Morphological, structural, thermal and degradation properties of polylactic acid and waxy maize starch nanocrystals based nanocomposites prepared by melt processing

Takkalkar, P, Ganapathi, M, Al-Ali, M, Kao, N and Griffin, G 2019, 'Morphological, structural, thermal and degradation properties of polylactic acid and waxy maize starch nanocrystals based nanocomposites prepared by melt processing', Advanced Materials Letters, vol. 10, no. 3, pp. 170-177.


Document type: Journal Article
Collection: Journal Articles

Title Morphological, structural, thermal and degradation properties of polylactic acid and waxy maize starch nanocrystals based nanocomposites prepared by melt processing
Author(s) Takkalkar, P
Ganapathi, M
Al-Ali, M
Kao, N
Griffin, G
Year 2019
Journal name Advanced Materials Letters
Volume number 10
Issue number 3
Start page 170
End page 177
Total pages 8
Publisher VBRI Press AB
Abstract Currently used petroleum-based polymers have adversely affected the environment in various ways, mainly due to their non-biodegradability. This undesirable aspect of commercial polymers led to increased interest in the research area of biodegradable polymer nanocomposites. Polylactic acid (PLA) based nanocomposites, with three different loadings of waxy maize starch nanocrystals (WSNC) as nanofiller (1, 3 and 5 wt%), were melt-blended in a Haake Rheomix. The morphological, structural, thermal and abiotic degradation characteristics of the prepared PLA WSNC nanocomposites were studied to determine the effects of adding WSNC at different loadings in PLA. The results indicated that WSNC were dispersed uniformly at lower loadings (0-3 wt%) and agglomerated at higher loadings (5 wt%) within the PLA matrix. All PLA-WSNC nanocomposites were found to be stable over the processing temperature range of 25-220 ºC. In addition, there was no considerable change in the glass transition temperature and the melting point of the nanocomposites. Though, the cold crystallization temperature was reduced with the increase of WSNC loadings. The abiotic degradation studies, used as an initial screening tool, indicated that WSNC can accelerate the degradation process of PLA. As a result, the degradation rate was improved for all the PLA-WSNC nanocomposites. The PLA-WSNC-3 wt% was found to be the optimum concentration to enhance the crystallinity and morphological property of PLA, and beyond that the properties were affected by agglomeration.
Subject Chemical Engineering not elsewhere classified
Keyword(s) Polylactic acid
waxy maize starch nanocrystals
melt processing
Copyright notice © 2019 VBRI Press
ISSN 0976-3961
Versions
Version Filter Type
Access Statistics: 50 Abstract Views  -  Detailed Statistics
Created: Thu, 21 Feb 2019, 12:10:00 EST by Catalyst Administrator
© 2014 RMIT Research Repository • Powered by Fez SoftwareContact us