Matching symbiotic associations of an endangered orchid to habitat to improve conservation outcomes

Reiter, N, Lawrie, A and Linde, C 2018, 'Matching symbiotic associations of an endangered orchid to habitat to improve conservation outcomes', Annals of Botany, vol. 122, no. 6, pp. 947-959.


Document type: Journal Article
Collection: Journal Articles

Title Matching symbiotic associations of an endangered orchid to habitat to improve conservation outcomes
Author(s) Reiter, N
Lawrie, A
Linde, C
Year 2018
Journal name Annals of Botany
Volume number 122
Issue number 6
Start page 947
End page 959
Total pages 13
Publisher Oxford University Press
Abstract An understanding of mycorrhizal variation, orchid seed germination temperature and the effect of co-occurring plant species could be critical for optimizing conservation translocations of endangered plants with specialized mycorrhizal associations. Focusing on the orchid Thelymitra epipactoides, we isolated mycorrhizal fungi from ten plants within each of three sites; Shallow Sands Woodland (SSW), Damp Heathland (DH) and Coastal Heathland Scrub (CHS). Twenty-seven fungal isolates were tested for symbiotic germination under three 24 h temperature cycles: 12 A degrees C for 16 h-16 A degrees C for 8 h, 16 A degrees C for 16 h-24 A degrees C for 8 h or 27 A degrees C constant. Fungi were sequenced using the internal transcribed spacer (ITS), nuclear large subunit 1 (nLSU1), nLSU2 and mitochondrial large rRNA gene (mtLSU). Orchids were grown to maturity and co-planted with each of ten associated plant species in a glasshouse experiment with tuber width measured at 12 months after co-planting. Two Tulasnella fungal lineages were isolated and identified by phylogenetic analyses, operational taxonomic unit 1 (OTU1) and 'T. asymmetrica'. Fungal lineages were specific to sites and did not co-occur. OTU1 (from the SSW site) germinated seed predominantly at 12-16 A degrees C (typical of autumn-winter temperature) whereas 'T. asymmetrica' (from the DH and CHS sites) germinated seed across all three temperature ranges. There was no difference in the growth of adult orchids germinated with different OTUs. There was a significant reduction in tuber size of T. epipactoides when co-planted with six of the commonly co-occurring plant species. We found that orchid fungal lineages and their germination temperature can change with habitat, and established that translocation sites can be optimized with knowledge of co-occurring plant interactions. For conservation translocations, particularly under a changing climate, we recommend that plants should be grown with mycorrhizal fungi
Subject Conservation and Biodiversity
Speciation and Extinction
Mycology
Keyword(s) Orchidaceae
mycorrhizae
Tulasnella
translocation
Thelymitra epipactoides
DOI - identifier 10.1093/aob/mcy094
Copyright notice © The Author(s) 2018.
ISSN 0305-7364
Versions
Version Filter Type
Citation counts: TR Web of Science Citation Count  Cited 1 times in Thomson Reuters Web of Science Article | Citations
Altmetric details:
Access Statistics: 6 Abstract Views  -  Detailed Statistics
Created: Tue, 26 Mar 2019, 09:36:00 EST by Catalyst Administrator
© 2014 RMIT Research Repository • Powered by Fez SoftwareContact us