Distribution of carbon nanotube sizes from adsorption measurements and computer simulation

Kowalczyk, P, Hooyst, R, Tanaka, H and Kaneko, K 2005, 'Distribution of carbon nanotube sizes from adsorption measurements and computer simulation', The Journal of Physical Chemistry Part B, vol. 109, pp. 14659-14659.


Document type: Journal Article
Collection: Journal Articles

Title Distribution of carbon nanotube sizes from adsorption measurements and computer simulation
Author(s) Kowalczyk, P
Hooyst, R
Tanaka, H
Kaneko, K
Year 2005
Journal name The Journal of Physical Chemistry Part B
Volume number 109
Start page 14659
End page 14659
Total pages 1
Publisher American Chemical Society
Abstract The method for the evaluation of the distribution of carbon nanotube sizes from the static adsorption measurements and computer simulation of nitrogen at 77 K is developed. We obtain the condensation/evaporation pressure as a function of pore size of a cylindrical carbon tube using Gauge Cell Monte Carlo Simulation (Gauge Cell MC). To obtain the analytical form of the relationships mentioned above we use Derjaguin-Broekhoff-deBoer theory. Finally, the pore size distribution (PSD) of the single-walled carbon nanohorns (SWNHs) is determined from a single nitrogen adsorption isotherm measured at 77 K. We neglect the conical part of an isolated SWNH tube and assume a structureless wall of a carbon nanotube. We find that the distribution of SWNH sizes is broad (internal pore radii varied in the range 1.0-3.6 nm with the maximum at 1.3 nm). Our method can be used for the determination of the pore size distribution of the other tubular carbon materials, like, for example, multiwalled or double-walled carbon nanotubes. Besides the applicable aspect of the current work the deep insight into the problem of capillary condensation/evaporation in confined carbon cylindrical geometry is presented. As a result, the critical pore radius in structureless single-walled carbon tubes is determined as being equal to three nitrogen collision diameters. Below that size the adsorption-desorption isotherm is reversible (i.e., supercritical in nature). We show that the classical static adsorption measurements combined with the proper modeling of the capillary condensation/evaporation phenomena is a powerful method that can be applied for the determination of the distribution of nanotube sizes.
Subject Physical Chemistry not elsewhere classified
DOI - identifier 10.1021/jp0520749
ISSN 1520-6106
Versions
Version Filter Type
Altmetric details:
Access Statistics: 147 Abstract Views  -  Detailed Statistics
Created: Mon, 06 Dec 2010, 14:11:00 EST by Catalyst Administrator
© 2014 RMIT Research Repository • Powered by Fez SoftwareContact us