Development of a Universal FE Model of a Cricket Ball

A thesis submitted in fulfilment of the requirements for the
degree of
Master of Engineering

Ning Cheng
B.Eng. M.EnergySt

School of
Aerospace, Mechanical & Manufacturing Engineering
RMIT University
July 2008
DECLARATION

This is to certify that I, Ning CHENG, being a candidate for the degree of Master of Mechanical Engineering (by research), am fully aware of the University of RMIT’s rules and procedures relating to the preparation, submission, retention and use of higher degree theses, and its policy on intellectual property.

I declare that:

(a) This thesis is my own composition;

(b) This thesis has not been submitted previously, in whole or in part, to qualify for any other academic award;

(c) The content of the thesis is the result of work which has been carried out since the official commencement date of the approved research program;

(d) Any editorial work in the thesis, paid or unpaid, carried out by a third party is acknowledged;

(e) Ethics procedures and guidelines have been followed.

Signature ...

Date ..
ACKNOWLEDGMENT

I would like to thank my supervisor, Dr. Monir Takla, for his expert guidance, encouragement and patience throughout the course of my studies. His time and support are greatly appreciated. I would also like to thank Professor Aleksandar Subic for his very constructive comments on this paper.

My appreciation is also extended to Kookaburra Sports Co., Ltd for their generous support on research materials. A special thanks to Professor Smith Lloyd (Washington State University, USA) for his helpful comments and insights at various stages of this research. I would also like to thank Mr. Peter Tkatchyk for his kind help during the experimental studies.

Finally, I would thank my family including my Mum, Dad, and Grandma, thanks for being such a great family. Christine, thank you so much for taking care of me and encourage me throughout my studies, I feel so lucky to have such a great girl in my life!
Table of Contents

1. **INTRODUCTION** ... 3

 1.1. **BACKGROUND** ... 3

 1.2. **OBJECTIVES** ... 4

 1.3. **THESIS LAYOUT** ... 5

2. **LITERATURE REVIEW** .. 7

 2.1. **INTRODUCTION** ... 7

 2.2. **SPORTS BALL IMPACT MECHANISM** .. 8

 2.3. **GOLF BALL MODELLING** .. 11

 2.4. **TENNIS BALL MODELLING** ... 16

 2.5. **BASEBALL MODELLING** ... 18

 2.6. **SOFTBALL MODELLING** .. 20

 2.7. **CRICKET BALL MODELLING** ... 20

 2.8. **SUMMARY** .. 23

3. **EXPERIMENTAL TESTING OF BALL BEHAVIOUR** ... 24

 3.1. **INTRODUCTION** ... 24

 3.2. **THE DROP TESTS** .. 25

 3.2.1. **Test installation** .. 25

 3.2.2. **Data processing** .. 29

 3.3. **THE HIGH SPEED IMPACT TESTS** .. 36

 3.4. **EXPERIMENTAL RESULTS** ... 40

4. **FAST-SOLVING MATHEMATICAL MODELS** ... 44

 4.1. **INTRODUCTION** ... 44

 4.2. **THE SINGLE-ELEMENT NON-LINEAR MODEL** ... 45

 4.3. **THE THREE-ELEMENT NON-LINEAR MODEL** ... 48

 4.4. **MODEL VALIDATION** ... 49
Table of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1</td>
<td>Newtonian model of ball impact (Daish, 1972)</td>
<td>8</td>
</tr>
<tr>
<td>2-2</td>
<td>Spring-damper ball impact model</td>
<td>9</td>
</tr>
<tr>
<td>2-3</td>
<td>Lieberman and Johnson model of a golf ball impact on a rigid surface</td>
<td>12</td>
</tr>
<tr>
<td>2-4</td>
<td>Three-element spring-damper model of a golf ball</td>
<td>13</td>
</tr>
<tr>
<td>2-5</td>
<td>Cross-sectional view of a reduced FE model of a golf ball</td>
<td>14</td>
</tr>
<tr>
<td>2-6</td>
<td>Spring-damper model of a tennis ball</td>
<td>16</td>
</tr>
<tr>
<td>2-7</td>
<td>Spring-damper model of ball impact</td>
<td>21</td>
</tr>
<tr>
<td>3-1</td>
<td>Drop test setup</td>
<td>25</td>
</tr>
<tr>
<td>3-2</td>
<td>Screenshot of OR763 software recording of impact force pulse</td>
<td>27</td>
</tr>
<tr>
<td>3-3</td>
<td>Image capturing circuit</td>
<td>28</td>
</tr>
<tr>
<td>3-4</td>
<td>Image produced from the drop test</td>
<td>30</td>
</tr>
<tr>
<td>3-5</td>
<td>Recorded force-time relationship</td>
<td>31</td>
</tr>
<tr>
<td>3-6</td>
<td>Comparison of raw data with smoothed data</td>
<td>32</td>
</tr>
<tr>
<td>3-7</td>
<td>Curve fitting of measured force wave</td>
<td>33</td>
</tr>
<tr>
<td>3-8</td>
<td>Displacement of ball’s centre of mass during impact</td>
<td>34</td>
</tr>
<tr>
<td>3-9</td>
<td>Force-displacement data obtained for a 1.92m height drop</td>
<td>35</td>
</tr>
<tr>
<td>3-10</td>
<td>JAG pitching machine setup</td>
<td>36</td>
</tr>
<tr>
<td>3-11</td>
<td>High speed impact test installation</td>
<td>37</td>
</tr>
<tr>
<td>3-12</td>
<td>Screenshot of the calibrated distance within the Image-Pro Plus software application</td>
<td>38</td>
</tr>
<tr>
<td>3-13</td>
<td>Screenshot of impact speed calculation using active images</td>
<td>39</td>
</tr>
<tr>
<td>3-14</td>
<td>Experimental impact load results for two-layer cricket ball</td>
<td>40</td>
</tr>
<tr>
<td>3-15</td>
<td>Experimental impact load results for three-layer cricket ball</td>
<td>41</td>
</tr>
<tr>
<td>3-16</td>
<td>Experimental impact load results for five-layer cricket ball</td>
<td>42</td>
</tr>
<tr>
<td>3-17</td>
<td>Correlation between impact speeds and the COR for various types of cricket ball</td>
<td>43</td>
</tr>
</tbody>
</table>
Figure 4-1 Single-element spring-damper model of a cricket ball 45
Figure 4-2 Flowchart of genetic algorithm operations ... 47
Figure 4-3 Three-element spring-damper model of a cricket ball 48
Figure 4-4 Single-element model simulation results for impact speed of 25 m/s 49
Figure 4-5 Three-element model simulation results for impact speed of 25 m/s 50
Figure 5-1 Cross-section of a three-layer cricket ball ... 50
Figure 5-2 Detailed FE model components .. 52
Figure 5-3 Cross-sectional view of an assembled FE model of a cricket ball 53
Figure 5-4 Pressure-overclosure relationship of “hard” contact in ABAQUS 54
Figure 5-5 Rubber core samples provided by Kookaburra Co., Ltd 56
Figure 5-6 Material parameters fitting using the Mooney-Rivlin model in ABAQUS ... 59
Figure 5-7 Picture of the inner core unit and its FE model 60
Figure 5-8 Comparison of the initial impact force results for the inner core unit 61
Figure 5-9 Workflow developed within the modeFRONTIER software application ... 62
Figure 5-10 Flowchart of material parameters optimization 63
Figure 5-11 Workflow of optimization of material parameters, C_{10} and C_{01} 64
Figure 5-12 Scatter chart of the variables, C_{10} and C_{01}, vs. the MSE on designs table ... 65
Figure 5-13 Scatter chart of CT vs. MSE on designs table 66
Figure 5-14 Illustration of MCDM tool in modeFRONTIER 67
Figure 5-15 Workflow of the optimization of the material parameters, \bar{g}_1^p and τ_{1}^O ... 68
Figure 5-16 Scatter chart of \bar{g}_1^p and τ_{1}^O vs. COR on designs table 69
Figure 5-17 Scatter chart of the COR vs. the MSE on designs table 70
Figure 5-18 Comparison of impact force results for inner core unit after optimization ... 71
Figure 5-19 Sample of cork and yarn layer material provided by Kookaburra Co., Ltd ... 72
Figure 5-20 Midsole unit and its FE model .. 73
Figure 5-21 Comparison of impact force results for midsole unit 74
Figure 5-22 Sample of the leather cover provided by Kookaburra Co., Ltd 75
Figure 5-23 Complete three-layer cricket ball and its FE model 76
Figure 5-24 Comparison of impact force results for the complete three-layer cricket ball .. 76
Figure 5-25 Animation view of oblique impact simulation 78
Figure 6-1 Construction of a universal FE model 80
Figure 6-2 Cross-sectional view of a universal FE model of a cricket ball 81
Figure 6-3 Structure of an Artificial Neural Network 84
Figure 6-4 Optimization approaches .. 86
Figure 6-5 Flowchart of GABP .. 87
Figure 6-6 ANN model training result ... 88
Figure 6-7 Generalization ability test results 90
Figure 6-8 Cross-section of a five-layer cricket ball 91
Figure 6-9 Cross-section of a two-layer cricket ball 92
Figure 6-10 Animation view of two-layer cricket ball impact simulation 93
Figure 6-11 Comparison of the force-time properties of the simulation and the real test under the impact speed of 25 m/s (five-layer cricket ball) 94
Figure 6-12 Comparison of the force-time properties of the simulation and the real test under the impact speed of 25 m/s (two-layer cricket ball) 95
Figure 7-1 Impact load results comparison for cricket balls undergoing normal impact at an impact speed of 5.5 m/s .. 98
Figure 7-2 Impact load results comparison for cricket balls undergoing normal impact at an impact speed of 10 m/s .. 99
Figure 7-3 Impact load results comparison for cricket balls undergoing normal impact at an impact speed of 20.8 m/s 100
Figure 7-4 Impact load results comparison for cricket balls undergoing normal impact at an impact speed of 25 m/s .. 101
Figure 7-5 Comparison of computational costs for the developed models 102
Figure 7-6 Impact load results comparison for cricket balls undergoing normal impact at an impact speed of 20.8 m/s .. 104
Figure 7-7 COR variations in relation to impact speed for a three-layer cricket ball ... 106
Figure 7-8 High speed video images .. 107
Figure 7-9 Animation view of a detailed FE model simulation at the impact speed of 25 m/s ... 109
Figure 7-10 Animation view of a three-layer cricket ball using the universal FE model ... 110
List of Tables

Table 2-1 Golf ball modelling approaches from 1967 to 2002 15
Table 2-2 Different approaches to baseball modelling from 1997 to 2003 19
Table 5-1 Three-layer cricket ball specifications 52
Table 5-2 Number of nodes and elements for FE ball model components 54
Table 5-3 Material parameters for the inner-core unit after fitting with the
 Mooney-Rivlin model .. 60
Table 5-4 Range of the variables, C_{10} and C_{01}. ... 65
Table 5-5 Range of the variables, g_i^p and v_i^q .. 69
Table 6-1 19 characteristic values used to describe cricket ball impact behaviour
 ... 83
Table 6-2 ANN model output variable ranges ... 89
Table 7-1 Stiffness and damping parameters for the single-element non-linear
 model .. 102
Table 7-2 Stiffness and damping parameters for the three-element non-linear
 model .. 103
Table 7-3 Material parameters of universal FE model at typical impact speeds
 ... 105
SUMMARY

In cricket, high speed impacts occur between the cricket ball and the bat, player and their protective equipment. Improved understanding of impact dynamics has the potential to significantly improve the development of cricket equipment and also contribute to improving the player’s safety and performance. In particular, development of high performance cricket balls with enhanced structural properties (e.g. improved durability) would benefit greatly from such insight. In order to gain more insight into the impact dynamics of cricket balls, appropriate structural models of the ball are required. This work presents two fast-solving numerical models, a detailed multi-layer FE model as well as a universal FE model, for the structural analysis of cricket balls. The models were derived using experimental data obtained from tests developed for this purpose, including drop tests and high speed impact tests.

The experimental work presented in this study included measurements of the impact behaviour of two-layer, three-layer, and five-layer cricket balls using a dynamic signal analyser and high speed video analysis software. The ball properties obtained experimentally were used to develop two mathematical models: a single-element model and a three-element model. These cricket ball models have been developed so that they capture the key characteristics of ball-impact behaviour while allowing for fast-solving dynamic simulation. The stiffness and damping properties of both models were determined using a novel fast-solving genetic algorithm. These models predict the force-time diagram during impact with very little computing cost. However, developing a mathematical model with a reasonable level of accuracy is still a challenge. The simulation of the ball model impact with a flat surface achieved reasonable agreement with experimental results for both the single-element and the three-element models. The genetic algorithm (GA) method proved to be more efficient and convenient than directly solving the differential equations.

A detailed multi-layer, multi-material Finite Element (FE) model has also been developed. The model has been experimentally validated and refined to a greater level of detail than
has been previously possible. Dynamic explicit analysis was conducted using ABAQUS (ABAQUS Inc., USA). Rather than using the conventional trial-and-error approach for model refinement, this study proposes a highly robust method to determine material parameters that are extremely difficult to obtain by direct experimental measurement. This approach incorporates several numerical methods, including FE simulation, parameter optimization, and process automation.

A universal Finite Element (FE) ball model has also been developed within the ABAQUS CAE environment. This model can be seen as a combination of an FE model template and a material parameter selection tool based on an Artificial Neural Network (ANN) model. This approach allows for rapid model development while producing accurate results at different impact speeds. Two sets of real test data obtained from a five-layer cricket ball and a two-layer cricket ball at impact velocity of 25 m/s were used to examine the ANN model. Comparison of the results shows good agreement between the simulation results and the experimental results. An important feature of the developed universal FE model is its flexibility. The results show that the developed FE-ANN model can be used to predict the impact behaviour of different types of cricket balls under various dynamic conditions. This flexibility represents an advantage that can be utilized by sports equipment developers to rapidly develop different cricket ball models needed for inclusion in larger simulations involving impact of a cricket ball with other objects.

The developed FE-ANN model and the corresponding training process represent an invaluable tool for facilitating design, analysis and structural optimization of cricket-related sport equipment. Furthermore, the application presented here can be extended to simulate any solid ball impact.
1. Introduction

1.1. Background

The materials used today to make cricket balls are mostly the same as in the 1770s. All cricket balls are made from cork and latex rubber on the inside and leather on the outside. In the past, research on sports balls usually concentrated on the effect of swing or interaction of the ball with bat (Nicholls et al., 2005; Nathan, 2000; Sayers and Hill, 1999). The structural behaviour of the ball itself attracted much less attention to date.

There is an increasing need in research and development for a theoretical cricket ball model that can be incorporated in the analysis of bat impact stresses, deformations and durability. Furthermore, with the growing concern for sports injuries, such a model would also be used to improve the understanding of impact mechanisms between the cricket ball, cricket player and their protective gear. This type of modelling would allow cost-effective simulations of a range of impact events required in the development of protective equipment, such as cricket helmets, face guards, gloves, etc.

A multi degrees of freedom theoretical cricket ball model, when included in relevant numerical simulations involving different three-dimensional impact scenarios, should enable prediction of energy exchange mechanisms between the striking bat, the protective gear and the ball. It would also allow calculation of energy losses due to damping or friction as well as analysis of stress distributions and time-dependent deformations.

Recently, advanced computer aided engineering (CAE) techniques have been widely used in manufacturing sports equipment to enhance the quality of the sports equipment produced and also to reduce the development time and cost. Due to the transient dynamic nature of ball impact as well as the involved large deformations and non-linear behaviour, transient dynamic finite element analysis (FEA) needs to be used. This is a powerful tool
that allows for the simulation of high speed impact events that occur over very short periods of time. It also enables the analysis of three-dimensional structures, including frictional effects and complex contact surfaces.

1.2. Objectives

The objectives of this study are:

1. to assemble and collate information regarding the application of modelling and simulation technology for sports balls;
2. to design and to develop both static and dynamic experiments and to understand the behavioural features of the specified cricket ball;
3. to develop two mathematical models of the cricket ball for theoretical and comparative analysis;
4. to develop a detailed multi-layer and multi-material cricket ball model by using the finite element method;
5. to build a universal, simplified FE model of a cricket ball with high accuracy and low computing cost. This model can also been used for any other solid ball impact simulation.
1.3. **Thesis layout**

Brief descriptions of each chapter of this thesis are listed below.

Chapter 1 provided the background to the game of cricket and discussed the importance of cricket ball modelling. It also listed the objectives of this study.

Chapter 2 presents a literature review of relevant theoretical and experimental studies of sports ball modelling techniques. This provides an overview of current sports ball model simulations and experiments and shows how these have contributed to the experimental design for this study.

Chapter 3 gives a detailed description of the experiments designed for this study and explains the rationale for—as well as the assumptions, procedures and results of—the experiments.

Chapter 4 shows how two mathematical models are developed for this study based on MATLAB. Each set of modelling results is verified by comparing the modelling results with the experimental results that were obtained in Chapter 3.

In Chapter 5, a completed FE model of a cricket ball is presented. This chapter demonstrates how the model was developed and describes the processes of the selection of the constitution equation, the determination of the material parameters, and the verification of the model.

In Chapter 6, a universal FE model of the designated cricket ball is presented based on a novel modelling system that was developed. This chapter gives a detailed description of the construction of the novel modelling system, including descriptions of the development of its methodology and its simulation results.
Chapter 7 compares all the models that have been developed in this study and summarizes the actions and findings of this study.

Finally, Chapter 8 provides the conclusions of this study and gives suggestions for future studies on sports ball modelling.
2. Literature Review

2.1. Introduction

Impact between a sports ball and a planar barrier has been widely investigated by researchers using both theoretical modelling and experimental testing approaches (Ujihashi et al., 2002; Cross, 1999). The review of research to date shows that baseball, golf ball and tennis ball are the most common ball types investigated. The following sections represent an overview of various theoretical models of sports balls for different ball types in a chronological order.

Theoretical sports ball models have been generally classified into two main categories: (i) mathematical models and (ii) numerical (mostly finite element) models. Mathematical models have been quite popular and, due to their convenient features such as simplicity and economical performance, they are still being used. The following sections discuss both modelling methods in relation to the different ball types. The modelling methodologies that are of particular interest to this study are highlighted.

Before adopting any of the computer-based models, it is necessary to conduct physical experiments to calibrate or to verify the models. Therefore, in addition to modelling studies, experimental investigations are also included in this literature review. These published studies show that a range of methods that have been used in the past attempt to obtain information regarding ball impact. These methods involved the use of cannon-gun or pitching-machine projection, light gate, high speed camera, and speed measurement.
2.2. Sports ball impact mechanism

In order to successfully develop a cricket ball model, it is important to understand the impact mechanism.

In a fundamental study by Daish (1972), he examined a theoretical case of a rigid sphere impacting on a rigid surface as shown in figure 2-1. Daish (1972) analysed a rigid ball with a radius of \(r \) approaching a rigid surface at an angle of \(\theta_i \) with horizontal velocity, \(v_{xi} \), vertical velocity, \(v_{yi} \), and back spin, \(\omega_i \). A frictional force, \(F \), and a reaction force, \(R \), were imposed during impact with the rigid surface. After the collision, the ball rebounded at an angle of \(\theta_o \), but remained within the same plane. The rebound velocity components are \(v_{xo} \) and \(v_{yo} \). The spin rate is taken as positive, \(\omega_o \).

![Figure 2-1 Newtonian model of ball impact (Daish, 1972)](image)

Daish (1972) presented two scenarios based on the amount of frictional force. The ball may slide on or roll over the surface. Through a series of derivations, the performance characteristic, which is the coefficient of restitution (COR, \(e = \frac{v_{yo}}{v_{yi}} \)), can be expressed as

\[
e = \frac{v_o \sin \theta_o}{v_i \sin \theta_i}
\]
The post impact parameters can be written as

\[v_{yo} = \frac{5v_{io} - 2r\omega_i}{7} \] \hspace{1cm} (2.2)

\[v_{yo} = ev_{ji} \] \hspace{1cm} (2.3)

and

\[\omega_o = \frac{v_{yo}}{r} = \frac{5v_{ji} - 2r\omega_i}{7r} \] \hspace{1cm} (2.4)

Apart from the above classical Newtonian model, spring-damper models have been most widely used to describe the ball-barrier impact mechanism. One of the most characteristic spring-damper models is the Maxwell unit. As shown in figure 2-2, the Maxwell unit treats the ball as a rigid body supported by a spring and damper connected in parallel. The viscoelastic properties of the ball are therefore defined within the description of the ball-barrier “interaction”. For simplicity, it is generally assumed that the damping coefficient, \(c \), is constant during impact whilst the elastic element is modelled as a non-linear spring to improve the model’s accuracy.

![Spring-damper ball impact model](image)

Figure 2-2 Spring-damper ball impact model
Rate-independent parameters such as k and α, are typically derived from a quasi-static compression test. The value of c could therefore be obtained by solving the equation of motion numerically.

Furthermore, complicated spring-damper models, such as the combination of Maxwell or Kelvin-Voigt units, involve several spring and/or damper elements connected either in series or in parallel. Such models have been widely used for golf ball modelling (Yamaguchi and Iwatsubo, 1998).

2.3. **Golf ball modelling**

A number of golf ball models with varied complexity, ranging from simple Newtonian mechanics and non-linear spring-damper models (Ujihashi, 1994; Lieberman and Johnson, 1994) to more sophisticated FE models (Ujihashi et al., 2002), have been investigated.

One of the first mathematical models used to describe the impact between a golf ball and a golf club was developed by Simon (1967). The differential equations used in the Simon model are expressed as

\[
\frac{d^2 y_1}{dt^2} = y_2
\]

\[
\frac{d^3 y_2}{dt^3} = -\frac{k}{m} y_1^3 (1 + \alpha y_2)
\]

Where \(m\) is the mass of the golf ball, \(y_1\) is the deformation rate and \(y_2\) is the deformation acceleration. The Simon model comprises two key parameters, \(k\) and \(\alpha\), which are determined by fitting the predicted force versus time data to the measured force data. This model predicts, with reasonable accuracy, the rebound velocities for two nominated approaching velocities (120 ft/s, 140 ft/s). However, Johnson and Lieberman (1996) have stated that there is a problem with the theoretical rounds due to the fact that this model requires the deflection to be zero at the end of the impact, which proved to be inaccurate.

Lieberman and Johnson (1994) proposed a more complicated five-parameter spring-damper golf model, as shown in figure 2-3. This model has been successfully used to represent ball-barrier collisions over a wide range of approaching velocities.
The differential equations of motion for this system are expressed as

\[x_1 = x_2; \quad x_1(0) = 0 \] \hspace{1cm} (2-7, 2-8)

\[\dot{x}_2 = -\frac{k_1}{m}x_2^\alpha - \frac{k_2}{m}x_3^\beta; \quad x_2(0) = v_{in} \] \hspace{1cm} (2-9, 2-10)

and

\[\dot{x}_3 = -\frac{k_2}{c}x_3^\beta + x_2; \quad x_3(0) = 0 \] \hspace{1cm} (2-11, 2-12)

Where,

- \(m \) = ball mass
- \(v_{in} \) = initial velocity
- \(\alpha \) = spring-1 power
- \(\beta \) = spring-2 power
- \(k_1 \) = spring-1 stiffness
- \(k_2 \) = spring-2 stiffness
- \(c \) = damping coefficient
Two rate-independent parameters, \(\alpha \) and \(k_1 \), are obtained from low speed compression tests. The remaining three parameters, \(k_2, c \) and \(\beta \), are then derived from the recordings of the impact forces using the gradient method.

Ujihashi (1994) developed a similar three-element, non-linear spring-damper model from the measured dynamic characteristics, as shown in figure 2-4. Several commercial golf balls were fired from a cannon gun at a steel target. Contact forces and ball deformations were measured respectively by load cell and high speed camera. Model parameters, \(k_1, k_2 \) and \(c \), were then identified by comparing the simulated contact force with the experimental results.

![Three-element spring-damper model of a golf ball](image)

Figure 2-4 Three-element spring-damper model of a golf ball
Another approach to modelling the golf ball is by using FE models. Figure 2-5 illustrates the cross-sectional view of a reduced FE model of a golf ball. This model emulates the golf ball as a solid sphere. The ball’s viscoelastic characteristics are not simulated by using mathematical models but are expressed as ‘material’ properties in a reduced FE model. This generates a realistic three-dimensional model that includes elastic and non-linear effects. Similar approaches have been reported in several investigations (Moriyama et al., 2004; Ujihashi et al., 2002; Tavares et al., 1998).

In order to assist the examining of golf club structures, Ujihashi et al. (2002) developed an FE model of a golf ball with hexagonal elements. The material of the golf ball was represented as a linear, three-element viscoelastic model. The constants of this model were determined by comparing the force and deformation relationship.

Tavares et al. (1998) used a similar experimental setup employed by Gobush (1990) and Ujihashi (1994) to measure the reactive force and contact time during a golf ball and barrier impact. A three-dimensional FE model was created consequently by using the commercially available software package, LS-DYNA (Livermore Software Technology Corporation, USA). The material shear parameters were deduced from simple axial tests.
and the damping property was added empirically. The results of the simulation were reported to be in good agreement with the experimental results.

More recently, Moriyama et al. (2004) used a more complicated FE model that consisted of three-layer structures to simulate the initial launch conditions of a golf ball before a collision. Good agreement between the simulation results and the experimental results were reported.

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Model adopted</th>
<th>Software employed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simon</td>
<td>1967</td>
<td>Theoretical model with two parameters</td>
<td>N/A</td>
</tr>
<tr>
<td>Lieberman and</td>
<td>1994</td>
<td>Non-linear spring-damper model with five parameters</td>
<td>N/A</td>
</tr>
<tr>
<td>Johnson</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ujihashi</td>
<td>1994</td>
<td>Non-linear spring-damper model with three parameters</td>
<td>N/A</td>
</tr>
<tr>
<td>Ujihashi</td>
<td>2002</td>
<td>Non-linear spring-damper model with three-parameters</td>
<td>N/A</td>
</tr>
<tr>
<td>Tavares et al.</td>
<td>1998</td>
<td>Linear, viscoelastic and solid FE model</td>
<td>LS-DYNA</td>
</tr>
<tr>
<td>Moriyama</td>
<td>2004</td>
<td>Three-layer composite FE model</td>
<td>ABAQUS</td>
</tr>
</tbody>
</table>

Table 2-1 Golf ball modelling approaches from 1967 to 2002
2.4. Tennis ball modelling

The interest in tennis ball modelling has grown since the first successful tennis ball model was published by Daish (1972). Currently, a number of research projects have been conducted in the area of tennis ball modelling.

The dynamic characteristics of a tennis ball can be expressed by a simple theoretical model consisting of a mass, m, supported by a non-linear spring in parallel with a linear damper.

For simplicity, it is assumed that both the elastic and damped parts of a tennis ball are constant during the impact, as shown by c and k in figure 2-6. The successful modelling comes from the determinate value of the stiffness coefficient, k, and the damping coefficient, c. Dignall (2000) provided the theoretical solution of the Maxwell unit.

The motion differential equation for the Maxwell unit is expressed as
\[m\ddot{x} + c\dot{x} + kx = 0 \] 2-13

Given the boundary condition of \(x=0 \) at \(t=0 \), the well-known analytical solution to this equation is

\[x = ae^{-bt} \sin \omega t \] 2-14

Differentiating the above equation gives

\[\dot{x} = ae^{-bt}[\omega \cos \omega t - b \sin \omega t] \] 2-15

and

\[\ddot{x} = ae^{-bt}[(b^2 - \omega^2) \sin \omega t - 2b \omega \cos \omega t] \] 2-16

with boundary conditions,

\[x=0 \text{ at } t=T_c \]

\[\dot{x}_{t=0} = v_{in} = a\omega \] 2-17

and

\[\dot{x}_{t=T_c} = v_{out} = a\omega e^{-bt_{T_c}} \] 2-18

Thus

\[k = m\frac{\pi^2}{T_c^2} \] 2-19

\[a = v_{in} \frac{T_c}{\pi}; \quad b = -\frac{1}{T_c} \ln\left(\frac{v_{out}}{v_{in}}\right); \quad c = -2m\frac{1}{T_c} \ln\left(\frac{v_{out}}{v_{in}}\right) \] (2-20, 2-21, 2-22)

17
Where $m =$ ball mass, $v_{out} =$ exit velocity, $v_{in} =$ initial velocity, and $T_c =$ contact time. Eventually, k and c could be calculated through T_c, v_{out}, and v_{in}.

A further study by Kanda (2002) adopted an advanced FE model to study the tennis ball. In his study, the rubber wall of the tennis ball was modelled using isoperimetric solid elements and the pressurized gas in the ball was assumed to have the same properties as a perfect gas.

Since the tennis ball has a different structure from that of other solid balls (golf balls, baseballs, cricket balls), the detailed modelling techniques of tennis balls will not be further discussed in this study.

2.5. Baseball modelling

Due to the structural similarities between the baseball and the cricket ball, it is important to discuss baseball modelling methodologies.

A baseball is typically made up of multiple layers (a central cork or rubber core, wool packing, and a stitched leather cover) and FE analysis has been used to evaluate baseball performance at a very early stage in the history of such research into baseball performance.

The first FE approximation for baseball behaviour during impact was made by Crisco et al. (1997) using the elasticity theory. Crisco et al. (1997) assumed that the ball was a homogeneous and linear elastic sphere with a COR of 1. Crisco et al. (1997) created this model based on experimental axial compression tests in which one baseball was compressed to 10% of its original diameter. Obviously, this model has limited applicability to the dynamics of batted-ball impact as it fails to account for the non-linearities associated with large deformations.
Mustone and Sherwood (1998) adopted a non-linear elastic model for the baseball based on the Mooney-Rivlin formulation. In their study, a ball COR of 0.710 was reported. Although the specific data of the load-deformation properties of ball impact in Mustone and Sherwood’s study were obtained from quasi-static and dynamic tests, damping was not factored into the ball material but added as a global function. This effectively added damping to the entire batted ball impact analysis. Smith et al. (2000)—and later, Shenoy et al. (2001) and Smith (2001)—adopted a linear viscoelastic model to represent the inelastic nature of baseball deformation. This model represented the simplest approximation for time-dependent material behaviour. A number of parameters—in particular, the instantaneous modulus at $t = 0, G_0$; the fully relaxed modulus at $t = \infty, G_\infty$; and the material constant, β—were experimentally obtained to fit the viscoelastic law, $G(t) = G_\infty + (G_0 - G_\infty)e^{-\beta t}$, as formulated by Hermann and Peterson (1968). In addition, the bulk modulus k was found from G_0. In 2003, Nicholls (2003) also used this model to simulate a bat-baseball collision. The following table compares the above mentioned models:

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Model adopted</th>
<th>Software employed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crisco et al.</td>
<td>1997</td>
<td>Homogeneous and linear elastic sphere</td>
<td>LS-DYNA</td>
</tr>
<tr>
<td>Mustone & Sherwood</td>
<td>1998</td>
<td>Hyperelastic model (Mooney-Rivlin)</td>
<td>LS-DYNA</td>
</tr>
<tr>
<td>Smith et al.</td>
<td>2001</td>
<td>Linear viscoelastic model</td>
<td>LS-DYNA 950</td>
</tr>
<tr>
<td>Nicholls</td>
<td>2003</td>
<td>Linear viscoelastic model</td>
<td>ANASYS/LS-DYNA 6.1</td>
</tr>
</tbody>
</table>

Table 2-2 Different approaches to baseball modelling from 1997 to 2003
2.6. **Softball modelling**

Duris (2004) has conducted a series of tests on softballs to observe the COR and dynamic compression in order to verify the two viscoelastic FE models that he created. The first model used a power law expression with three parameters and the simulated results were reported to be in good agreement with the experimental results. The second model employed a material analysis technique called dynamic mechanical analysis (DMA). This technique was used to identify the relaxation curve of the polyurethane foam core of the softball. Subsequently, a Prony series model was fitted with the relaxation curve to determine the parameters for the FE model. However, this method failed was unable to predict the material parameters accurately.

2.7. **Cricket ball modelling**

The cricket ball is a complex non-homogeneous sphere made up of several layers of different materials including cork-rubber core, cork-and-twine packing, and a stitched leather. Review of published research shows that little work has been done to date on cricket ball modelling. Two simplified cricket ball models were reported by Carré *et al.* (2004) and Subic *et al.* (2005) respectively.

Carré *et al.* (2004) developed a single degree-of-freedom spring-damper model of a cricket ball and simulated its impact with a rigid surface. Experimentally, the cricket ball was dropped onto the horizontal flat top surface of a load cell from a range of different heights to quantify the model’s dynamic stiffness and damping parameters. Although the results from these simulations fit the experimental data with a reasonable degree of accuracy, this model has several limitations. The first drawback is that the model is a theoretical representation based on mathematical analysis, which makes it difficult to be coupled with other existing FEA models. The second limitation is the fact that this is a single degree-of-freedom model, which prevents its implementation in the simulation of
impact with three-dimensional objects. Finally, this model was developed under low speed, which can hardly be used for the prediction of real game conditions in cricket.

The model reported by Carré et al. (2004) is shown in figure 2-7. In this model, both k and c are functions of v_{in}. An equation proposed by Carré et al. (2004), which assumes that the viscoelastic coefficient, c, is associated with the contact area, which can be expressed as

$$ c = p\pi R^2 = q(d - y)y $$ \hspace{1cm} (2.23)

Where R is the radius of the contact area, d is the outer diameter of the ball, and p and q are introduced model coefficients. The equation of motion of the system is presented as follows:

$$ m\ddot{x} + c\dot{x} + kx^\alpha = 0 $$ \hspace{1cm} (2.24)

Figure 2-7 Spring-damper model of ball impact
Where

\[m = \text{ball mass} \]
\[k = \text{stiffness coefficient} \]
\[\alpha = \text{spring power} \]
\[c = \text{damping coefficient} \]

Subic et al. (2005) developed an approximate FE model to emulate the effects of the interaction of the cricket ball with a rigid or deformable surface. Quasi-static axial compression tests were first conducted on the entire ball under loading velocities varying from 1 mm/min to 500 mm/min. The experimental results were extrapolated to predict the performance of the ball at actual striking speeds used in standard tests (6.26 m/sec) for cricket gear. An exponential relationship between the loading velocity and the ball stiffness variable was found to prevail, which was used in the extrapolation. A numerical model of the cricket ball was developed based on the concept of a soft surface encasing a rigid body. The ball stiffness properties obtained from experimental tests were used to calculate the properties of the soft surface of the ball, assuming homogeneous pressure distribution over the contact area and neglecting the friction effect. To calculate the pressure values from the experimentally measured forces values, the area of contact between the ball surface and the anvils of the drop test machine was estimated as a function of displacement. The non-linear ball stiffness characteristic was finally calculated as a relationship between the contact pressure and the radial deformation of the soft surface of the ball.

Even though this modelling approach significantly reduced the complexity of the finite element modelling, it still has some inherent limitations. For example, in a simple compression test the ball is subjected to pressures from both sides, which is different from real application. Also, this model has not been verified through high speed dynamic testing.
2.8. Summary

After reviewing the available literature on sports ball modelling, it can be seen that accurate modelling of the dynamic behaviour of a cricket ball is a complex task due to the ball’s complicated structure. Researchers have attempted to use different models to describe different types of sports ball. Different approaches—from the simplest spring-damper models to more sophisticated FE models—have been invented to describe and to predict the dynamic behaviour of ball-barrier impacts. In particular, over the last few decades, with the growing demand for engineering simulation, FE models are seen as a potential replacement for spring-damper models. Sophisticated models share some common features: they take into account energy loss during an impact; they express the non-linear behaviour of a ball under high-velocity impact; and they describe viscoelastic behaviour (Ujihashi, 1994).

However, a number of key issues are currently restricting sports ball modelling developments. These are listed below:

1. Mathematical models with limited applicability are still being used in sports ball modelling, for example, in cricket ball modelling.
2. To reduce the effort needed for FE modelling, simplified construction and simple materials are used. This usually means that some crucial features of the actual ball cannot be taken into account.
3. Key material parameters are not accurately defined in existing sports ball models. Material parameters are often obtained through trial-and-error methods.
3. Experimental Testing of Ball Behaviour

3.1. Introduction

Prior to model development, experiments were designed and carried out to investigate the impact behaviour of the cricket ball in order to establish a benchmark that can be used to validate the developed ball model.

Generally, the apparatus used for the experiments consisted of a load cell mounted on a heavy brass rod and a speed gate. To obtain a suitable ball speed for testing, the ball can be dropped from a predetermined height (Carré et al., 2004) or it can be fired through a cannon gun or a pitching machine (Moriyama et al., 2004; Smith et al., 2000). The major difference between the cannon gun and the pitching machine is that the cannon gun does not impart any spin to the ball while the pitching machine does. If a speed gate is difficult to obtain, a high speed camera can be used as a substitute.

A basic understanding of the impact properties of a cricket ball is required to create a precise model. In this study, two types of experiments were conducted: the drop test and the high speed impact test. Three types of Kookaburra cricket balls were examined: a two-layer solid ball, a three-layer ball and a five-layer ball. Each ball was tested over a speed range of 5 m/s to 25 m/s.
3.2. The drop tests

3.2.1. Test installation

The primary objective of the experiment is to measure the low speed contact force, the coefficient of restitution (COR) and contact duration when the cricket ball impacts the rigid surface. In this case, a range of dropping heights (0.38m-4.90m) were used to allow the ball to reach a maximum speed of about 10m/s. The rig was designed with PCB pipes connected to a vacuum pump. The height-adjustable rig released the ball from a range of different heights. Other auxiliary equipment such as an impact cap, a mounting stud and a scale board were also designed and built for the experiment. The test installation is shown schematically in figure 3-1.

![Figure 3-1 Drop test setup](image)

Force measurement devices include a force transducer, an amplifier and a readout instrument.

A PCB 223A load cell was chosen for force measurements with the following technical specifications:
Sensitivity (± 15 %)
94.42 mV/kN
Measurement Range (Compression)
53.38 kN
Non-Linearity
≤ 1 % FS
Upper Frequency Limit
10 kHz

The calibration of the force transducer was obtained by integrating the impact force over the contact time which allows comparison with the momentum change of the ball according to the following equation:

\[\int F \, dt = m(v_1 - v_2) \]

Where \(v_1 \) and \(v_2 \) is the ball-speed just before and just after the ball’s impact with the rigid surface.

A PCB-482A16 charge amplifier was used with its gain value set to 10, which allowed for the output voltage to be increased to 0.09 mV/N. The amplified signal was then recognized by OROS OR25 pc-pack system and thus recorded by OR763 software (OROS Corporation). Figure 3-2 is a screenshot of the software recording an impact force pulse. The data sampling rate was set at 1 kHz due to the limitation of the data acquisition system.
A High Speed Camera (HSC) was used to measure the ball speeds, v_1 and v_2, just before and just after the impact. The camera was also utilized to detect the impact location. This was used to ensure that only correct results are collected, where the ball was dropping on the marked central position. The HSC used for this experiment was an IDT X-Stream™ XS-4 model. The recording configuration was set at 5000 frames per second. As the camera works at such a high frequency and due to the limitation of the RAM size, the images had to be refreshed in the buffer every 3 seconds. A triggering system was therefore required to ensure the camera would be triggered at the right time to capture only the necessary information. In this study, 200 frames were captured both before and after the triggering respectively. The triggering device used here was a PCB vibration sensor, 33bA35, which was mounted at the bottom of the impact base (figure 3-3) to sense the presence of the ball after firing. The setup shown in figure 3-3 is only for demonstration purpose. In the real test, the anvil was bolted to a stainless-steel-frame for high speed testing. For low speed testing, the anvil was attached to ground. A signal from the sensor was amplified and sent to the camera.
Figure 3-3 Image capturing circuit
3.2.2. Data processing

Ten complete sets of experimental results were successfully obtained, one set of which was selected for the purpose of verifying previously published findings. When the ball is dropped onto the anvil, it experiences a vertical impulsive force:

\[F = m \frac{dv}{dt} \] \hspace{1cm} 3-2

where \(v = \frac{dy}{dt} \) is the velocity of the ball’s centre of mass and \(y \) is the displacement of its centre of mass.

Since the vertical impulse force during impact is normally of a much higher order than the gravitational force, gravity effects can be neglected. For a measured force wave-form, the \(y \) displacement can be obtained by solving the differential equation:

\[\frac{d^2y}{dt^2} = \frac{F(t)}{m} \] \hspace{1cm} 3-3

with initial conditions

\[y = 0 \text{ and } \frac{dy}{dt} = v_i \text{ at } t = 0 \]

As the measured force wave was stored in WAV format, it had to be exported for further analysis. The exported WAV file was then converted by ORIGIN PRO 7.5 (OriginLab Inc., USA) software into a binary format. Consequently, the binary file was used for curve fitting using MATLAB 2006a (Mathworks Inc., USA). Impact and rebound speeds were determined by dividing the vertical distance by the elapsed time, as shown in figure 3-4 below.
Figure 3-4 Image produced from the drop test

As an example, for a cricket ball dropping from a height of 1.92m the measured force wave is presented in figure 3-5. The impact speed for this case was calculated as 6.5 m/s.
To reduce the influence of high frequency vibrations during the impact, the measured raw data needed to be “smoothed” through numerical treatment. In this case, the Loess (quadratic fit) method was used for smoothing. The comparison of the raw data and smoothed data is shown in figure 3-6.
Following data treatment, it was possible to define $F(t)$ by curve fitting. In this case the “curve fitting toolbox” in MATLAB was used for analysis. As a result, a fifth degree polynomial (equation 3-4) with an R-square of 0.9986 was fitted for the given force wave according to the least squares method (figure 3-7).
Figure 3-7 Curve fitting of measured force wave

\[F(t) = P_1 t^5 + P_2 t^4 + P_3 t^3 + P_4 t^2 + P_5 t + P_6 \]

Where \(P_1 = -1.062 \times 10^{19} \),
\(P_2 = 4.413 \times 10^{16} \),
\(P_3 = -5.987 \times 10^{13} \),
\(P_4 = 2.448 \times 10^{10} \),
\(P_5 = 2.797 \times 10^{6} \) and,
\(P_6 = 12.05 \).

Now, with defined \(F(t) \), the displacement of the centre of the ball could be obtained by solving the differential equation (3-3), with the initial conditions

\[y = 0 \text{ and } \frac{dy}{dt} = 6.5 \text{ at } t = 0 \]
Figure 3-8 is the time-displacement data gained from solving the differential equation 3-3. Figure 3-9 shows the final force-displacement curve during impact, which is similar to that found experimentally by Carré et al. (2004). This demonstrates the validity of the experimental design.
Figure 3-9 Force-displacement data obtained for a 1.92m height drop
3.3. The high speed impact tests

Impact tests were carried out for cricket balls colliding with a rigid surface at high speeds that were normally above 10 m/s. A cricket ball pitching machine (JAG, Australia) was used in these tests to accelerate the ball to the required speed levels. An impact speed of up to 30 m/s could be achieved via acceleration. Both the pneumatic wheels of the machine were set to have the same rotating speed to avoid imparting side spin to the balls as they were fired. The entire experiment facility was set up with the help from Professor Lloyd Smith, Washington State University, USA. As shown in figure 3-10, an additional PVC pipe was also used to ensure that the balls were being shot in a straight direction.

![JAG pitching machine setup](image)

As shown in figure 3-11, all measuring instrumentation remained the same as in the drop tests. The impact force wave, impact speed and the rebound speed of the ball were also
recorded in a similar manner. To obtain the immediate speed readings before and after impact with a better level of accuracy, the recorded images were analysed using the image analysis software, Image-Pro Plus (Media Cybernetics, USA).

Prior to analysing the images, a reference spatial calibration was completed. The reference calibration was used to characterize the optical system so that the captured images can be correctly calibrated. Figure 3-12 (a) shows the green reference line represents 25mm in physical measurements. Figure 3-12 (b) shows the image playback tool and figure 3-12 (c) shows the reference scaling setup tool.
Figure 3-12 Screenshot of the calibrated distance within the Image-Pro Plus software application

A sequence of images was selected for analysis, as shown in figure 3-13. The mean speed for the cricket ball just before hitting the transducer was obtained by a frame tracking function. Figure 3-13 (a) shows a set of continuous active images of the ball that was captured. Figure 3-13 (b) shows the image playback tool. Figure 3-13 (c) shows the reference scaling setup tool and figure 3-13 (d) is the velocity calculation diagram.
Apart from testing structurally intact cricket balls, the inner core and midsole cork units of a three-layer cricket balls were also subjected to the force sensor to record the impact behaviour for these components. This is for the validation of the FE ball model components in Chapter 5.
3.4. **Experimental results**

Figures 3-14, 3-15, and 3-16 show the impact load results for a two-layer, a three-layer, and a five-layer cricket ball respectively under impact speeds ranging from 5.5 m/s to 25 m/s. All experimental data are plotted as the average of five experimental tests.

Figure 3-14 Experimental impact load results for two-layer cricket ball
Figure 3-15 Experimental impact load results for three-layer cricket ball
Figure 3-16 Experimental impact load results for five-layer cricket ball
Figure 3-17 Correlation between impact speeds and the COR for various types of cricket ball

Figure 3-17 above shows the various COR results obtained from experiments with the three different types of cricket ball at impact speeds of 5.5, 10, 20.8 and 25 m/s. For all the tested balls, the COR was observed to decrease with increasing impact speed. The experimental data obtained in this study represents the basis for the development of cricket ball models.
4. Fast-solving Mathematical Models

4.1. Introduction

In this research, two mathematical models have been developed incorporating the experimentally determined cricket ball behaviour.

The first model termed here as “single-element model” consists of a single non-linear spring-damper unit (figure 4-1). The second is the “three-element model” (figure 4-3), which is a more complicated spring-damper system in which three Maxwell units are connected in parallel. For better accuracy, the parameters of both models have been identified as functions of impact speed.
4.2. The single-element non-linear model

Assume that \(m = 160 \) g, which is the real weight of a three-layer Kookaburra cricket ball. The single-element model is a Maxwell unit with the motion equation as follows.

\[
F_y = ky^\alpha + cy
\]

Normally, \(k \), \(\alpha \) and \(c \) can be obtained by solving the above differential equation in relation to impact speed. In this study, a more efficient method is proposed, which employs a genetic algorithm (GA) to determine the model parameters. For a model with multiple parameters, each parameter will influence the final simulation result and there will be an optimal point where the simulation result best fits the experimental results. The GA was used to search this point and has been adopted here for its ability to provide a better solution in a shorter time without the need to know the correlation between the
search variables in a complex problem. This advantage becomes more evident when the GA is applied to solve multi-element models which are very difficult to solve using traditional search methods such as the gradient method.

Once the model has been formalised, the parameters can be defined through the GA operator. The main objective in implementing this algorithm is to represent a solution to the problem as a chromosome. This requires the estimation of six fundamental parameters: chromosome representation, creation of the initial population, fitness evaluation function, selection function, genetic operators, and termination criteria. The definitions of the key parameters are listed below:

a) Chromosome representation: Each individual or chromosome is a combination of the model parameters, k, a and c.

b) Creation of the initial population: GAs work with a set of artificial elements called population. The initial population, which is a set of various combinations of k, a and c, is generated randomly from a given range.

c) Fitness evaluation function: This function is used to evaluate the fitness of an individual. The root mean square error (RMSE) that is calculated from the simulation force wave and the experiment force wave is deemed as fitness character. This means that the smaller the RMSE, the better the solution.

d) Selection function: The selection function uses the “roulette wheel” method.

e) Genetic operators: Two parents perform a simple single-point crossover. This changes each of the bits of the parents based on the probability of mutation (binary mutation). Figure 4-2 shows the workflow of the genetic algorithm operations.

f) Termination criteria: This is the upper limit of generation numbers and is 200.
Figure 4-2 Flowchart of genetic algorithm operations
4.3. The three-element non-linear model

The second model, as shown in figure 4-3, is constructed in a different manner to the first model. In this model, k_1, k_2, k_3, a_1, a_2, a_3, c_1, c_2, and c_3 are assumed to be functions of speed, whilst m_1, m_2, and m_3 are allowed to change freely, but need to remain as a total mass of 160 g. For individual elements, the equation of motion is derived in the same manner as for the single-element model.
4.4. Model validation

Figure 4-4 and figure 4-5 present the simulation results for the two developed models. The RMSE score for single-element model is 1037 and for three-element is 1235. Comparing RMSE values showed that under the same conditions, the three-element model has a better accuracy than the single-element model.

![Graph showing simulation results for impact speed of 25 m/s](image)

Figure 4-4 Single-element model simulation results for impact speed of 25 m/s
The comparison of the results shows that the three-element model has following advantages over existing cricket ball models:

a) It enables a fast-solving method for calculating model parameters. On average, it needs less than two seconds for solving individual model.
b) It emulates full impact speeds ranging from 5.5 m/s to 25 m/s.
c) It has a better accuracy than single-element models in terms of predicting the force-time curve during impact.
d) It can easily be extended to multi-element models based on its programming structure.
5. Detailed Finite Element Model

5.1. Introduction

The development of numerical simulations using advanced finite element (FE) models has become a subject of increasing interest in the field of sports research. FE models can provide more accurate simulations than other conventional mathematical models. They can provide understanding of impact mechanisms in complex systems—such as stress propagation waves and energy transactions.

This chapter presents the development of a validated, multi-layered and multi-material FE model of a cricket ball. The developed FE model includes detailed ball geometry and verified material parameters. It can also simulate a wide range of impact speeds. The development of the FE model includes the construction of geometry, the assignment of material properties, and the application of surface interactions between the different components of the ball. During the simulation, temperature effect was not considered.

A cricket ball consists typically of multiple layers. As shown in figure 5-1, a central cork-rubber core, cork-and-twine packing, and a stitched leather cover usually constitute the three major layers of a cricket ball. The materials used in manufacturing cricket balls are highly rate-dependent and, accordingly, impact-speed dependent.
Figure 5-1 Cross-section of a three-layer cricket ball

Table 5-1 presents the detailed specifications of the three layers that were measured from a real Kookaburra cricket ball.

<table>
<thead>
<tr>
<th>Layer</th>
<th>Mass (g)</th>
<th>Diameter (mm)</th>
<th>Volume (mm3)</th>
<th>ρ (T/mm^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inner core</td>
<td>29</td>
<td>40</td>
<td>33510</td>
<td>8.65×10^{-10}</td>
</tr>
<tr>
<td>Midsole cork layer</td>
<td>61</td>
<td>62</td>
<td>91278</td>
<td>6.68×10^{-10}</td>
</tr>
<tr>
<td>Leather cover</td>
<td>80</td>
<td>72</td>
<td>70644</td>
<td>11.32×10^{-10}</td>
</tr>
</tbody>
</table>

Table 5-1 Three-layer cricket ball specifications
5.2. Development of the FE model

The FE model presented here consists of three major components (figure 5-2): a central solid sphere, a middle hollow sphere and an external hollow sphere. These components are respectively developed to emulate the cork-rubber inner core, cork-and-twine midsole layer, and the leather cover of the cricket ball.

Figure 5-2 Detailed FE model components

Figure 5-3 shows the cross-sectional view of a complete FE model of a cricket ball.
All components within the FE model are meshed with eight-node solid elements using ABAQUS CAE. Table 5-2 shows the number of nodes and elements for each component.

<table>
<thead>
<tr>
<th>Component</th>
<th>No. of nodes</th>
<th>No. of elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inner core</td>
<td>2634</td>
<td>2209</td>
</tr>
<tr>
<td>Midsole layer</td>
<td>2088</td>
<td>1560</td>
</tr>
<tr>
<td>Leather cover</td>
<td>1806</td>
<td>1200</td>
</tr>
</tbody>
</table>

Table 5-2 Number of nodes and elements for FE ball model components
In non-linear dynamic Finite Element Analysis, there are basically two numerical integration methods; the implicit method and the explicit method. Both methods are incremental, i.e. the analysis is divided into many small increments. The final solution is obtained from the progress through the incremental responses. In the implicit method, dynamic equilibrium has to be achieved at the end of each increment using iteration techniques. On the other hand, the explicit method achieves a solution by explicitly advancing the kinematic state from the previous increment. The size of the time increment needs to be very small in order to avoid numerical instability. The size of the time increment depends on the mesh density and the highest natural frequency of the model. Therefore, a very large number of increments is needed for the analysis. However, the computational cost per increment using the explicit method is much smaller than that of the implicit method. The small size of the time increments makes the explicit method more suitable for non-linear dynamic analysis occurring over a very short period of time, such as impact analysis. Therefore, the dynamic explicit method of analysis has been used throughout this study to simulate the impact of the cricket ball to other surfaces.

In this study, finite element analysis was performed using the commercially available non-linear FEM program, ABAQUS/Explicit, Version 6.6, which was run in Microsoft Windows XP on a high-performance personal computer.

The “General” contact algorithm in ABAQUS/Explicit was adopted, which allows for simple definitions of contact with very few restrictions on the types of surface involved. The interaction between the different layers of the ball was considered to be a “hard” contact, which is the most common contact pressure-overclosure relationship. This contact algorithm assumes that when surfaces are in contact, any contact pressure can be transmitted between them. If the contact pressure reduces to zero, the surfaces separate. Conversely, if the clearance between surfaces reduces to zero, the separated surfaces come into contact. This relationship can be seen in figure 5-4.
The contact force between the cricket ball and the rigid surface was calculated by adopting the “penalty method”. Once the initial basic FE model was developed, it was then essential to choose the correct material models and corresponding associated parameters.

The detailed FE model was developed through a three-step process. First, an inner core unit was modelled separately and calibrated against experimental tests. Then, a midsole layer model was added onto the verified core unit. Finally, after the midsole unit was verified against experimental tests, a leather cover model was incorporated to produce a complete cricket ball model.

The following sections describe how each component was modelled and verified against experimental results and how those model parameters were determined.
5.2.1. The inner core

The inner core of a cricket ball is generally a rubber-like material although consisting of mixed rubber and cork. The non-linear elastic properties of this inner core were represented by a hyperelastic material model, as theoretically developed below. Therefore, it was assumed that the inner core material is isotropic and incompressible.

Rubber and rubber-like material properties are not represented by Hooke’s law, but are characterized by a strain-energy function. The relationship between the strain-energy function and stress is

\[
T_{ij} = \frac{\partial U}{\partial e_{ij}}, \quad T^i_j = \frac{\partial U}{\partial e \, e^i_j}
\]

where \(T\) is the 2nd Piola-Kirchhoff stress tensor, \(E\) is the Green-Lagrange strain tensor and \(U\) is the strain-energy function. Following this, the Cauchy stress, \(\sigma\), is obtained from

\[
\sigma = \frac{1}{J} F T F^T
\]

where \(J = \det F\) is the Jacobian determinant of \(F\), and \(F\) is the deformation gradient tensor given by

\[
F = \frac{\partial x}{\partial X}, \quad F_{ij} = \frac{\partial x_i}{\partial X_j}
\]

Where \(x_i\) represents the current configuration and \(X_j\) represents the reference configuration. The strain-energy function, \(U\), is a function of the principal invariants, \(I_1, I_2\) and \(I_3\):

\[
I_1 = \text{trace}(B)
\]
\[I_2 = \frac{1}{2}(I_1^2 - \text{trace}(B^2)) \]

5-5

and

\[I_3 = \det(B) \]

5-6

Where \(B = FF^T \) is the left Cauchy-Green deformation tensor. For incompressible material,

\[J = 1, U = U(I_1, I_2) \]

5-7

Then, the general form for the constitutive model of hyperelasticity is given by

\[
\sigma = -pI + 2\left[\left(\frac{\partial U}{\partial I_1} + I_1 \frac{\partial U}{\partial I_2} \right) B - \frac{\partial U}{\partial I_2} B^2 \right]
\]

5-8

Where \(p \) is the hydrostatic pressure arising from the incompressibility constraint.

There are several hyperelastic material models that are commonly used to describe rubber and other elastomeric materials on the basis of strain energy potential. The Mooney-Rivlin model is chosen for this study and its constitution equation can be expressed as

\[
U = C_{10}(\overline{I}_1 - 3) + C_{01}(\overline{I}_2 - 3) + \frac{1}{D_1}(J_{el} - 1)^2
\]

5-9

Where \(U \) is the strain energy per unit of reference volume; \(C_{10}, C_{01} \) and \(D_1 \) are temperature-dependent material parameters; and \(\overline{I}_1 \) and \(\overline{I}_2 \) are the first and second deviatoric strain invariants. \(J_{el} \) is the elastic volume ratio.

In order to define material parameters, uniaxial compression tests were conducted using the INSTRON universal testing machine. These compression tests were
performed in order to understand the basic material’s behaviour. The raw material for testing, as seen in figure 5-5, was supplied by Kookaburra Co., Ltd.

![Figure 5-5 Rubber core samples provided by Kookaburra Co., Ltd.](image)

The results from the uniaxial compression tests were used to develop the constitutive models. In this study, the material model was chosen as Mooney-Rivlin. The curve fitting of the experimental results is displayed in figure 5-6, and the fitted material parameters are displayed in table 5-3.
Figure 5-6 Material parameters fitting using the Mooney-Rivlin model in ABAQUS

<table>
<thead>
<tr>
<th>Material parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_1</td>
<td>0.00000000</td>
</tr>
<tr>
<td>C_{10}</td>
<td>3.09068828</td>
</tr>
<tr>
<td>C_{01}</td>
<td>-1.49503368</td>
</tr>
</tbody>
</table>

Table 5-3 Material parameters for the inner-core unit after fitting with the Mooney-Rivlin model
Figure 5-7 shows the inner-core unit of the three-layer Kookaburra cricket ball and the corresponding FE model. The impact of the inner core with a plane rigid surface was simulated using the material defined in table 5-3. Figure 5-8 presents the comparison of the force-time output of the simulation with that obtained from the real test under an impact speed of 17.85 m/s. It can be observed that neither the calculated
peak force nor the contact time agrees with the experimental results. This is generally because the material properties have been derived from a quasi-static test. A dynamic impact test involves large local deformation and rapid strain changes. Therefore, the ideal material test would be an instantaneous recording of stress/strain response during impact. Moreover, there is no energy loss being considered during this basic simulation, which also results in the calculated COR being higher than the experimentally measured value. Although the initial static response of the material was linear, introducing such a response in the model produced large discrepancy with the experimental results. This response was modified through the optimization process into non-linear behaviour, which produced agreement between numerical results and experimental measurements.

Due to physical limitations, it was impossible to measure the material properties at high impact velocities. An alternative robust approach as detailed below was applied in order to indirectly determine the material properties. The material parameters under dynamic conditions were determined by modifying the initial material properties, obtained from the quasi-static test, to satisfy the results of experimental impact test of the inner core at different impact speeds.

The entire process is based on a reverse engineering technique using modeFRONTIER 3.2 (ESTECO Inc., Italy), a computer program used for process integration and optimization (figure 5-9) which integrated ABAQUS and MATLAB to include FE simulation, results extraction, evaluation, and optimization.
Figure 5-9 Workflow developed within the modeFRONTIER software application

At the start of each iteration, modeFRONTIER instructs ABAQUS to run an initial impact simulation using the material parameters obtained from static testing. Then, a Python script, which was specially developed for this purpose, was used to transfer the simulation results (impact load and rebound speed) from the ABAQUS output database (ODB file) to MATLAB for model accuracy evaluation. Finally, an optimization technique (a multi-objective genetic algorithm) was used in modeFRONTIER to adjust material parameters until a specified number of optimization runs has been generated. The optimization process flow is displayed in figure 5-10.
Generally, three indicators were used to describe the dynamic impact characteristics: Mean Square Error (MSE), which measures the difference between the simulation force curve and experimental force curve; the coefficient of restitution (COR); and contact time (CT). These indicators were treated as optimization targets.

To take into account the energy loss during impact, a viscoelastic material model was also chosen for the analysis. In ABAQUS, the viscoelastic property was defined by the Prony series, which can be expressed as

\[g_R(t) = 1 - \sum_{i=1}^{N} \bar{g}_i \left(1 - e^{-t/\tau_i} \right) \]

Where \(N, \bar{g}_i, \) and \(\tau_i \) are material constants. Taking \(N=1 \) to reduce the number of free parameters, \(\bar{g}_1 \) and \(\tau_1 \) are additional two parameters that had to be determined.

The optimization process was divided into two steps. In the first step, the viscoelastic property was not introduced into the material model and only the hyperelastic property was considered. The variables, \(C_{10} \) and \(C_{01} \), in equation 5-9, were determined by minimizing the MSE and focusing on contact time. Figure 5-11 shows the workflow diagram for the optimization of material parameters, \(C_{10} \) and \(C_{01} \), while table 5-4 shows the range of the variables.
Figure 5-11 Workflow of optimization of material parameters, C_{10} and C_{01}

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
<th>Base</th>
<th>Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{10}</td>
<td>Variable</td>
<td>3.0</td>
<td>5.0</td>
<td>201</td>
<td>1.0000×10^{-2}</td>
</tr>
<tr>
<td>C_{01}</td>
<td>Variable</td>
<td>-2.0</td>
<td>0.0</td>
<td>201</td>
<td>1.0000×10^{-2}</td>
</tr>
</tbody>
</table>

Table 5-4 Range of the variables, C_{10} and C_{01}

After 98 optimization runs, a Pareto frontier was obtained, which is highlighted in figure 5-12. The Pareto frontier is the set of designs that cannot be improved in one objective without deteriorating the values of the remaining objectives. The moving average value of the MSE is shown in figure 5-12 as a green line, which enables the observation of the convergence trend between the MSE and the material parameters, C_{10} and C_{01}.
Figure 5-12 Scatter chart of the variables, C_{10} and C_{01}, vs. the MSE on designs table

Figure 5-13 is a two-dimensional plot of the variable CT against the MSE. It demonstrates the correlation between the two values.
Since the optimization was a multi-objective task, the best fit was selected by using the Multi Criteria Decision Making (MCDM) tool within modeFRONTIER. This tool enables the “decision maker” to select the best solution from a set of reasonable alternatives through pairwise comparison of solutions or direct specification of attribute importance.

Figure 5-14 is an illustration of how the MCDM tool works. MCDM groups the possible solutions by ranking values; the higher the ranking value, the better the option. The best design was, therefore, found to be $C_{10} = 4.72$ and $C_{01} = -0.45$.
In the second step of the optimization process, C_{10} and C_{01} were locked while g_1^p and τ_1^G were determined by minimizing the MSE and focusing on the COR. Figure 5-15 shows the workflow diagram for the second step of the optimization process while table 5-5 shows the range of the variables.
<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Value</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
<th>Base</th>
<th>Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>\overline{g}_1^P</td>
<td>Variable</td>
<td>0.8</td>
<td>0.0</td>
<td>1.0</td>
<td>101</td>
<td>1.000E-2</td>
</tr>
<tr>
<td>τ_1^G</td>
<td>Variable</td>
<td>0.0010</td>
<td>0.0</td>
<td>0.0010</td>
<td>101</td>
<td>1.0000E-5</td>
</tr>
</tbody>
</table>

Table 5-5 Range of the variables, \overline{g}_1^P and τ_1^G.

Figure 5-16 Scatter chart of \overline{g}_1^P and τ_1^G vs. COR on designs table.
In the second part of the optimization, it took 59 runs to obtain the Pareto frontier. Figure 5-16 reveals that the COR tends to decrease as g_1^P increases and to increase as τ_1^G increases. Again, the best fit was found through the use of MCDM tool. The best design was found to be $g_1^P = 0.41$, $\tau_1^G = 7 \times 10^{-5}$.

Figure 5-17 is a two-dimensional plot of the variable COR against the MSE. It demonstrates the correlation between the two values.

The comparison of the simulation results and the experimental results using the optimized material parameters for the inner core unit at an impact speed of 17.85 m/s is presented in figure 5-18. It can be seen that the force-time curve and the contact time are both in good alignment. The simulation COR is, however, slightly higher than the experimentally measured COR. The simulation result has been improved after the optimization of the material parameters.
Figure 5-18 Comparison of impact force results for inner core unit after optimization
5.2.2. The midsole layer

The midsole cork layer is a composite structure made of cellular thin cork shells wound with yarn. Figure 5-19 shows the raw material used to manufacture the midsole cork layer. As the midsole cork layer is the main part of the cricket ball, it will be treated as a homogeneous continuum of hyperfoam. The FE model of the midsole unit is a hollow shell unit that emulates the midsole layer containing the inner core (figure 5-20).

Figure 5-19 Sample of cork and yarn layer material provided by Kookaburra Co., Ltd.
The hyperfoam model is generally expressed by the Ogden model. The Ogden strain energy function is written as

$$U = \sum_{i=1}^{N} \frac{2\mu_i}{\alpha_i^2} \left[(\hat{\lambda}_1^{\alpha_i} + \hat{\lambda}_2^{\alpha_i} + \hat{\lambda}_3^{\alpha_i} - 3) + \frac{1}{\beta_i} \left((J_d)^{\alpha_i \beta_i} - 1 \right) \right]$$ \hspace{1cm} 5-11

Where λ_i are the principal extension ratios, $J = \lambda_1 \lambda_2 \lambda_3$ is the measure of the relative volume, μ_i are the shear modulus coefficients, N is a user-defined integer, and α_i and β_i are power indices. β_i is related to Poisson’s ratio, v_i, by

$$\beta_i = \frac{v_i}{1 - 2v_i} \hspace{1cm} 5-12$$

The initial shear modulus is given by

$$\mu_0 = \sum_{i=1}^{N} \mu_i \hspace{1cm} 5-13$$

In this study, $N=1$ was used to keep the free parameters to a minimum level. The only other parameters needed are μ_i and α_i. The initial values of μ_i and α_i were guessed...
and improved during the optimization process. To account for the material time dependence during impact, the viscoelastic property of the material was included in the model as well. The material parameters were determined by fitting the simulation results to the experimental results using the same approach as explained in section 5.2.1. After numerical treatment, the parameters were found to be $\mu_1=70.3$, $\alpha_1=4.0$, $\bar{\gamma}_1^p=0$, and $\tau_1^G=0.00041$.

![Comparison of impact force results for midsole unit](image)

Figure 5-21 shows the comparison between the simulation results and the experimental results using the optimized material parameters for the midsole cork unit under an impact speed of 20.8 m/s. It can be seen that the impact load curve and the contact time are both in reasonable alignment. However, the COR calculated from FEM simulation was 72% higher than that obtained experimentally.
5.2.3. The leather cover

For simplicity, the leather cover (figure 5-22) was treated as an incompressible hyperelastic material. Once again, the Mooney–Rivlin model was chosen to be the material model. The values for C_{10} and C_{01} were initially guessed and then further refined through the same optimization process as previously described. The FE model of the leather cover is a hollow shell unit emulating the leather layer. Combining both the inner-core and the midsole layer forms the complete cricket ball (figure 5-23). The material parameters were determined using the same approach as explained in section 5.2.1. The optimization technique chosen this time was a second generation of multi-objective genetic algorithm (MOGA II). After numerical optimization, the best result was found to be $C_{10}=4.5$ and $C_{01}=-0.5$.

![Sample of the leather cover provided by Kookaburra Co., Ltd.](image)
Figure 5-23 Complete three-layer cricket ball and its FE model

Figure 5-24 Comparison of impact force results for the complete three-layer cricket ball

Figure 5-24 shows the comparison of the simulation results and the experiment results using optimized material parameters for a complete three-layer cricket ball under an impact speed of 20.8 m/s. It can be seen that the impact load curve and the contact
time are both in good alignment. However, the COR calculated from FEM simulation was 21% lower than that obtained experimentally.

5.2.4. Oblique impact

In the real game, the cricket ball generally lands obliquely on an object. An initial attempt was made to extend the normal impact model to one that could be used for oblique impacts. This was achieved by incorporating a hypothetical parameter representing the coefficient of friction between the ball and the surface. In addition, the friction coefficient was assumed to remain constant during impact. The cricket ball was also assumed to approach the surface without spin. An oblique impact at an angle of 34° was simulated at a ball velocity of 37 m/s. Figure 5-25 shows the animation of oblique impact and rebound of the cricket ball.
However, for oblique impact conditions, the simulation results could not be verified experimentally due to the technique limitations. Nevertheless, the animation shows the potential of the developed model to simulate general oblique impact events.
6. The Universal Structural Model

6.1. Introduction

In any FE analysis involving a cricket ball, a significant effort is spent on modelling the ball. Creating a detailed and complex model would enhance the understanding of the behaviour of its complex structure, but it would also generate a large number of elements, which would increase model size, analysis time and the amount of computing resources needed for the analysis. Therefore, creating a simple but accurate universal cricket ball model that can be used for the virtual design of cricket equipment and protective gear would be beneficial.

The literature review revealed that considerable work has been done to identify material parameters, especially when those parameters are difficult to measure experimentally. Many researchers have evaluated these material parameters using trial-and-error (Ujihashi et al., 2002; Smith et al., 2000). This approach often uses measured gradients to test and then to adjust the parameters manually. Although this approach occasionally produces good results, it represents a tedious process.

In this study, a universal FE model was created by means of predicting model parameters. As is commonly known, calibration of non-linear FE models is a difficult and time-consuming process as the analysis procedure is incremental and iterative. To expedite the calibration process, an approximate FE model was developed using an Artificial Neural Network (ANN). Such an approximate model can be seen as a combination of an FE model template and a material parameter selection tool that is based on the ANN model. The relationship between these models can be seen in figure 6-1.
An initial FE model was developed, and subsequently modelling parameters were further defined in detail through ANN analysis. The initial FE model of the cricket ball that was created for this study is composed of 2209 eight-node solid elements. The material had combined both hyperelastic and viscoelastic properties. There are several hyperelastic material models that are commonly used to describe rubber and other elastomeric materials on the basis of strain energy potential. The Mooney-Rivlin model has been chosen for this study and its constitutive equation can be expressed as

$$U = C_{10} \left(\overline{T}_1 - 3 \right) + C_{01} \left(\overline{T}_2 - 3 \right) + \frac{1}{D_1} (J_{el} - 1)^2$$ \hspace{1cm} (6-1)

Where U is the strain energy per unit of reference volume; C_{10}, C_{01}, D_1 are temperature-dependent material parameters; and \overline{T}_1 and \overline{T}_2 are the first and second deviatoric strain invariants. J_{el} is the elastic volume ratio. For simplicity, we assumed that $D_1 = 0$, which means the material is incompressible. The viscoelastic property is defined in the FEA software, ABAQUS, by the Prony series, which is expressed as

$$gR(t) = 1 - \sum_{i=1}^{N} \overline{g}_i^p \left(1 - e^{-t/\tau_i^p} \right)$$ \hspace{1cm} (6-2)

Where N, \overline{g}_i^p and τ_i^p are material constants. Taking $N = 1$ to reduce the number of free parameters, \overline{g}_1^p and τ_1^p are additional two parameters that have to be determined.
The outer diameter of the ball model was determined by measuring the outer diameter of an actual three-layer cricket ball. Figure 6-2 shows the established FE model template of a cricket ball. Established models created this way can be used to predict cricket ball impact performance under different simulation conditions.

Figure 6-2 Cross-sectional view of a universal FE model of a cricket ball
6.2. ANN model development

ANN models are simplified mathematical models of biological neural systems. They have a strong ability to describe non-linear, multi-model systems by analysing the changes in the outputs with respect to the changes in the inputs.

The initial FE model is considered as an input and output system, where inputs are model-produced impact behaviour and outputs are material parameters that define the FE model. The ANN model can emulate this system. Once the ANN model is established accurately enough, the output parameters that are the material parameters can be predicted by providing the input parameters measured from real experiments. Incorporating the ANN model with an FE model template allows a complete FE model to be developed.

In an FE model, depending on the constitutional equations chosen, there are a few material parameters that need to be specified. In this study, the cricket ball was modelled as a solid sphere with hyperelastic and viscoelastic properties. Taking into account the fact that the material parameters are functions of the impact speed, there are five parameters that need to be determined. These five parameters are treated as output parameters and they are C_{10}, C_{01}, g_1, τ_1^G and impact speed.

In this study, data mining has been devised to describe better the full characteristics of ball-barrier impact behaviour. As shown in table 6-1, the system approximation is quantified by 19 key characteristic values that were obtained from the impact force-time curve and the value of the COR. These 19 principal parameters are treated as input parameters, as detailed in table 6-1 below.
<table>
<thead>
<tr>
<th>Characteristic values</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>Contact time</td>
</tr>
<tr>
<td>P2</td>
<td>Time span for force above 10% of peak force</td>
</tr>
<tr>
<td>P3</td>
<td>Time span for force above 50% of peak force</td>
</tr>
<tr>
<td>P4</td>
<td>Time span for force above 90% of peak force</td>
</tr>
<tr>
<td>P5</td>
<td>Peak time</td>
</tr>
<tr>
<td>P6</td>
<td>Peak force</td>
</tr>
<tr>
<td>P7</td>
<td>Kurtosis 1: P6/P1</td>
</tr>
<tr>
<td>P8</td>
<td>Kurtosis 2: P6/P2</td>
</tr>
<tr>
<td>P9</td>
<td>Kurtosis 3: P6/P3</td>
</tr>
<tr>
<td>P10</td>
<td>Kurtosis 4: P6/P4</td>
</tr>
<tr>
<td>P11</td>
<td>Kurtosis 5: Statistical peak value</td>
</tr>
<tr>
<td>P12</td>
<td>Skewness 1: Integrated skewness based on P1 and P5</td>
</tr>
<tr>
<td>P13</td>
<td>Skewness 2: Integrated skewness based on P2 and P4</td>
</tr>
<tr>
<td>P14</td>
<td>Skewness 3: Statistical skewness</td>
</tr>
<tr>
<td>P15</td>
<td>Impact speed</td>
</tr>
<tr>
<td>P16</td>
<td>Rebound speed</td>
</tr>
<tr>
<td>P17</td>
<td>COR: P16/P15</td>
</tr>
<tr>
<td>P18</td>
<td>Average acceleration</td>
</tr>
<tr>
<td>P19</td>
<td>Peak acceleration</td>
</tr>
</tbody>
</table>

Table 6-1 19 characteristic values used to describe cricket ball impact behaviour

The artificial neural BP (back-propagation) network has been utilized for its specific strength. BP networks can manage any non-linear function and are more efficient than other networks. An object-oriented programming language, MATLAB 2006b, was employed to implement the modelling.
Before establishing any networks, the structure of the network must be defined. Figure 6-3 shows the basic structure of a neural network. There are three types of units in a network: input units, hidden units, and output units. These are arranged in layers, where the input layer is followed by one or more hidden layers that are then followed by the output layer. Generally, the number of hidden layers, the number of units, and the active function are the three criteria that need to be defined.

The BP network that was constructed consisted of only one hidden layer. The input units were defined as 19 characteristic values while the output units were defined as four material parameters and the impact speed. Too many hidden units increase the training time and the accuracy while too few hidden units lead to overgeneralization and poor performance. After training different configurations, it was found that having 11 hidden units is a reasonable compromise between training time and performance.

All hidden and output units use a function called the “active function” to determine their activation level of output. As a default, the MATLAB built-in functions, “tansig”
and “purelin”, were chosen for calculating the hidden layer and the output layer respectively.
6.3. Training the ANN model

Once the ANN model was established, the next step was to train it using samples. The ANN requires parameters to be sampled from a specific (e.g. the initial) FE model.

The BP network has two major drawbacks: the local minimum problem and slow convergence speed. To cope with these, an improved BP network-Genetic Algorithm (GABP) was utilized. The GA was used to optimize the “weight” and “basis” that consist of the ANN. This method combines the GA’s global searching ability with the BP Network’s local searching feature, thus effectively avoiding the “local minimum” problem. Further, the convergence speed can be increased to a certain extent. The detailed process flow of the GABP method is displayed in figure 6-5 with the GA optimization highlighted by a red rectangle.

Figure 6-4 illustrates the two major approaches to training the ANN. The first step was to establish an ANN model and start training. The second step was to optimize ANN model structure through GA.
The ANN learning was embodied in the internal structure of the net-learning. In this case, the function, “trainlm”, was used to train the network. Trainlm is a network training function that updates weight and bias values according to Levenberg-Marquardt optimization.
The training of the network continued until specific criteria were met. The first criterion trained the network until the sum-squared error (SSE) dropped below the preset threshold level of 0.005. The learning rate was defined as 0.01 and the maximum epochs was 3000. Figure 6-6 illustrates the results of a typical GABP training run. It shows that the SSE drops to the designed threshold of 0.005 after 34 epochs.

Ultimately, over 600 training samples were generated through the use of modeFRONTIER’s Design of Experiment (DoE) toolbox. These samples represent different combinations of the five principle parameters, which form the available design space. The subsequent simulations were processed by the ABAQUS parametric studies function. The entire process was driven by a tool specially developed for this study, which enables the batch processing of the sample data. The ABAQUS parametric studies function is a built-in function that allows the execution and the gathering of the results of multiple analyses that differ only in the values of some of the parameters used in place of input quantities. Table 6-2 summarizes the varying ranges that were used to generate training samples.
<table>
<thead>
<tr>
<th>Material parameters</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{10}</td>
<td>4.0-7.0</td>
</tr>
<tr>
<td>C_{01}</td>
<td>-1.0-1.0</td>
</tr>
<tr>
<td>$\frac{p}{\delta_1}$</td>
<td>0-1.0</td>
</tr>
<tr>
<td>τ_1^G</td>
<td>0.00001-0.0001</td>
</tr>
<tr>
<td>Impact speed (m/s)</td>
<td>20-28</td>
</tr>
</tbody>
</table>

Table 6-2 ANN model output variable ranges

With the methodology developed here, the calculation of the parameters of the FE model became a “once-off” process. After the ANN model’s training, the FE ball model’s behaviour was “learnt” and became retrievable. This meant that by providing the ANN model with an identified impact force-time curve and the COR, the system could reverse the corresponding model’s parameters that would make up a complete FE model.
6.4. Model validation

There are two steps in validating an ANN model. First, a generalization ability test was conducted. Once the ANN model was formulized, five training samples were randomly chosen. The ANN model was then used to calculate the material parameters according to the key characteristic values that were entered. As shown in figure 6-7, all the relative errors of the predicted parameters were within 4%.

![Figure 6-7 Generalization ability test results](image)

Second, in order to verify the applicability of the ANN model, an attempt was made to construct several ball models for other types of cricket ball.

Two sets of real test data obtained from a five-layer cricket ball and a two-layer cricket ball were used to examine the ANN model. As shown in figure 6-8 and figure 6-9, the five-layer cricket ball had a similar structure as a three-layer cricket ball except that it had a smaller inner core and a bigger midsole layer while the two-layer ball had no midsole layer. Both balls were supplied by Kookaburra Co., Ltd.
The impact behaviours for both balls under the impact speed of 25 m/s were recorded and converted into 19 key input characteristics. These characteristics were then entered into the ANN model to predict the specified FE model parameters.

Figure 6-8 Cross-section of a five-layer cricket ball
Figure 6-9 Cross-section of a two-layer cricket ball
Figure 6-10 Animation view of two-layer cricket ball impact simulation
Figure 6-11 Comparison of the force-time properties of the simulation and the real test under the impact speed of 25 m/s (five-layer cricket ball)
Using the predicted material parameters, it was possible to build a complete FE model. After performing the FE simulation, figure 6-10 shows the animation view of the universal model simulating a two-layer ball impact at the instant of the impact speed of 25.01 m/s. Both figure 6-11 and figure 6-12 indicate that the force-time curve, and contact time for the simulation and the experimental results are in good alignment. However the simulated COR is approximately 15% higher than the experimental measurement, which needs improvement. This suggests that the ANN model construction process, as previously described, is also applicable to other types of cricket ball.
7. Results and Discussion

7.1. Introduction

This chapter summarizes the experimental results and compares these results with those from the various numerical models that have been developed in this study. Three types of Kookaburra cricket balls have been examined: a two-layer solid ball, a three-layer ball, and a five-layer ball. Each ball was tested over a speed range of 5 m/s to 25 m/s. The tests used both drop test and high speed impact test rigs. In addition, the core unit and the cork unit that were taken out of a three-layer cricket ball have also been tested at the impact speed of 20.8 m/s for the purpose of verifying the detailed FE model.

The coefficient of restitution (COR) and the dynamic impact load are the two properties that are most commonly used to describe a sports ball undergoing impact. This chapter is mainly concerned with how both the COR and the dynamic impact load change in relation to impact speed. The comparison between the experimental results and simulation results was only conducted on three-layer cricket ball.
7.2. **Comparison of experimental and numerical results**

Figures 7-1, 7-2, 7-3, and 7-4 show comparisons of experimental results (three-layer cricket ball) with the simulation results of different cricket ball models undergoing normal impact at speeds of 5.5 m/s, 10 m/s, 20.8 m/s, and 25 m/s. It was found that all the models successively described the key characteristics of the impact, which indicates that the developed models can express precisely the impact behaviour of cricket balls undergoing normal impact within the typical speed range of 5.5 m/s to 25 m/s.

Overall, both three-element model and universal model generally matched the loading and unloading phase of the impact and gave similar RMSE scores within the range of 4% discrepancy. However, the single-element model overestimated the peak force by 7.5%-13%. The single-element model accurately matched the loading phase of the impact but was unable to match the unloading phase, which resulted in an RMSE score of 11% higher than that of the three-element model and 15% higher than that of the universal model.
Figure 7-1 Impact load results comparison for cricket balls undergoing normal impact at an impact speed of 5.5 m/s
Figure 7-2 Impact load results comparison for cricket balls undergoing normal impact at an impact speed of 10 m/s
Figure 7-3 Impact load results comparison for cricket balls undergoing normal impact at an impact speed of 20.8 m/s
Figure 7-4 Impact load results comparison for cricket balls undergoing normal impact at an impact speed of 25 m/s
Table 7-1 Stiffness and damping parameters for the single-element non-linear model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Model 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5.5 m/s</td>
<td>10 m/s</td>
<td>20.8 m/s</td>
<td>25 m/s</td>
</tr>
<tr>
<td>k (N/m)</td>
<td>1697151</td>
<td>5311954</td>
<td>2425927</td>
<td>1539811</td>
</tr>
<tr>
<td>α</td>
<td>1.0996</td>
<td>1.3211</td>
<td>1.1293</td>
<td>1.0341</td>
</tr>
<tr>
<td>c (Nm/s)</td>
<td>876</td>
<td>625</td>
<td>500</td>
<td>506</td>
</tr>
</tbody>
</table>

Tables 7-1 and 7-2 list the stiffness and damping parameters for the single-element and the three-element mathematical models at various impact speeds. As shown in figure 7-5, the three-element model generally requires double the simulation time as required by single-element model, but it provides approximately 50% improvement in the RMSE score due to increased element size. Once a particular model of a cricket ball is incorporated into a simulation such as impact with a helmet, the simulation times become critical. For the mathematical models that were developed in this study, increasing the model complexity by using multiple spring-damper elements increases
the optimization time to double the optimization time required for the single-element model.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Model 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5.5 m/s</td>
<td>10 m/s</td>
<td>20.8 m/s</td>
<td>25 m/s</td>
</tr>
<tr>
<td>k_1(N/m)</td>
<td>1823578</td>
<td>3569796</td>
<td>2182589</td>
<td>1654021</td>
</tr>
<tr>
<td>k_2(N/m)</td>
<td>1552901</td>
<td>1986859</td>
<td>2962031</td>
<td>2919211</td>
</tr>
<tr>
<td>k_3(N/m)</td>
<td>3634967</td>
<td>2257429</td>
<td>4378915</td>
<td>1534693</td>
</tr>
<tr>
<td>α_1</td>
<td>1.3965</td>
<td>1.4141</td>
<td>1.4054</td>
<td>1.3182</td>
</tr>
<tr>
<td>α_2</td>
<td>1.434</td>
<td>1.3578</td>
<td>1.3959</td>
<td>1.3488</td>
</tr>
<tr>
<td>α_3</td>
<td>1.3019</td>
<td>1.4282</td>
<td>1.4422</td>
<td>1.4123</td>
</tr>
<tr>
<td>c_1(Nm/s)</td>
<td>573</td>
<td>711</td>
<td>662</td>
<td>497</td>
</tr>
<tr>
<td>c_2(Nm/s)</td>
<td>513</td>
<td>759</td>
<td>508</td>
<td>417</td>
</tr>
<tr>
<td>c_3(Nm/s)</td>
<td>343</td>
<td>384</td>
<td>365</td>
<td>497</td>
</tr>
<tr>
<td>m_1(Kg)</td>
<td>0.0577</td>
<td>0.0498</td>
<td>0.0334</td>
<td>0.0414</td>
</tr>
<tr>
<td>m_2(Kg)</td>
<td>0.019</td>
<td>0.0505</td>
<td>0.0451</td>
<td>0.0575</td>
</tr>
<tr>
<td>m_3(Kg)</td>
<td>0.0837</td>
<td>0.0637</td>
<td>0.0853</td>
<td>0.0554</td>
</tr>
</tbody>
</table>

Table 7-2 Stiffness and damping parameters for the three-element non-linear model
Figure 7-6 above shows the comparison between the experimental and the simulation results for a three-layer cricket ball at an impact speed of 20.8 m/s. The simulation results for both models closely match the experimental results. This shows that the developed models are able to simulate accurately the impact behaviour of the ball. Although the detailed FE model and the universal FE model produce almost the same level of accuracy, there is a large disparity in the amount of effort needed in developing these two models. The detailed FE model requires 10 parameters to be determined through a step-by-step iteration process while the universal FE model only requires four parameters to be defined by using a rapid prediction tool. In addition, the detailed FE model’s simulation time takes 87 seconds while the universal model’s simulation time only takes 25 seconds within the same computing environment. Theoretically, the multi-layer model should produce a better simulation result as model was developed in more detail. However, the multi-layer model introduces more modelling variables and boundary conditions. Many of those modelling parameters are very hard to define which would compromise the model accuracy.
The material parameters that make up the universal FE ball model were identified by using the method described in Chapter 6 to confirm that this method can be applied to the development of cricket ball models. Table 7-3 shows the material parameters of the developed universal FE ball models in relation to different impact speeds.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Model 1 5.5 m/s</th>
<th>Model 2 10 m/s</th>
<th>Model 3 20.8 m/s</th>
<th>Model 4 25 m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{i0}</td>
<td>5.24</td>
<td>6.12</td>
<td>4.75</td>
<td>4.02</td>
</tr>
<tr>
<td>C_{01}</td>
<td>-0.51</td>
<td>-0.35</td>
<td>-0.47</td>
<td>-0.41</td>
</tr>
<tr>
<td>$\frac{P}{g_1}$</td>
<td>0.75</td>
<td>0.78</td>
<td>0.78</td>
<td>0.79</td>
</tr>
<tr>
<td>τ_1^G</td>
<td>0.00007</td>
<td>0.00007</td>
<td>0.00007</td>
<td>0.00008</td>
</tr>
</tbody>
</table>

Table 7-3 Material parameters of universal FE model at typical impact speeds

The COR values, obtained both experimentally and numerically, for a three-layer cricket ball are shown in figure 7-7 below as a function of impact speed that ranges from 5.5 m/s to 25 m/s. Values for the measured COR within this range of impact speed ranged between 0.50 and 0.60. Over this impact speed range, both experimental and numerical results show a similar dependence on speed with nearly parallel linear trends. However, when comparing the COR values, these results do not closely match, particularly for the values obtained at high impact speeds where a 20% discrepancy exists. As shown in figure 7-7, COR values obtained numerically are, in general, lower than those obtained experimentally. This difference suggests that the energy loss during impact is not being calculated properly in the simulation. In other words, the viscoelastic properties included in the universal FE model does not represent accurately the actual properties of the ball.
Figure 7-7 COR variations in relation to impact speed for a three-layer cricket ball
Figure 7-8 shows the high speed video image taken from a normal impact test conducted on a three-layer cricket ball at an impact speed of 25 m/s. Figures 7-9 and 7-10 show the corresponding simulations by using the detailed FE models and the universal model respectively. In spite of the high computing cost, the detailed FE model can serve as a useful tool if the focus is on the ball itself. This model could be used to investigate many other aspects of the ball that are difficult to obtain experimentally, such as the internal characteristics of the ball. For example, the model can be used to examine the effect of the inner material properties on the impact load history and the COR of the ball.

The animated view of ball impact using the universal FE model is shown in figure 7-10, which represents the results of explicit dynamic finite element analysis. Compared to the detailed FE model, the universal FE model is a relatively cost-effective technique for simulating the impact behaviour of a cricket ball. A potential downside of the universal FE model is the numerical instability due to the nature of ANN modelling techniques. In some cases, the ANN model may need several runs to
achieve a reasonable solution of the material parameters. Besides, the development of such a universal FE model requires a large amount of preparation work, such as the design of experiments and FE simulation iteration, to establish the impact behaviour database of the ball that is being tested.
Figure 7-9 Animation view of a detailed FE model simulation at the impact speed of 25 m/s
In this study, the impact characteristics of the cricket ball have been simulated using cricket ball models at several levels of complexity. The particular uses of the models for specific goals should govern the model’s level of complexity. If the goal is to have
an accurate three-dimensional model, then a universal model is the appropriate choice. However, if the model is intended to be used as part of a larger model, a simpler model such as a single-element model or a three-element model may be more suitable. A significant outcome from this study was the derivation of the universal FE model. This model is important in relation to the growing interest in the development of sports equipment for cricket, as this model can provide rapid ball model development with relatively low computing costs and high accuracy.
8. Conclusion

In cricket, high speed impacts occur between the cricket ball and the bat, player and their protective equipment. Improved understanding of impact dynamics has the potential to significantly improve the development of cricket equipment and also contribute to improving the player’s safety and performance. In particular, development of high performance cricket balls with enhanced structural properties (e.g. improved durability) would benefit greatly from such insight.

In order to gain more insight into the impact dynamics of cricket balls, appropriate structural models of the ball are required. This study introduced two fast-solving numerical models, a detailed FE model and a universal FE model, for the structural analysis of cricket balls. The models were derived using experimental data obtained from tests developed for this purpose, including drop tests and high speed impact tests.

The experimental work presented in this study included measurements of impact behaviour of two-layer, three-layer, and five-layer cricket balls using a dynamic signal analyser and high speed video analysis software. The ball properties obtained experimentally were then used to develop two mathematical models: a single-element model and a three-element model. These cricket ball models have been developed so that they capture the key characteristics of ball-impact behaviour while allowing for fast-solving dynamic simulation. The stiffness and damping properties of both models were determined using a novel fast-solving genetic algorithm. These models predict the force-time diagram during impact with very little computing cost. However, developing a mathematical model with a reasonable level of accuracy is still a challenge.

The simulation of the ball model impact with a flat surface achieved reasonable agreement with experimental results for both the single-element and the three-element models. The genetic algorithm (GA) method proved to be more efficient and convenient than directly solving the differential equations.
This project successfully delivered a multi-layer and multi-material cricket ball model with high accuracy. The intended use for such a model is to provide accurate results that incorporate the geometry of the cricket ball and area deformation characteristics. This model can also be used as a valuable tool to enable manufacturers to discover and synthesize new materials and new designs for cricket balls. Furthermore, the application presented here can be extended to simulate any solid ball impact. To determine the material parameters within this model, this study developed a highly automated approach that significantly reduced the amount of handwork required. Comparison of the simulation results and the experimental results reveals that the force-time curve and the contact time are both in good alignment. However, the COR that was predicted by the model and the COR obtained from the experiment do not match closely. This is probably because the initial values of the material parameters were of poor quality. Manual fine-tuning or adopting better numerical optimization methods are possible ways of improving this model.

An initial attempt was made to extend the applications of the detailed FE model to include the prediction of oblique impacts. The attempt demonstrated the potential ease with which the FE model developed in this study can be extended to predict an oblique impact.

A universal finite element (FE) ball model was developed within the ABAQUS CAE environment. This model can be seen as a combination of an FE model template and a material parameter selection tool based on an Artificial Neural Network (ANN) model. This approach allows for rapid model development while producing accurate results at different impact speeds. Two sets of real test data obtained from a five-layer cricket ball and a two-layer cricket ball at impact velocity of 25.01 m/s were used to examine the ANN model. Comparison of results shows good agreement between the simulation results and the experimental results.

An important feature of the developed universal FE model is its flexibility. The results show that the developed FE-ANN model can be used to predict the impact behaviour of different types of cricket ball under various dynamic conditions. This flexibility represents an advantage that can be utilized by sports equipment developers to rapidly develop different cricket ball models needed for inclusion in larger simulations.
involving impact of a cricket ball with other objects. The developed FE-ANN model and the corresponding training process represent an invaluable tool for facilitating design, analysis and structural optimization of cricket-related sports equipment.

8.1. Future directions

a) This study was limited to the assessment of ball impact behaviour at impact speeds of less than 25 m/s, while under actual game conditions, the maximum impact speed may reach up to 45 m/s. Therefore, future studies are needed in this area.

b) Oblique impact behaviour of cricket balls was not considered much in this study due to the lack of experimental facilities. It is estimated that ball sliding and ball rolling on the target surface, in addition to ball deformation, could occur during impact. Precisely predicting this complex interaction would require the introduction of several frictional characteristics between the ball and the target. Such a model with detailed frictional characteristics can potentially expand the applications of the model developed in this study.

c) Material parameters studies can be conducted on the established detailed FE model. This will enable further investigation of the performance characteristics of cricket balls and the effect that changes to the material parameters have on the impact load pulse and the COR.

d) While developing the detailed FE model, the contact definition between layers was defined as “hard” contact for simplicity. To take the friction between the layers into account, further studies would be required.

e) Although the results of the universal model were encouraging, the universal model has a heritage limitation as it heavily relies on the samples (design space) that were used for ANN training. Good results can only be expected when the design space covers the range of those material parameters that are going to be identified. Further validation of this model would be necessary to account for other factors before it can be used confidently. It is believed that further development of the design space can
increase the performance of the universal model as well as its simulation accuracy. Further studies are also needed to discover the relationships between inputs and outputs that could add greater accuracy to the predictions. For example, give different weight to the 19 principal parameters, as obviously the contact time, shape of the force-time curve and average acceleration should be of less importance than the ball COR or peak force.

f) Due to time limitation, the effect of mesh refinement was not considered in this study. It would be worthwhile to conduct such a convergence study in the future, especially when the ball model would be incorporated in a non-flat surface impact simulation.
References

Appendix

Single-element non-linear model

% This is the main program of single-element non-linear model
%
% subrountine to define fitness function
function fitness=FIT(k,a,c,m,v,dt,y0,f)
%Subroutine of fitness definition
%fitness=FIT(4500000,1.32,800,0.16,5,0.00002,-0.02,f1)
[Y,F]=Sim1(k,a,c,m,v,dt,y0);
FF=F';
f=1000*f;
N1=length(FF);
N2=length(f);
if N1<=N2
 ff=f(1:N1);
else
 ff=[f;zeros(N1-N2,1)];
end
fitness=(sum((FF-ff).^2)/N1)^0.5;
%plot(ff);hold on;plot(FF);

function [Xp,Yp,LC1,LC2]=GAOPT(f,v,m,dt,M,N,Pm)
%% Use GA to optimize the Differential equation parameters
%% Input parameters list
% f Reaction force
% v Impact speed
% m Ball mass
% dt Step time
M Number of generations
N Number of population
Pm Mutation possibility
Xp Best cell
Yp Objective of best cell
LC1 Average fitness curve
LC2 Best fitness curve

Step 1: Initialize variables
Xp=zeros(1,3);
Yp=inf;
LC1=zeros(1,M);
LC2=zeros(1,M);
kmin=4000000;
kmax=8000000;
amin=1.0;
amax=1.5;
cmin=3000;
cmax=100;
%m=0.16;% ball mass
%dt=0.00002;% time step

Step 2: Initialize population
farm=cell(1,N);% define cell
for i=1:N
 k=kmin+(kmax-kmin)*rand;
a=amin+(amax-amin)*rand;
c=cmin+(cmax-cmin)*rand;
farm{i}=[k,a,c];
end

iteration
counter=0;% set counter
while counter<M% cease condition

%% Cross over

newfarm=cell(1,2*N);% child cell
Ser=randperm(N);%match list
A=farm{Ser(1)};%farther A
B=farm{Ser(2)};%farther B
pos=rand;
a=pos*A+(1-pos)*B;%child a
b=(1-pos)*A+pos*B;%child b
newfarm{2*N-1}=a;%insert child generation
newfarm{2*N}=b;
for i=1:(N-1)
 A=farm{Ser(i)};
 B=farm{Ser(i+1)};
 pos=rand;
a=pos*A+(1-pos)*B;%child a
b=(1-pos)*A+pos*B;%child b
newfarm{2*i-1}=a;
newfarm{2*i}=b;
end
FARM=[farm,newfarm];% Generation combine

%% Step 4: Clone

SER=randperm(2*N);
FITNESS=zeros(1,2*N);
fitness=zeros(1,N);
for i=1:(2*N)
 Beta=FARM{i};
k=Beta(1);
a=Beta(2);
c=Beta(3);
FITNESS(i)=FIT(k,a,c,m,v,dt,0,f);% Call fitness function
end
for i=1:N
f1=FITNESS(SER(2*i-1));
f2=FITNESS(SER(2*i));
if f1<=f2
farm{i}=FARM{SER(2*i-1)};
fitness(i)=FITNESS(SER(2*i-1));
else
farm{i}=FARM{SER(2*i)};
fitness(i)=FITNESS(SER(2*i));
end
end

%% Plot
minfitness=min(fitness);
meanfitness=mean(fitness);
if minfitness<Yp
pos=find(fitness==minfitness);
Xp=farm{pos(1)};
Yp=minfitness;
end
LC2(counter+1)=Yp;
LC1(counter+1)=meanfitness;

%% Step 5: Mutation
for i=1:N
if Pm>rand&&pos(1)==i
AA=farm{i};
POS=unidrnd(3);
if POS==1
AA(POS)=kmin+(kmax-kmin)*rand;
end
end
elseif POS==2
 AA(POS)=amin+(amax-amin)*rand;
elseif POS==3
 AA(POS)=cmin+(cmax-cmin)*rand;
else
 end
end
farm{i}=AA;
end
end

%%
counter=counter+1
end

%% Step 7: Plot of convergence curve
figure(1);
plot(LC1);
xlabel('Counter');
ylabel('Fitness average');
title('Average fitness curve');
figure(2);
plot(LC2);
xlabel('Counter');
ylabel('Best fitness');
title('Best fitness curve');
figure(3)
plot(1000*f)
hold on
[Y,F]=Sim1(Xp(1),Xp(2),Xp(3),m,v,dt,0);
F=F';
t=0:(length(F)-1);
T=0.00002*t;
plot(F);
xlabel('time(0.00002s)')
ylabel('force(N)')

function [Y,F]=Sim1(k,a,c,m,v,dt,y0)
y1=y0; % position of last time
y2=y1-v*dt; % current position
f1=-sign(y2-y0)*k*(abs(y2-y0))^a; % elastic force
f=f1; % total force
A=f/m; % acceleration
v=v-A*dt; % update of velocity
counter=0;
Y=[y1,y2];
F=f;
while y2<y0
 y1=y2;
y2=y1-v*dt;
 f1=-sign(y2-y0)*k*(abs(y2-y0))^a;
 if y2>=y1
 f2=-c*(abs(y2-y1));
 else
 f2=0;
 end
 f=f1+f2;
 A=f/m;
v=v-A*dt;
Y=[Y,y2];
F=[F,f];
counter=counter+1;
end
F1=F(1);
F2=F(end);
Fmax=max([F1,F2]);
pos=find(F>=Fmax);
F=F(pos)-Fmax;
Three-element non-linear model

%---
% This is the main program of three-element non-linear model
%---
function [Xp,Yp,LC1,LC2]=GAOPT(f,v,m,dt,M,N,Pm)
%% use GA to optimize differential equation parameters
%% Input list
% f real force
% v impact speed
% m ball mass
% dt time step
% M Number of generation
% N Number of population
% Pm Mutation possibility
%% output list
% Xp Best cell
% Yp Objective of best cell
% LC1 Average fitness curve
% LC2 Best fitness curve

%% Step1: Initialize variables
Xp=zeros(1,12);
Yp=inf;
LC1=zeros(1,M);
LC2=zeros(1,M);
kmin=4000000;
kmax=8000000;
amin=1.0;
amax=1.5;
cmin=3000;
cmax=100;
%m=0.16;% ball mass
%dt=0.00002;% time step

%% Step 2: Randomize initial population
farm=cell(1,N);% define cell
for i=1:N
 k1=kmin+(kmax-kmin)*rand;
 k2=kmin+(kmax-kmin)*rand;
 k3=kmin+(kmax-kmin)*rand;
 a1=amin+(amax-amin)*rand;
 a2=amin+(amax-amin)*rand;
 a3=amin+(amax-amin)*rand;
 c1=cmin+(cmax-cmin)*rand;
 c2=cmin+(cmax-cmin)*rand;
 c3=cmin+(cmax-cmin)*rand;
 p1=rand;
 p2=rand;
 maxp=max([p1,p2]);
 minp=min([p1,p2]);
 m1=m*minp;
 m2=m*(1-maxp);
 m3=m-m1-m2;
 farm{i}=[k1,k2,k3,a1,a2,a3,c1,c2,c3,m1,m2,m3];
end

%% iteration
counter=0;% set counter
while counter<M% cease condition

%% Cross over
% cross over
newfarm=cell(1,2*N);% cell to store child
Ser=randperm(N);% match list
A=farm{Ser(1)};% farther A
B=farm{Ser(2)};%farther B
pos=rand;
a=pos*A+(1-pos)*B;% child a
b=(1-pos)*A+pos*B;%child b
newfarm{2*N-1}=a;%insert child generation
newfarm{2*N}=b;
for i=1:(N-1)
 A=farm{Ser(i)};
 B=farm{Ser(i+1)};
 pos=rand;
 a=pos*A+(1-pos)*B;%child a
 b=(1-pos)*A+pos*B;%child b
 newfarm{2*i-1}=a;
 newfarm{2*i}=b;
end
FARM=[farm,newfarm];% Combine generation

%% Step 4: Clone
SER=randperm(2*N);
FITNESS=zeros(1,2*N);
fitness=zeros(1,N);
for i=1:(2*N)
 Beta=FARM{i};
 k1=Beta(1);
 k2=Beta(2);
 k3=Beta(3);
 a1=Beta(4);
 a2=Beta(5);
 a3=Beta(6);
 c1=Beta(7);
 c2=Beta(8);
 c3=Beta(9);
 m1=Beta(10);
\[m2 = \text{Beta}(11); \]
\[m3 = \text{Beta}(12); \]
\[\text{FITNESS}(i) = \text{FIT}(k1,k2,k3,a1,a2,a3,c1,c2,c3,m1,m2,m3,v,dt,0,f); \]

end

for \(i = 1:N \)
\[f1 = \text{FITNESS}(\text{SER}(2*i-1)); \]
\[f2 = \text{FITNESS}(\text{SER}(2*i)); \]
if \(f1 \leq f2 \)
\[\text{farm}\{i\} = \text{FARM}\{\text{SER}(2*i-1)\}; \]
\[\text{fitness}(i) = \text{FITNESS}(\text{SER}(2*i-1)); \]
else
\[\text{farm}\{i\} = \text{FARM}\{\text{SER}(2*i)\}; \]
\[\text{fitness}(i) = \text{FITNESS}(\text{SER}(2*i)); \]
end
end

%%%% Record best cell and convergence curve
\[\text{minfitness} = \text{min(fitness)}; \]
\[\text{meanfitness} = \text{mean(fitness)}; \]
if \(\text{minfitness} < Y_p \)
\[\text{pos} = \text{find(fitness} == \text{minfitness}); \]
\[X_p = \text{farm}\{\text{pos}(1)\}; \]
\[Y_p = \text{minfitness}; \]
end
\[\text{LC2(counter+1)} = Y_p; \]
\[\text{LC1(counter+1)} = \text{meanfitness}; \]

%%%% Step 5: Mutation
for \(i = 1:N \)
if \(P_m > \text{rand} \& \& \text{pos}(1) \neq i \)
\[\text{AA} = \text{farm}\{i\}; \]
\[\text{POS} = \text{unidrnd}(12); \]
if POS==1
 AA(POS)=kmin+(kmax-kmin)*rand;
elseif POS==2
 AA(POS)=kmin+(kmax-kmin)*rand;
elseif POS==3
 AA(POS)=kmin+(kmax-kmin)*rand;
elseif POS==4
 AA(POS)=amin+(amax-amin)*rand;
elseif POS==5
 AA(POS)=amin+(amax-amin)*rand;
elseif POS==6
 AA(POS)=amin+(amax-amin)*rand;
elseif POS==7
 AA(POS)=cmin+(cmax-cmin)*rand;
elseif POS==8
 AA(POS)=cmin+(cmax-cmin)*rand;
elseif POS==9
 AA(POS)=cmin+(cmax-cmin)*rand;
elseif POS==10||POS==11||POS==12
 p1=rand;
p2=rand;
 maxp=max([p1,p2]);
 minp=min([p1,p2]);
 AA(10)=m*minp;
 AA(11)=m*(1-maxp);
 AA(12)=m-m1-m2;
end
farm{i}=AA;
end
end

%%

counter=counter+1
%% Step 7: Plot convergence plot

figure(1);
plot(LC1);
xlabel('Counter');
ylabel('Fitness average');
title('Fitness average convergence curve');
figure(2);
plot(LC2);
xlabel('Counter');
ylabel('Best fitness');
title('Best fitness convergence curve');

Beta=Xp;
k1=Beta(1);
k2=Beta(2);
k3=Beta(3);
a1=Beta(4);
a2=Beta(5);
a3=Beta(6);
c1=Beta(7);
c2=Beta(8);
c3=Beta(9);
m1=Beta(10);
m2=Beta(11);
m3=Beta(12);
y0=0;
[Y1,F1]=Sim1(k1,a1,c1,m1,v,dt,y0);
[Y2,F2]=Sim1(k2,a2,c2,m2,v,dt,y0);
[Y3,F3]=Sim1(k3,a3,c3,m3,v,dt,y0);
n1=length(F1);
n2=length(F2);
n3=length(F3);
maxn=max([n1,n2,n3]);
F1=[F1,zeros(1,maxn-n1)];
F2=[F2,zeros(1,maxn-n2)];
F3=[F3,zeros(1,maxn-n3)];
F=F1+F2+F3;
F=F';
t=0:(length(F)-1);
T=0.00002*t;
figure(3)
plot(1000*f)
hold on
plot(F);
xlabel('time(0.00002s)')
ylabel('force(N)')
function net=GABPNET(XX,YY)
%--
% GA routines
%--
% Data normalization
nntwarn off
XX=premnmx(XX);
YY=premnmx(YY);
%Setup ANN
net=newff(minmax(XX),[18,15,1],{'tansig','tansig','purelin'},'trainlm');
% use GA to train BP
P=XX;
T=YY;
R=size(P,1);
S2=size(T,1);
S1=15;% Hide layer nodes
S=R*S1+S1*S2+S1+S2;% encode
aa=ones(S,1)*[-1,1];
popu=50;% number of population
initPpp=initializega(popu,aa,'gabpEval');% initialize population
gen=50;% number of generation
% Call GA function
[x,endPop,bPop,trace]=ga(aa,'gabpEval',[],initPpp,[1e-6 1 1],'maxGenTerm',gen,...
'normGeomSelect',[0.09],['arithXover'],[2],['nonUnifMutation',[2 gen 3]]);
%Plot convergence curve
figure(1)
plot(trace(:,1),1./trace(:,3),'r-');
hold on
plot(trace(:,1),1./trace(:,2),'b-');
xlabel('Generation');
ylabel('Sum-Squared Error');
figure(2)
plot(trace(:,1),trace(:,3),'r-');
hold on
plot(trace(:,1),trace(:,2),'b-');
xlabel('Generation');
ylabel('Fitness');

% assign Weigh and Basis to untrained BP net works
[W1,B1,W2,B2,P,T,A1,A2,SE,val]=gadecod(x);
net.LW{2,1}=W1;
net.LW{3,2}=W2;
net.b{2,1}=B1;
net.b{3,1}=B2;
XX=P;
YY=T;

%setup training parameters
net.trainParam.show=1;
net.trainParam.lr=1;
net.trainParam.epochs=50;
net.trainParam.goal=0.001;

% train ANN
net=train(net,XX,YY);
GABPNET generalization ability assessment

% check generalization ability
clear
nntwarn off
load data3; % load data
% XX = premmnx(XX);
% YY = premmnx(YY);
YY = YY(2,:);
dYY = max(YY) - min(YY);
N = size(XX, 2);
M = 5; % take 5 samples for test
RN = randperm(N);
CS = RN(1:M);
Err = zeros(1, M); % relative errors
for i = 1:M
 pos = CS(i);
 if pos == 1
 x = XX(:, 1);
 y = YY(1); % fractional error
 X = XX(:, 2:N);
 Y = YY(:, 2:N);
 elseif pos == N
 x = XX(:, N);
 y = YY(N);
 X = XX(:, 1:(N-1));
 Y = YY(:, 1:(N-1));
 else
 x = XX(:, pos);
 y = YY(pos);
 X = [XX(:, 1:(pos-1)), XX(:, (pos+1):end)];
 Y = [YY(:, 1:(pos-1)), YY(:, (pos+1):end)];
 end
 net = GABPNET(X, Y);
[xx, minXX, maxXX] = premmnx(XX);
[yy, minYY, maxYY] = premmnx(YY);
x = tramnmnx(x, minXX, maxXX);
y = sim(net, x);
y = postmnmx(y, minYY, maxYY);
Err(:, i) = (y - YY(:, pos)) ./ YY(:, pos);
end
sum(abs(Err)) / M
figure(3)
hist(abs(Err))
figure(4)
stem(abs(Err))
GA code and decode

%--
% This is the GA routines to optimize ANN structure
%
%--
function [W1, B1, W2, B2, P, T, A1, A2, SE, val] = gadecod(x)
load data3
YY = YY(1,:);
nntwarn off
XX = premnmx(XX);
YY = premnmx(YY);
P = XX;
T = YY;
R = size(P,1);
S2 = size(T,1);
S1 = 15; % define hide layer nodes
S = R*S1+S1*S2+S1+S2; % encode
% code R*S1 equates to W1
for i = 1:S1,
 for k = 1:R,
 W1(i,k) = x(R*(i-1)+k);
 end
end
% code S1*S2 equates to W2
for i = 1:S2,
 for k = 1:S1,
 W2(i,k) = x(S1*(i-1)+k+R*S1);
 end
end
% S1 equates to B1
for i = 1:S1,
 B1(i,1) = x((R*S1+S1*S2)+i);
end
\[
\begin{align*}
\text{% S2 equates to B2} \\
\text{for } i=1:S2, \\
\quad B2(i,1)=x((R*S1+S1*S2+S1)+i); \\
end \\
\text{% calculate output form S1 and S2} \\
\quad A1=tansig(W1*P,B1); \\
\quad A2=purelin(W2*A1,B2); \\
\text{% sum square error} \\
\quad SE=sumsqr(T-A2); \\
\quad val=1/SE; \text{ % fitness}
\end{align*}
\]
Fitness function

function [sol, val] = gabpEval(sol, options)
% val - the fitness of this individual
% sol - the individual, returned to allow for Lamarckian evolution
% options - [current_generation]
load data3
YY = YY(1,:);
nntwarn off
XX = premnmx(XX);
YY = premnmx(YY);
P = XX;
T = YY;
R = size(P,1);
S2 = size(T,1);
S1 = 15;% define hide layer nodes
S = R*S1+S1*S2+S1+S2;%encode
for i = 1:S,
 x(i) = sol(i);
end;
[W1, B1, W2, B2, P, T, A1, A2, SE, val] = gadecod(x);
function Parameter=PARA(CF,Velo)
% character extraction
% Input parameters
% CF c
% Velo simulated velocity curve
% Output parameters
% P1 Contact time
% P2 10% above contact time
% P3 50% above contact time
% P4 90% above contact time
% P5 Peak time
% P6 Peak force
% P7 Kurtosis 1: P6/P1
% P8 Kurtosis 2: P6/P2
% P9 Kurtosis 3: P6/P3
% P10 Kurtosis 4: P6/P4
% P11 Kurtosis 5: statistic peak value
% P12 Skewness 1: Integrated Skewness based on P1 and P5
% P13 Skewness 2: Integrated Skewness based on P2 and P4
% P14 Skewness 2: statistic Skewness
% P15 impact speed
% P16 rebound speed
% P17 COR: P16/P15
% P18 average acceleration
% P19 peak acceleration

% load test data
F=CF(:,2);
Nonzero=find(F>eps);
pos1=Nonzero(1);
pos2=Nonzero(end);
F=F(pos1:pos2);
V=Velo(pos1:pos2,2);
T=CF(pos1:pos2,1);
T=T';
F=F';
V=V';

%% Parameter 1: Contact time
P1t1=T(1);
P1t2=T(end);
P1=P1t2-P1t1;

%% Parameter 2: 10% above contact time
maxF=max(F);
pos=find(F>=0.1*maxF);
P2t1=T(pos(1));
P2t2=T(pos(end));
P2=P2t2-P2t1;

%% Parameter 3: 50% above contact time
pos=find(F>=0.5*maxF);
P3t1=T(pos(1));
P3t2=T(pos(end));
P3=P3t2-P3t1;

%% Parameter 4: 90% above contact time
pos=find(F>=0.9*maxF);
P4t1=T(pos(1));
P4t2=T(pos(end));
P4=P4t2-P4t1;

%% Parameter 5: Peak time
pos = find(F == maxF);
P5 = mean(T(pos));

%%% Parameter 6: Peak force
P6 = maxF;

%%% Parameter 7: Kurtosis 1: P6/P1
P7 = P6/P1;

%%% Parameter 8: Kurtosis 2: P6/P2
P8 = P6/P2;

%%% Parameter 9: Kurtosis 3: P6/P3
P9 = P6/P3;

%%% Parameter 10: Kurtosis 4: P6/P4
P10 = P6/P4;

%%% Parameter 11: Kurtosis 5: Statistic Kurtosis
P11 = kurtosis(F');

%%% Parameter 12: Skewness 1: Integrated Skewness based on P1 and P5
pos1 = find(T <= P5);
pos2 = find(T > P5);
F1 = F(pos1);
F2 = F(pos2);
P12 = sum(F2)/sum(F1);

%%% Parameter 13: Skewness 1: Integrated Skewness based on P2 and P4
t3 = 0.5*(P4t1 + P4t2);
pos1 = find(T <= P2t1);
pos1 = pos1(end);
pos2 = find(T >= P2t2);
pos2=pos2(1);
pos3=find(T<=t3);
pos3=pos3(end);
pos4=find(T>t3);
pos4=pos4(1);
F1=F(pos1:pos3);
F2=F(pos4:pos2);
P13=sum(F2)/sum(F1);

%% Parameter 14: Skewness 3: statistic Skewness
P14=skewness(F');

%% Parameter 15: Impact speed
P15=V(1);

%% Parameter 16: Rebound speed
P16=V(end);

%% Parameter 17: COR: P16/P15
P17=abs(P16/P15);

%% Parameter 18: average acceleration
P18=abs((P16-P15)/P1);

%% Parameter 19: peak acceleration
pos1=find(T<=P4t1);
pos2=find(T>=P4t2);
pos1=pos1(end);
pos2=pos2(1);
P19=abs((V(pos2)-V(pos1))/(T(pos2)-T(pos1)));

%% Parameters assembly
Parameter=[P1,P2,P3,P4,P5,P6,P7,P8,P9,P10,P11,P12,P13,P14,P15,P16,P17,P18,P19];
Parameter reversing through ANN

function \([C10,C01,G1,Tau1]=\text{TEST}_\text{hypervisco}(CF,V1,V2,COR,XX,YY)\)
%\([C10,C01,G1,Tau1]=\text{TEST}_\text{hypervisco}(CF,40,-18.4,0.4609,XX,YY)\)
%% use GABP to reverse the material parameters of HYPERVISCO model
%% Input parameters list
% CF test contact force
% V1 impact speed
% V2 rebound speed (negative)
% COR abs(V2/V1)

%% Output parameters list
% C10,C01,G1,Tau1 are material parameters

%% Step 1: load data
F=CF(:,2);
Nonzero=find(F>eps);
pos1=Nonzero(1);
pos2=Nonzero(end);
F=F(pos1:pos2);
T=CF(pos1:pos2,1);
T=T';
F=F';
% Parameter 1: contact time
P1t1=T(1);
P1t2=T(end);
P1=P1t2-P1t1;
% Parameter 2: 10\% above contact time
maxF=max(F);
pos=find(F>=0.1*maxF);
P2t1=T(pos(1));
P2t2=T(pos(end));
P2=P2t2-P2t1;
% Parameter 3: 50% above contact time
pos=find(F>=0.5*maxF);
P3t1=T(pos(1));
P3t2=T(pos(end));
P3=P3t2-P3t1;
% Parameter 4: 90% above contact time
pos=find(F>=0.9*maxF);
P4t1=T(pos(1));
P4t2=T(pos(end));
P4=P4t2-P4t1;
% Parameter 5: peak time
pos=find(F==maxF);
P5=mean(T(pos));
% Parameter 6: peak force
P6=maxF;
% Parameter 7: Kurtosis 1: P6/P1
P7=P6/P1;
% Parameter 8: Kurtosis 2: P6/P2
P8=P6/P2;
% Parameter 9: Kurtosis 3: P6/P3
P9=P6/P3;
% Parameter 10: Kurtosis 4: P6/P4
P10=P6/P4;
% Parameter 11: Kurtosis 5: statistic Kurtosis
P11=kurtosis(F');
% Parameter 12: Skewness 1: Integrated Skewness based on P1 and P5
pos1=find(T<=P5);
pos2=find(T>P5);
F1=F(pos1);
F2=F(pos2);
P12=sum(F2)/sum(F1);
% Parameter 13: Skewness 1: Integrated Skewness based on P2 and P4
\[t_3 = 0.5 \times (P_{4t1} + P_{4t2}) ; \]
\[\text{pos1} = \text{find}(T \leq P_{2t1}) ; \]
\[\text{pos1} = \text{pos1}(\text{end}) ; \]
\[\text{pos2} = \text{find}(T \geq P_{2t2}) ; \]
\[\text{pos2} = \text{pos2}(1) ; \]
\[\text{pos3} = \text{find}(T \leq t_3) ; \]
\[\text{pos3} = \text{pos3}(\text{end}) ; \]
\[\text{pos4} = \text{find}(T > t_3) ; \]
\[\text{pos4} = \text{pos4}(1) ; \]
\[F_1 = F(\text{pos1}:\text{pos3}) ; \]
\[F_2 = F(\text{pos4}:\text{pos2}) ; \]
\[P_{13} = \text{sum}(F_2) / \text{sum}(F_1) ; \]

\% Parameter 14: Skewness 3: statistic Skewness
\[P_{14} = \text{skewness}(F') ; \]
\% Parameter 15: impact speed
\[P_{15} = V_1 ; \]
\% Parameter 16: rebound speed
\[P_{16} = V_2 ; \]
\% Parameter 17: COR: \[P_{16} / P_{15} \]
\[P_{17} = \text{COR} ; \]
\% Parameter 18: average acceleration
\[P_{18} = \text{abs}((P_{16} - P_{15}) / P_1) ; \]
\[x = [P_1, P_2, P_3, P_4, P_5, P_6, P_7, P_8, P_9, P_{10}, P_{11}, P_{12}, P_{13}, P_{14}, P_{15}, P_{16}, P_{17}, P_{18}] ; \]

\% Parameters reversing, five networks work in parallel
\[\text{net1} = \text{GABPNET}(XX, YY(1,:)) ; \]
\[\text{net2} = \text{GABPNET}(XX, YY(1,:)) ; \]
\[\text{net3} = \text{GABPNET}(XX, YY(1,:)) ; \]
\[\text{net4} = \text{GABPNET}(XX, YY(1,:)) ; \]
\[\text{net5} = \text{GABPNET}(XX, YY(1,:)) ; \]
\[[xx, \text{minXX}, \text{maxXX}] = \text{premnmx}(XX) ; \]
\[[yy, \text{minYY}, \text{maxYY}] = \text{premnmx}(YY(1,:)) ; \]
\[x = \text{trammx}(x, \text{minXX}, \text{maxXX}) ; \]
y1 = sim(net1, x);
y2 = sim(net2, x);
y3 = sim(net3, x);
y4 = sim(net4, x);
y5 = sim(net5, x);
y = 0.2*(y1 + y2 + y3 + y4 + y5);
C10 = postmnmx(y, minYY, maxYY);

net1 = GABPNET(XX, YY(2,:));
net2 = GABPNET(XX, YY(2,:));
net3 = GABPNET(XX, YY(2,:));
net4 = GABPNET(XX, YY(2,:));
net5 = GABPNET(XX, YY(2,:));
[xx, minXX, maxXX] = premnmx(XX);
[yy, minYY, maxYY] = premnmx(YY(2,:));
x = tramnnmx(x, minXX, maxXX);
y1 = sim(net1, x);
y2 = sim(net2, x);
y3 = sim(net3, x);
y4 = sim(net4, x);
y5 = sim(net5, x);
y = 0.2*(y1 + y2 + y3 + y4 + y5);
C01 = postmnmx(y, minYY, maxYY);

net1 = GABPNET(XX, YY(3,:));
net2 = GABPNET(XX, YY(3,:));
net3 = GABPNET(XX, YY(3,:));
net4 = GABPNET(XX, YY(3,:));
net5 = GABPNET(XX, YY(3,:));
[xx, minXX, maxXX] = premnmx(XX);
[yy, minYY, maxYY] = premnmx(YY(3,:));
x = tramnnmx(x, minXX, maxXX);
y1 = sim(net1, x);
y2 = sim(net2, x);
y3 = sim(net3, x);
y4 = sim(net4, x);
y5 = sim(net5, x);
y = 0.2*(y1 + y2 + y3 + y4 + y5);
G1 = postmnmx(y, minYY, maxYY);

net1 = GABPNET(XX, YY(4,:));
net2 = GABPNET(XX, YY(4,:));
net3 = GABPNET(XX, YY(4,:));
net4 = GABPNET(XX, YY(4,:));
net5 = GABPNET(XX, YY(4,:));
[xx, minXX, maxXX] = premnmx(XX);
[yy, minYY, maxYY] = premnmx(YY(4,:));
x = tramnmx(x, minXX, maxXX);
y1 = sim(net1, x);
y2 = sim(net2, x);
y3 = sim(net3, x);
y4 = sim(net4, x);
y5 = sim(net5, x);
y = 0.2*(y1 + y2 + y3 + y4 + y5);
Tau1 = postmnmx(y, minYY, maxYY);
% batch parsing experimental data

clear
load ID
N=size(ID_Test5,1);
P=zeros(N,19);

for i=1:N
 cd('D:\Program Files\MATLAB\R2006a\work');
 IDi=ID_Test5(i);
sIDi=num2str(IDi);
 if IDi<1000
 sIDi=[0,sIDi];
 end
 str1=['D:\Program Files\MATLAB\R2006a\work\Test5_summary\DES_0',sIDi,'\Parsing_Script_00000'];
 cd(str1);
 load CF.dat;
 load Velo.dat;
 cd('D:\Program Files\MATLAB\R2006a\work');
 Parameter=PARA(CF,Velo);
P(i,:)=Parameter;
end
ODB file data conversion

from odbAccess import *

odb = openOdb(path='Hypervisco.odb')
step1 = odb.steps['Step-1']
print step1.historyRegions
region1 = step1.historyRegions['Node GROUND-1.5']
region2 = step1.historyRegions['Node SOLIDBALL-1.2']
RTData = region1.historyOutputs['RF3'].data
VData = region2.historyOutputs['V3'].data
CFFile = open('CF.dat','w')
for time, RF3 in RTData :
 CFFile.write('%10.4E %10.4E

VeloFile = open('Velo.dat','w')
for time, V3 in VData :
 VeloFile.write('%10.4E %10.4E

CFFile.close()
VeloFile.close()
Model accuracy estimation

% Parsing script to assess model accuracy
load CF.dat;% Load simulated contact force data
m=CF(6:49,2);
load Expdata;% Load experiment data
Reg= sum((m-Expdata).^2)/44);% Mean Square Error calculation
MSE=Reg.mse
Nonzero=find(m>0);
t1=CF(8+Nonzero(1),1);% Contact start point
t2=CF(8+Nonzero(end),1);% Contact end point
CT=t2-t1;% Contact duration
load Velo.dat;% Load simulated rebound speed
T=Velo(:,1);
pos=find(T>t2);
V_up=Velo(pos(1)-1,2);% Rebound speed
COR=-V_up/Velo(1,2);% COR calculation
ABAQUS parametric studies

Mstudy=ParStudy(par=('M1','M2'), name='core')
Mstudy.define(CONTINUOUS, par='M1', domain=(2., 3))
Mstudy.sample(NUMBER, par='M1', number=1)
Mstudy.define(CONTINUOUS, par='M2', domain=(1., 1.5))
Mstudy.sample(NUMBER, par='M2', number=1)
Mstudy.combine(MESH)
Mstudy.generate(template='core')
Mstudy.execute(ALL)
Mstudy.output(file=ODB, instance='Part-2-1', request=HISTORY, step=1, inc=0.0008)
Mstudy.gather(results='RF', variable='RF3', node=5, step=1)
Mstudy.output(file=ODB, instance='Part-2-1', request=HISTORY, step=1, inc=0.001)
Mstudy.gather(results='RF1', variable='RF3', node=5, step=1)
Mstudy.report(FILE, results=('RF.1','RF1.1'), file='DATA.dat')