-MSE (0.5bpp) Figure 5.4elena- JPEG2000-CVIS (0.5bpp)

Figure 5.5atulip - original uncompressed Figure 5.5btulip - PPF with JPEG2000-PCDM (1.0
bpp)
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Figure 5.5ctulip — JPEG2000-PCDM (1.0 bpp) Figure 5.5dtulip - JPEG2000-MSE (1.0 bpp)

Figure 5.5etulip - JPEG2000-CVIS (1.0 bpp)
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5.6 Chapter summary

In this Chapter, a Perceptual Post Filtering (PRFjorithm is proposed. This
algorithm is used for perceptual recovery of biyglanformation from the compressed
images in the DWT domain at the JPEG2000 decodauges The visual properties of
the HVS considered are the effects of contrastitetg the intra-band masking and
inter-orientation masking. At the decoding stadw PPF is applied in progressive
bitplane recovery manner on the transform coeffitcsdor each code block, beginning
with the LSB and proceeding upwards to the MSBefréd Figure 5.1). With the
exception of the isotropic low pass band, the PBérithm is applied to all transform
coefficients of all frequency and orientation bandehereafter, an inverse DWT is

applied to all these coefficients to reconstruet¢cbmpressed image.

In the calibration process, the PPF thresholdscgmeunal distortion recovery and
perceptual percentage thresholds are set to the [ENBl. The vision model
parameters for the PCDM are taken directly fronptéiad.

Subjective test results of the PPF show that JPEGERLCDM-PPF offers visible
improvement over JPEG2000-PCDM, JPEG2000-MSE a&52000-CVIS. Further
subjective tests were undertaken to evaluate the dprithm with common model
parameterisation (CMP) and separate model paraisegien (SMP). The results
showed that there is no statistical advantage oingusSMP over CMP
parameterization in delivering better visual pariance. However, since the CMP is
less complex than the SMP in terms of calibrati@GVP has the implementation
advantage. Without PCDM, the PPF algorithm implet®@ralone at the decoder has
demonstrated better perceived visual quality ofgesathan JPEG2000 without PPF.
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Chapter 6 Conclusion

6.1 Research Findings

As technology becomes intertwined with every aspéalaily lives, and the use of
images to convey information and knowledge in flaist paced modern world has
increased, the demand for transmitting images dpigkith the highest possible
resolution and at an affordable cost and givenastfucture has heightened. Along
with this surge, a large body of research has lm@ened out to deal with the all-

important issue of data and image compression.

It must be acknowledged that much research has ledertaken out in the areas of
the removal of statistical redundancies or “noise”data as first mentioned by
Shannon [10]. Some aspects of removal of statlstezhundancies deal with the use
of MSE (Mean Square Error) as a distortion measB®INR (Peak Signal Noise
Ratio) or MAE. This body of research has seen timergence of various imaged
coders or image compression systems. The eleméats image coder are explained
in Chapter 3 with a specific focus on transformdaagnage coding and the elements
involved in that system. These elements includetsal transformation, quantisation,
and entropy encoding. Examples of transform daseplane image coders are the
EZW [31], SPIHT [32] and EBCOT [14] which are aldscussed in greater lengths
in Chapter 3. The JPEG2000 standard [12] haskelen ear marked as the new state-

of-the-art standard for still image coding.

Along with this, some studies have also been chmigt for image coding based on
the human visual system, in particular, the effgficphysiological characteristics of
the human eye on the perception of visual signHiese perceptual image coders
researched into the removal of other redundancieshwvare imperceptible to the
human visual system. In simpler terms, some redurida which are not noticeable
by the human visual system could be eliminated todpce images with high

compression ratios.
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To gain a better understanding of these impercieptibaracteristics of the human
visual system, chapter 2 reviews the human visystem in some details. It covers
the physiology of the human eye and neural conoestassociated with the HVS.
The three aspects of the HVS are the optics, theavipathway and the visual cortex.
Extensive experimental studies have been carriethypwmarious researchers to model
the behaviours of these components. In particMétson and Solomon [27] have
incorporated some crucial characteristics of theSHW the modelling process, and
they proposed the Contrast Gain Control model. Triatudes: 1) optical sensitivity

of the human eye with contrast sensitivity funct{@sF), 2) spectral decomposition
to approximate frequency and orientation sensytiaf cortical neurons, and 3)

masking phenomenon of the HVS by incorporating mmatised masking function.

The contribution of this thesis is the proposatwd perceptual image models based
on the human visual system -- the Perceptual Cdbistortion Measure (PCDM) and

Perceptual Post Filtering (PPF), both based omtmean visual system, (in chapters 4
and 5 respectively). Both models exploit the irdgentation masking and intra-band

masking mechanism of the HVS.

The PCDM proposed in this thesis is a perceptuagancoder and is an adaptation of
the monochromatic based PIDM (Perceptual ImageoRisth Metric) into colour
based PCDM in the YIGCr colour space. The resulting PCDM model is therptath
to the JPEG2000 encoder. Essentially, the prop&@e&0M model incorporates a
distortion measure that considers the effect oérintrientation masking and intra-
band masking mechanism of the HVS into the JPEG200ihg system. This is in
contrast to the widely used MSE distortion measulneh is inaccurate in regard to
perception by the HVS. In comparison to the C\tig, PCDM is more elaborate and
comprehensive as it includes inter-orientation nmagk The PCDM model requires
the calibration of 42 model parameters. Two sutinogd values were obtained
through a labourious and tedious process. Bagjdakhdopts the current approach to
optimise the parameters -- sequential tuning itezBt The sequential tuning of
parameters may proceed for multiple passes (neaparoximation pass and multiple

refinement passes) with different step sizeg)( This process has been explained in
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greater detail in section 4.5 of chapter four.gp@ars that more than one set of sub-

optimal values can be obtained to produce compaadriformance in image quality.

The Perceptual Post Filtering (PPF) algorithm preeskin chapter 5 is embedded into
the JPEG2000 decoder to recover the perceived dbssformation, and hence
enhanced the perceived image quality. This is edrout through approximated bit-
plane reconstruction. The core structure of visiandel used in the PCDM is
extended to the PPF algorithm, and it is used toeae approximate bit-plane
reconstruction in the PPF by considering the effedtthe inter-orientation masking
and intra-band masking of the HVS. The calibratminPPF thresholds is also
undertaken at the Just-Noticeable-Difference (JN®Eel. The calibration process
involves the use of nine test images generated fitmee different source images
(barbara2 bikes building?), each at three different bitrates, namely, 1.8,ahd 0.25
bpp. A detailed description of the calibratiorgess is presented in section 5.4 of

chapter 5.

It is noted that while both PCDM and PPF employgame vision model, the PCDM
is embedded in the JPEG2000 encoder, whereas Pé&Rbsdded in the JPEG2000
decoder. As JPEG2000 is being regarded as the-dft#te-art standard, some
researchers have incorporated their proposed pealemodels in the JPEG2000
coding structure. Due to logistical restraints.{isoftware codes of other perceptual
coders proposed by other researchers and theiddowges are not made available in
the public domain), it is uncertain to accuratedynpare and validate the performance
results of these perceptual models through subg@ssessment against the PCDM
and PPF based coder proposed in this thesis. Haowevaluation of the two models
(PCDM and PPF) against the JPEG2000 benchmarksghrsubjective assessments
indicated their performance improvement in the emed image quality over the
JPEG2000 with MSE and CVIS criteria. Moreover, aseterence, the objective
measure, PSNR, is also investigated for the PCDRF, 8rd JPEG2000 benchmarks.
The findings re-affirm that the MSE or the PSNRaasobjective quality metric does
not correlate well with the HVS’s perception of iggaquality as reported by Girod
[143] and Wang et al. [144].
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For the PCDM model, subjective assessments have deeed out with 30 viewers
and the experimental results showed that the PCDWiged improved visual

performance over the JPEG2000 with MSE and CVItria, especially for the low
(0.125bpp) and intermediate bitrates (0.5bpp).sTimprovement of image quality at
low and intermediate bit rates is a promising reffuits potential to be applied to

software applications, file transfer applicatioas ©e explored further.

Two separate assessments have been undertakeralimtevthe PPF algorithm.
Assessment one involves a performance evaluatiomeofJPEG2000-PCDM coder
with the PPF algorithm with separate model pararsetéon (SMP) against the
JPEG2000-PCDM, the JPEG2000-MSE and JPEG2000-CAllSyithout the PPF
algorithm. Assessment two involves a performancduation of the PPF algorithm
with common model parameterisation (CMP) againdEGE000-MSE and JPEG-
CVIS. Test results have shown that both the PPhealand PPF with PCDM
improved performance over these JPEG2000 benchmaramvever, further
subjective assessments of the PPF algorithm dsuggest any difference between
the use of CMP or SMP for the PPF model.

The subjective assessment also suggests thateh# bsth the PCDM in the encoder
and the PPF in the decoder in the JPEG2000 frankewoproves the visual

performance as compared to when PCDM is used alone.

6.2 Further Research

Thus far, the PCDM model has shown promising resift lossy perceptual
compression. Attempts to test its performance fnceptually lossless compression
for colour image are on-going. The proposed appros through a bit-plane
truncation of the samples with a vision model samtb that proposed in PCDM and
PPF, with the bit-plane truncation achieved at J&i{Zel. This approach has been
reported in Wu [16] for medical images. Hence ¢hex definitely scope for this
model to be further developed for colour images.rtiarmore, not all the

psychovisual characteristics of the HVS have bedly incorporated into the vision
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model, e.g. inter-band masking between subbandkffefent frequency levels. The
vision model could be developed along these limeshbth the monochromatic and

colour images.

The calibration of the model parameters currentbdpces sub-optimal values. More
extensive calibration could lead to more accurateleh parameters and yield more
favourable results in terms of image quality anchpeession ratios. In addition, the
present calibration algorithm is both tedious aloavsfurther research is required to
develop a better and faster calibration algoritlemdptimizing the model parameters

of the proposed PCDM model and PPF algorithm.

Having said that, the proposed PCDM models and &gétrithm, having produced

improved image quality as compared with the JPEG2A8E and JPEG2000-CVIS,

especially at low (0.125bpp) and intermediate &ies (0.5bpp) is a promising result.
Further research could be undertaken to assegotgstial to be used in software
applications and data transfer and storage purposes
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Appendix A

Table Al: The Daubechies 9/7 wavelet filter set

Filter Analysis Filter Synthesis Filter

Taps Low Pass,h High Passg Low Passh High Pass,g
0 0.602949 -0.557543 1.115086 -1.205898
+1 0.266864 0.295636 0.591272 0.533728
+2 -0.078223 0.028772 -0.057544 0.156446
+3 -0.016864 -0.045636 -0.0921272 -0.033728
4 0.026749 0 0 -0.053498

4 -3 -2 -1 0 1 2 4 -4 3 -2 -1 0 1 2 3 4

Analysis Low Pass Filter Analysis High Pass Filter

4 -3 -2 -1 0 1 2 3 4 4 -3 -2 -1 0 1 2 3 4

Synthesis Low Pass Filter Synthesis High Pass Filter

Figure Al: Profiles of Daubechies 9/7 filter taps.
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Appendix B

Figure B1 Original uncompressed imagéafbara The size of this image is
reduced to 60% to fit within A4 size paper.
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Figure B2 Original uncompressed imagéafbara2 The size of this image is
reduced to 60% to fit within A4 size paper.
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Figure B3 Original uncompressed imagéobts The size of this image is reduced
to 60% to fit within A4 size paper.
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Figure B4 Original uncompressed imagéifes The size of this image is reduced to
56% to fit within A4 size paper.
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Figure B5 Original uncompressed imagéafiding2 The size of this image is
reduced to 68% to fit within A4 size paper.
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Appendix C: Subjective Assessment Questionnaire faChapter 4
Digital Image Quality Analysis Form for Digital Galr Images
Venue: Room 87-03-06, RMIT City Campus

Important Information

Thank you for your participation.

To participate, you must be at least 18 years old.
You may withdraw at any time without completing it.
Data and methods will be fully published. However,personal identifiable data and
no data identifying an individual will be published

Participant Details

Name: | | Sex: | Female / Male
Do you normally wear glasses? Yes / No

Are you colour blind? Yes / No

Official Use:
| Serial No: | |

Part 1. AB/BA sequence Date: Time:

Context

You have to spend $2400 on the purchase of 24rpither as a gift for someone
special or for your personal collection. The piegiare displayed on the left and right.
Your task is as follows:

Tick on the box showing your preferred picturee(,i L” for Left image, “R” for the
Right image).

Image |L |R Image |[L |R
Number Number
1 13
2 14
3 15
4 16
5 17
6
7
8
9

18
19
20
21
10 22
11 23
12 24

Legend: L — Left, R - Right
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Part 2: AC/CA sequence Date: Time:

Context

You have to spend $2400 on the purchase of 24rpewither as a gift for someone
special or for your personal collection. The piegiare displayed on the left and right.
Your task is as follows:

Tick on the box showing your preferred picturee(,i L” for Left image, “R” for the
Right image).

Image |L |R Image |[L |R
Number Number

13

14

15

16

17

18

19

20

OO INO|O|AWIN|F-

21

10 22

11 23

12 24

Legend: L — Left, R - Right

End of Test
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Appendix D: Subjective Assessment Questionnaire fdChapter 5
(Implementation I)

Digital Image Quality Analysis for Digital Coloumlages
Venue: Room 1103, Building 75 (Strip), Clayton CammpMonash University

Important Information

Thank you for your participation.

To participate, you must be at least 18 years old.
You may withdraw at any time without completing it.
Data and methods will be fully published. However,personal identifiable data and
no data identifying an individual will be published

Participant Details

Name: | | Sex: | Female / Male
Do you normally wear glasses? Yes / No

Are you colour blind? Yes / No

Official Use:
| Serial No: | |

Context

You have to spend $3000 on the purchase of 30rpeRither as a gift for someone
special or for your personal collection. The piegiare displayed on the left and right.
Your task is to choose the picture you prefer.

Task: Tick on the box indicating your preferred choice.

Part 1: AB/BA sequence Date: Time:
Image | Left | Right Image | Left | Right Image | Left | Right
Number Number Number

1 11 21

2 12 22

3 13 23

4 14 24

5 15 25

6 16 26

7 17 27

8 18 28

9 19 29

10 20 30
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Part 2: AC/CA sequence Date: Time:

Image | Left | Right Image | Left | Right Image | Left | Right
Number Number Number
1 11 21
2 12 22
3 13 23
4 14 24
5 15 25
6 16 26
7 17 27
8 18 28
9 19 29
10 20 30
Part 3: AD/DA sequence Date: Time:
Image | Left | Right Image | Left | Right Image | Left | Right
Number Number Number
1 11 21
2 12 22
3 13 23
4 14 24
5 15 25
6 16 26
7 17 27
8 18 28
9 19 29
10 20 30
End of Test
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Appendix E: Subjective Assessment Questionnaire faChapter 5
(Implementation II)

Digital Image Quality Analysis for Digital Coloumlages
Venue: Room 87-03-06, RMIT City Campus

Important Information

Thank you for your participation.

To participate, you must be at least 18 years old.
You may withdraw at any time without completing it.
Data and methods will be fully published. However,personal identifiable data and
no data identifying an individual will be published

Participant Details

Name: | | Sex: | Female / Male
Do you normally wear glasses? Yes / No

Are you colour blind? Yes / No

Official Use:
| Serial No: | |

Part 1: AB/BA sequence Date: Time:

Context

You have to spend $3000 on the purchase of 30rpERither as a gift for someone
special or for your personal collection. The piegiare displayed on the left and right.
Your task is to choose the picture you prefer.

Task: Tick on the box indicating ‘N’ if both images awod the similar quality.
Otherwise tick on the box indicating your prefercénbice (either Left or Right).

Image | N Left | Right Image | N Left | Right
Number Number
1 16

2 17

3 18

4 19

5 20

6 21

7 22

8 23

9 24

10 25

11 26

12 27

13 28

14 29

15 30
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Part 2: AC/CA sequence Date: Time:

Context

You have to spend $3000 on the purchase of 30rpEteither as a gift for someone
special or for your personal collections. The ynies are displayed on the left and
right. Your task is to choose the picture you prefe

Task: Tick on the box indicating your preferred choice.

Image | Left | Right Image | Left | Right Image | Left | Right
Number Number Number

1 11 21

2 12 22

3 13 23

4 14 24

5 15 25

6 16 26

7 17 27

8 18 28

9 19 29

10 20 30

Part 3: AD/DA sequence Date: Time:
Context

You have to spend $3000 on the purchase of 30rpERither as a gift for someone
special or for your personal collections. Theynies are displayed on the left and
right. Your task is to choose the picture you prefe

Task: Tick on the box indicating your preferred choice.

Image | Left | Right Image | Left | Right Image | Left | Right
Number Number Number
1 11 21

2 12 22

3 13 23

4 14 24

5 15 25

6 16 26

7 17 27

8 18 28

9 19 29
10 20 30

End of Test
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Appendix F:
MSE for JPEG2000-PCDM, JPEG2000-MSE and JPEG2000-C%

Average PSNR (db)

U)

Bit rate Images JPEG2000- JPEG2000-MSE| JPEG2000-CVI{

(bpp) PCDM

1.0 goldhill 38.43 38.52 38.47
Sail 37.77 37.74 39.12
Pepper 42.26 42.47 42.42
Lena 39.07 39.15 38.88
Tulip 39.65 39.93 39.95
Paintedhouse 39.31 39.31 39.76

0.5 goldhill 36.63 36.80 36.78
Sail 35.11 34.97 36.20
Pepper 39.70 39.78 39.74
Lena 37.28 37.30 37.08
Tulip 35.72 36.02 36.22
Paintedhouse 36.77 36.64 37.22

0.25 goldhill 35.17 35.19 35.51
Sail 32.57 32.53 33.90
Pepper 36.51 36.67 36.58
Lena 35.29 35.36 35.30
Tulip 32.23 32.72 32.99
Paintedhouse 34.77 34.85 35.26

0.125 goldhill 33.58 33.88 34.18
Sail 29.98 30.48 31.67
Pepper 32.90 33.27 33.19
Lena 33.19 33.29 33.41
Tulip 28.87 29.86 30.07
Paintedhouse 33.45 33.37 34.04

The average PSNR is computed based on the expredsatow,

MSH(c) =

PSNHc) =10%og,,

AveragePSNR=

(%:[i]- %[i])

N

255

MSEHc)

PSNRY)+PSNRC, )+ PSNRC, )

3

Where 3<C[i] and xc[i] are the sample data of the compressed and origiaajes of
N samples, an@1 {Y,C, C,} is the colour component.
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Appendix G:
MSE for JPEG2000-PCDM-PPF, JPEG2000-PCDM, JPEG2000-
MSE, and JPEG2000-CVIS

Average PSNR (db)
Image Bit JPEG2000- JPEG2000- | JPEG2000- | JPEG2000-
Rate PCDM-PPF PCDM MSE CVIS
(bpp)
goldhill 1.0 37.06 38.49 38.58 38.54
0.5 35.69 36.69 36.86 36.86
0.25 34.51 35.25 35.27 35.59
sail 1.0 36.18 37.72 37.74 39.11
0.5 34.19 35.05 34.97 36.21
0.25 32.05 32.51 32.54 33.91
pepper 1.0 39.69 42.23 42.45 42.38
0.5 38.02 39.59 39.68 39.65
0.25 35.52 36.31 36.48 36.41
lena 1.0 37.75 39.10 39.17 38.92
0.5 36.39 37.31 37.34 37.13
0.25 34.73 35.34 35.38 35.34
tulip 1.0 37.88 39.60 39.89 39.92
0.5 34.93 35.72 35.99 36.19
0.25 31.82 32.19 32.70 32.96
zelda 1.0 40.75 42.84 43.02 42.85
0.5 39.83 41.58 41.74 41.47
0.25 38.71 40.07 40.10 40.07
bikes 1.0 36.08 37.66 37.63 39.00
0.5 33.66 34.51 34.61 36.06
0.25 31.88 32.39 32.27 33.76
building2 1.0 32.84 33.68 33.45 34.59
0.5 30.86 31.28 31.23 32.34
0.25 29.20 29.44 29.76 30.65
lighthouse2| 1.0 39.18 41.82 41.88 42.42
0.5 37.29 38.96 38.94 40.05
0.25 35.51 36.53 36.80 38.07
stream 1.0 35.63 37.04 37.10 38.46
0.5 34.10 35.04 35.21 36.46
0.25 33.28 34.03 33.98 35.20

The average PSNR is computed based on the expredsatow,

MSH(c) =

(%c[i]- x[i])

PSNHc) =104og,,

N
255

MSEHc)
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PSNRY)+PSNRC, )+ PSNRC, )

AveragePSNR= 3

where 3<C[i] and xc[i] are the sample data of the compressed and orignagles oN
samples, anei {Y,C, .C,} is the colour component.
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Appendix H: Bandlimited Contrast by Peli

The image is filtered by a pyramidal structure edctave wide bandwidth bandpass
filters centred at different levels that are 1-getapart. At every level, a local average

luminance,|, (x,y), containing all energy at bands lower than theemirband, is

computed. The bandlimited contrast is obtained bwdohg the bandpass-filtered
image point-by-point (i.e.a, (x,y)) by the corresponding local average luminance.

We consider an imagé(x,y) that can be represented in the frequency domain as

n-1

Fluv)=F(r.g)=L(rg)+ A(rg)+K,(r.q) (h1)

i=1
where u and v are the horizontal and vertical spatial frequeremyordinates,
r =vu®+v* and q:tan'l(%) are the polar spatial coordinates,(r,q) and
K, (r.g) are the low and high residual term4,(r,g) can be obtained by multiplying

the fourier transform of imagé(x,y) with a cosine log bandpass filter in equation

(h2) which is of 1-octave wide bandwidth centredfrauency 1-octave apart at
different levels. The cosine log filter is as @vils;

6,(r)= L+ codplog, r - A (h2)
The filtered image is transformed back to spacealomia inverse fourier transform.
The image in the space domain can be expressed as;

n-1

f(xy)=l(xy)+ a(xy)+h,(xy) (h3)

i=1

The bandlimited contras€™(x,y), is computed as;

cre(xy) =2 xy) - (-le) "
L)) ey)+ a (xy)

k=1

N—
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Appendix I: The Cortex Transform

The cortex transform is modelled with separatesctddilters: the dom and fan filters.
The dom filters are used to model the spatial feegy channels while the fan filters
models the orientation channels of the HVS.

The cortex filter is defined as.
cortex (uyv) = d, (uv)> (uv) (i1)

Where d, (uyv) and h,(uv) are the dom filter ak™ scale andj" fan filter for

orientation band ai% radians (Or18O>J

degrees) withk being the total of number

of fan filters at each scale.
The dom filterd, (u,v) is computed as the difference of mesa filteroe\s,
d(uv)=m(uv)- m.,(uv) (i2)

wherem (u,v) andm,(u,v) are the mesa filters at scale k and k+1, respaygtiv

The kth scale mesa filter is defined as,
m,(uv) = m(susv) (i3)

where m(u,v) is defined as the convolution of a Gaussian famctiith a cylinder of

radius f, . At every successive resolution, the imagedsiced by a factor of

*O —— (i4)
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wherer =+/u? +v? andO % Is a rectangular pulse with unity height centréd a

0

the origin. f, is the corner frequency at which the Gaussiars faff to 0.5 of its

height. / is the parameter defining the sharpness of tipores.

For the fan filterh, (uv), it is computed as,
hj (U'V) = bjwv(u'v)l.l_ b(j+1)>w(u1V)J + b(j+K+1)>w(u'V)|.1_ b(j+K+1)>w(u1V)] (IS)

WhereW:E is the orientation bandwidth fa¢ fan filters, and the indey, to the

orientation band i$l {1,2,..K - . The bisection filterp,(uy), is defined as the

cumulative Gaussian as follows.

b, (uv) = g(w(vcoss - usinb)) (i6)
where
g(wv): _V¥W>e'””2r2dr (i7)

The in radians is the angle of rotation for the oraioin band. For example,

b=j>w refers to the"] orientation band which corresponds—lee&g radians (or

180°] degrees). Theorientation band of a 4-orrientation band filterresponds

to the 135 degrees band.

For a two dimensional image, the filtered images @mputed by multiplying the
discrete Fourier transform of the input image bghefilter defined in equation (il1),
followed by applying the inverse discrete Fourransform. To reconstruct the image,

discrete Fourier transform is applied to each effitered images at each layer, the
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DFT of the layer are embedded in a null DFT to $iee of the original image,

followed by applying the inverse discrete Fourransform.
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Appendix J

This CD contains test images that were used irstlhgective evaluations for
(1) PCDM based coder introduced in chapter 4,
(2) PCDM-PPF based algorithm as introduced in impleatet | of chapter 5,
and
(3) PPF algorithm as introduced in implementationf itfoapter 5.

All images are in PPM format. The images can kmved by a PPM compatible
image viewer.
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