Numerical Simulation of Turbulence Modulation in Two-Phase Flows

Krishna Mohanarangam
BE

A thesis submitted in fulfilment of the requirement for the degree of Doctor of Philosophy.

February, 2008

School of Aerospace, Manufacturing & Mechanical Engineering
RMIT University
Declaration

I, Krishna Mohanarangam, hereby submit the thesis titled “Numerical Simulation of Turbulence Modulation in Two-Phase Flows” for the degree of Doctor of Philosophy and certify that the work is my own work except where due acknowledge has been made; the work has not been submitted previously, in whole or in part, for any other academic award; the content of the thesis is the result of work which has been carried out since the official commencement date of the approved research program.

I give consent for this copy of my thesis to be made available for loan and photocopying when handed to the University Library for archiving.

Krishna Mohanarangam
February 2008
Acknowledgements

First and foremost, I would like to express my deepest gratitude to my supervisor, Professor Jiyuan Tu of the School of Aerospace, Manufacturing & Mechanical Engineering in RMIT University for his fruitful, organised and patient guidance in every aspect of my research work. The immense influence he presented in shaping my research attitude and approach can never be overestimated.

I would also like to express sincere gratitude to my co-supervisor, Dr Li Chen of Defence Science and Technology Organization (DSTO), for her guidance in helping me to learn the grassroots of Computational Fluid Dynamics. I am also grateful Dr. William Yang from CSIRO Minerals, who amidst busy schedule made time to give me a insight into the world of experimental fluid dynamics.

I would like to thank members of RMIT CFD group and my colleagues in the research office – Dr. Edsil Dilla, Dr. Tian Zhaofeng, Dr. Randeep Singh, Dr. Sherman Cheung, Dr Rong Situ, Kiao Inthavong, Huafeng Li, Weng Yew Cheng, Thau Do, Cong Li, Abdul Massod. They have always provided assistance where necessary.

I would also like to thank my parents, my younger brother and my extended family, who helped me to keep my feet on ground when I was high up in the air searching for the unknown(s).

I would not be able to make justice without thanking the people, my friends outside my professional life in Australia, who many times reminded me of the existence of life outside the lab and university. Hats off to you guys!!

I would also like to thank the numerous people who I would not be able to thank them individually in this thesis for their care, support and concern towards realizing my dream.
Abstract

With the increase of computational power, computational modelling of two-phase flow problems using computational fluid dynamics (CFD) techniques is gradually becoming attractive in the engineering field. Two basic CFD approaches are used to simulate the two-phase flow, i.e. the Eulerian-Lagrangian model and the Eulerian-Eulerian model. The major aim of this thesis is to investigate the Turbulence Modulation (TM) of dilute two phase flows. In order to carry out this approach, an in house research code employing Two-Fluid model, with additional source terms to account for the presence of the dispersed phase in the turbulence equations has been employed.

Various density regimes of the two-phase flows have been investigated in this thesis, namely the dilute gas-particle flow, liquid-particle flow and also the liquid-air flows. While the density is quite high for the dispersed phase flow for the gas-particle flow, the density ratio is almost the same for the liquid particle flow, while for the air-liquid flow the density is quite high for the carrier phase flow. The study of all these density regimes gives a clear picture of how the carrier phase behaves in the presence of the dispersed phases, which ultimately leads to better design and safety of many two-phase flow equipments.

For the dilute gas-particle flows, particle-turbulence interaction over a backward-facing step geometry was numerically investigated. An Eulerian two-fluid model with additional turbulence transport equations for particles is employed in this investigation. RNG based k-ε model is used as the turbulent closure with additional transport equations solved, to better represent the combined gas-particle interactions. Two different particle classes with same Stokes number and varied particle Reynolds number are considered in this study. The turbulence modulation of the carrier phase in the presence of the dispersed particulate phase is simulated and compared against the experimental data. Despite the fact that the two particles used in this study share the same Stokes number their behaviour is found to be considerably different in the turbulent flow field, which basically underlines the fact that the Stokes number alone is not enough to fully describe the behaviour of particles, there by, herein particle Reynolds number is also investigated to fully understand
their behaviour. Two other turbulence modulation models along with the SATO model were tested against our own formulation and our model was found to compare better with the experimental findings.

A detailed study into the turbulent behaviour of dilute particulate flow under the influence of two carrier phases namely gas and liquid was also been carried out behind a sudden expansion geometry. The major endeavour of the study is to ascertain the response of the particles within the carrier (gas or liquid) phase. The main aim prompting the current study is the density difference between the carrier and the dispersed phase. While the ratio is quite high in terms of the dispersed phase for the gas-particle flows, the ratio is far more less in terms of the liquid-particle flows. Numerical simulations were carried out for both these classes of flows and their results were validated against their respective sets of experimental data. Qualitative results have been obtained for both these classes of flows with their respective experimental data, furthermore their response to their carrier phase has been investigated both at the mean and turbulence level for a range of Stokes number. While the particulate velocity seems to increase with the corresponding increase in Stokes number amidst both the carrier phases the particulate turbulence shows entirely a different pattern.

For the Liquid-Air flows the phenomenon of drag reduction by the injection of micro-bubbles into turbulent boundary layer has been investigated using an Eulerian-Eulerian two-fluid model. Two variants namely the Inhomogeneous and MUSIG (MUltiple-SIze-Group) based on Population balance models are investigated. The simulated results were benchmarked against the experimental findings and also against other numerical studies explaining the various aspects of drag reduction. For the two Reynolds number cases considered, the buoyancy with the plate on the bottom configuration is investigated, as from the experiments it is seen that buoyancy seem to play a role in the drag reduction. Well established theories of drag reduction from various experiments and high resolution numerical studies are scrutinised and explained in context to our numerical findings. The under predictions of the MUSIG model at low rates was investigated and reported, their predictions seem to fair better with the decrease of the break-up tendency among the micro-bubbles, this information was later used as a predictive tool for the two-fluid Inhomogeneous model.
Work Published During Candidature

During the course of my PhD study, a number of papers have been produced based on the results described in this thesis. Three journal papers have been published, and another four journal papers have been submitted. Additionally, four conference/workshop papers have been presented in national and international conferences. A detailed publication list is presented below:

Journal papers:

Conference papers:

Contents

Declaration II
Acknowledgements III
Abstract IV
Work Published during Candidature VI
Contents VIII
List of Figures XI
List of Tables XVII
Nomenclature XVIII

1. Introduction 1
 1.1 Motivation and Aim 1
 1.2 Scope and Outline of the thesis 5

2. Literature Review 7
 2.1 Basic concepts of dilute gas-particle/liquid-particle two-phase flows 7
 2.2 Numerical approaches for two phase flow 9
 2.2.1 Eulerian-Eulerian Model 9
 2.2.2 Eulerian-Lagrangian Model 10
 2.3 Turbulence Models for Gas Phase 11
 2.4 RANS Approach for Two-Phase Flows 13

3. Mathematical and Numerical formulation 16
 3.1 Gas-Particle and Liquid-Particle Flows 16
 3.1.1 Governing Equations for Carrier Phase Modeling 16
 3.1.2 Governing Equations for Particulate Phase Modeling 17
 3.1.3 Turbulence Modeling for Carrier Phase 18
 3.1.4 Turbulence Modeling for the Dispersed Phase 19
3.2 Gas-Liquid Flows
 3.2.1 Inhomogeneous Two-Fluid Model
 3.2.1.1 Mass Conservation
 3.2.1.2 Momentum Conservation
 3.2.1.3 Interfacial Area Density
 3.2.2 MUSIG Model
 3.2.2.1 MUSIG Break-Up Rate
 3.2.2.2 MUSIG Coalescence Rate

4. Numerical Investigation of Turbulent Gas-Particle Flow behind a Backward-Facing Step
 4.1 Numerical Procedure
 4.2 Code Verification
 4.2.1 Mean Streamwise Velocities
 4.2.2 Mean Streamwise Fluctuations
 4.3 Results and Discussion
 4.3.1 Turbulence Modulation (TM)
 4.3.2 Analysis of Experimental Data
 4.3.3 Investigation of SATO Model
 4.3.4 Testing of Different TM Models
 4.3.5 Extended TM & Particle Number Density (PND) Results
 4.3.6 Effect of Particle Reynolds Number on TM
 4.4 Summary

5. Numerical Investigation of Liquid-Particle (LP) and Gas-Particle (GP) Flow behind a Backward-Facing Step
 5.1 Numerical Procedure
 5.2 Analysis of Experimental Data
 5.3 Numerical Code Validation
 5.4 Results and Discussion
 5.4.1 Particle Response- Mean Velocity Level
 5.4.2 Particle Response- Turbulence Level
 5.4.3 Summary of Particle Responsivity
 6.1 Introduction
 6.2 Numerical Procedure
 6.3 Results and Discussion
 6.3.1 Experimental Validation (Inhomogeneous Model)
 6.3.2 Investigation of Mechanisms of Drag Reduction
 6.3.3 Turbulence Modulation (TM)
 6.3.4 Effect of bubble coalescence and break-up in drag reduction
 6.5 Summary

7. Conclusions and Recommendations

References
List of Figures

Figure 3.1 Solution procedure for Eulerian two-fluid model 22
Figure 4.1 Backward facing step geometry 29
Figure 4.2 Mean streamwise gas velocities 30
Figure 4.3a Streamwise mean velocity for 70µm copper particles 31
Figure 4.3b Streamwise mean velocity for 150µm glass particles 32
Figure 4.4 Fluctuating streamwise gas velocities 33
Figure 4.5a Fluctuating streamwise particle velocities for 70µm copper particles 34
Figure 4.5b Fluctuating streamwise particle velocities for 150µm glass particles 34
Figure 4.6a Experimental mean streamwise particle velocity 36
Figure 4.6b Experimental fluctuating streamwise particle velocity 37
Figure 4.7a Experimental Turbulence Modulation at x/h=2 37
Figure 4.7b Experimental Turbulence Modulation at x/h=7 38
Figure 4.7c Experimental Turbulence Modulation at x/h=14 38
Figure 4.8a Turbulence Modulation with SATO model for 150µm glass particle at x/h=2 40
Figure 4.8b Turbulence Modulation with SATO model for 150µm glass particle at x/h=7 40
Figure 4.8c Turbulence Modulation with SATO model for 150µm glass particle at x/h=14 41
Figure 4.9a Turbulence Modulation with various models for 70µm copper particles at x/h=2 42
Figure 4.9b Turbulence Modulation with various models for 70µm copper particles at x/h=7 43
Figure 4.9c Turbulence Modulation with various models for 70µm copper particles at x/h=14 43
Figure 4.10a Turbulence Modulation with various models for 150µm glass particles at x/h=2 44
Figure 4.10b Turbulence Modulation with various models for 150µm glass particles at x/h=7 44
Figure 4.10c Turbulence Modulation with various models for 150µm glass particles at x/h=14 45
Figure 4.11a Turbulence Modulation & Particle Number Density for 70\textmu m copper particles at x/h=2
Figure 4.11b Turbulence Modulation & Particle Number Density for 70\textmu m copper particles at x/h=7
Figure 4.11c Turbulence Modulation & Particle Number Density for 70\textmu m copper particles at x/h=14
Figure 4.12a Turbulence Modulation & Particle Number Density for 150\textmu m glass particles at x/h=2
Figure 4.12b Turbulence Modulation & Particle Number Density for 150\textmu m glass particles at x/h=7
Figure 4.12c Turbulence Modulation & Particle Number Density for 150\textmu m glass particles at x/h=14
Figure 5.1a Backward facing step geometry (Fessler & Eaton; 1995)
Figure 5.1b Backward facing step geometry (Founti & Klipfel; 1998)
Figure 5.2a Experimental mean streamwise velocities at x/h=0.7 for liquid-particle flow
Figure 5.2b Experimental mean streamwise velocities at x/h=7.8 for liquid-particle flow
Figure 5.2c Experimental mean streamwise velocities at x/h=15.7 for liquid-particle flow
Figure 5.3a Experimental mean streamwise velocities at x/h=2 for gas-particle flow
Figure 5.3b Experimental mean streamwise velocities at x/h=7 for gas-particle flow
Figure 5.3c Experimental mean streamwise velocities at x/h=14 for gas-particle flow
Figure 5.4a Experimental mean fluctuating velocities at x/h=0.7 for liquid-particle flow
Figure 5.4b Experimental mean fluctuating velocities at x/h=7.8 for liquid-particle flow
Figure 5.4c Experimental mean fluctuating velocities at x/h=15.7 for liquid-particle flow
Figure 5.5a Experimental mean fluctuating velocities at x/h=2 for gas-particle flow

XII
Figure 5.5b	Experimental mean fluctuating velocities at x/h=7 for gas-particle flow	64
Figure 5.5c	Experimental mean fluctuating velocities at x/h=14 for gas-particle flow	64
Figure 5.6a	Axial liquid velocities along the step for LP flows	65
Figure 5.6b	Fluctuating axial liquid velocities along the step for LP flows particles	66
Figure 5.6c	Axial particle velocities along the step for LP flows	66
Figure 5.6d	Fluctuating axial particle velocities along the step for LP flows	67
Figure 5.7a	Streamwise gas velocities along the step for GP flows	67
Figure 5.7b	Fluctuating streamwise gas velocities along the step for GP flows	68
Figure 5.7c	Streamwise mean velocity for 150µm glass particles	68
Figure 5.7d	Fluctuating streamwise particle velocities for 150µm glass particles	69
Figure 5.8a	Mean streamwise particle velocities for varying Stokes number for LP Flows	72
Figure 5.8b	Fluctuating streamwise particle velocities for varying Stokes number for GP flows	72
Figure 5.9a	Mean streamwise particle velocities for varying Stokes number along the height of the step for x/h=2 & y/h=0.5	74
Figure 5.9b	Mean streamwise particle velocities for varying Stokes number along the height of the step for x/h=2 & y/h=1.0	74
Figure 5.9c	Mean streamwise particle velocities for varying Stokes number along the height of the step for x/h=2 & y/h=1.5	75
Figure 5.9d	Mean streamwise particle velocities for varying Stokes number along the height of the step for x/h=2 & y/h=2.0	75
Figure 5.10a Mean streamwise particle velocities for varying Stokes number along the height of the step for x/h=7 & y/h=0.5

Figure 5.10b Mean streamwise particle velocities for varying Stokes number along the height of the step for x/h=7 & y/h=1.0

Figure 5.10c Mean streamwise particle velocities for varying Stokes number along the height of the step for x/h=7 & y/h=1.5

Figure 5.10d Mean streamwise particle velocities for varying Stokes number along the height of the step for x/h=7 & y/h=2.0

Figure 5.11a Mean streamwise particle velocities for varying Stokes number along the height of the step for x/h=14 & y/h=0.5

Figure 5.11b Mean streamwise particle velocities for varying Stokes number along the height of the step for x/h=14 & y/h=1.0

Figure 5.11c Mean streamwise particle velocities for varying Stokes number along the height of the step for x/h=14 & y/h=1.5

Figure 5.11d Mean streamwise particle velocities for varying Stokes number along the height of the step for x/h=14 & y/h=2.0

Figure 5.12a Fluctuating streamwise particle velocities for varying Stokes number along the height of the step for x/h=2 & y/h=0.5

Figure 5.12b Fluctuating streamwise particle velocities for varying Stokes number along the height of the step for x/h=2 & y/h=1.0

Figure 5.12c Fluctuating streamwise particle velocities for varying Stokes number along the height of the step for x/h=2 & y/h=1.5

Figure 5.12d Fluctuating streamwise particle velocities for varying Stokes number along the height of the step for x/h=2 & y/h=2.0
Figure 5.13a Fluctuating streamwise particle velocities for varying Stokes number along the height of the step for x/h=7 & y/h=0.5

Figure 5.13b Fluctuating streamwise particle velocities for varying Stokes number along the height of the step for x/h=7 & y/h=1.0

Figure 5.13c Fluctuating streamwise particle velocities for varying Stokes number along the height of the step for x/h=7 & y/h=1.5

Figure 5.13d Fluctuating streamwise particle velocities for varying Stokes number along the height of the step for x/h=7 & y/h=2.0

Figure 5.14a Fluctuating streamwise particle velocities for varying Stokes number along the height of the step for x/h=14 & y/h=0.5

Figure 5.14b Fluctuating streamwise particle velocities for varying Stokes number along the height of the step for x/h=14 & y/h=1.0

Figure 5.14c Fluctuating streamwise particle velocities for varying Stokes number along the height of the step for x/h=14 & y/h=1.5

Figure 5.14d Fluctuating streamwise particle velocities for varying Stokes number along the height of the step for x/h=14 & y/h=2.0

Figure 6.1a Schematic diagram of the numerical model

Figure 6.1b Computational grid used for computations

Figure 6.2 Comparison of simulated boundary layer velocity profile with the standard law of curves for $U_\infty = 14.2 m/s$

Figure 6.3 Comparison of skin friction co-efficient with the experimental findings for $U_\infty = 14.2 m/s$ & $9.6 m/s$

Figure 6.4a Velocity profiles for varying gas injection rates for free stream velocity $U_\infty = 14.2 m/s$

Figure 6.4b Change in the mean flow velocity for the carrier phase along the boundary layer for $U_\infty = 14.2 m/s$

Figure 6.4c Liquid normal velocity for the carrier phase along the boundary layer for $U_\infty = 14.2 m/s$
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4d</td>
<td>Air void fraction contour plot for Q5-V14.2</td>
</tr>
<tr>
<td>6.5</td>
<td>Change in the boundary layer for varying gas flow rates for $U_\infty = 14.2\text{m/s}$</td>
</tr>
<tr>
<td>6.6</td>
<td>Turbulence Modulation (TM) along the boundary layer for $U_\infty = 14.2\text{m/s}$</td>
</tr>
<tr>
<td>6.7a</td>
<td>Volume fraction of air along the outlet for $U_\infty = 9.6\text{m/s}$</td>
</tr>
<tr>
<td>6.7b</td>
<td>Volume fraction of air along the outlet for $U_\infty = 14.2\text{m/s}$</td>
</tr>
<tr>
<td>6.8a</td>
<td>Comparison of computed skin-friction co-efficient Inhomogeneous & MUSIG models $U_\infty = 9.6\text{m/s}$</td>
</tr>
<tr>
<td>6.8b</td>
<td>Comparison of computed plate drag co-efficient Inhomogeneous & MUSIG models $U_\infty = 14.2\text{m/s}$</td>
</tr>
<tr>
<td>6.9a</td>
<td>Comparison of skin friction co-efficients with different break-up co-efficients for $U_\infty = 9.6\text{m/s}$</td>
</tr>
<tr>
<td>6.9b</td>
<td>Comparison of skin friction co-efficients with different break-up co-efficients for $U_\infty = 14.2\text{m/s}$</td>
</tr>
<tr>
<td>6.10a</td>
<td>Bubble diameter distribution function for Q1-V9.6</td>
</tr>
<tr>
<td>6.10b</td>
<td>Bubble diameter distribution function for Q2-V14.2</td>
</tr>
</tbody>
</table>
List of Tables

Table 4.1 Properties of the dispersed phase 30
Table 5.1 Flow properties of carrier and dispersed phases for LP & GP flows 56
Table 6.1 Input boundary conditions for the computational model 96
Nomenclature

\(A_i \)
convective flux

\(A_{ij}, A_s \)
model constants for realizable \(k-\varepsilon \) turbulence model

\(B \)
diffusion coefficient

\(B_{sp}, B_{e} \)
model constants for the Eulerian two-fluid model

\(C_{\mu} \)
coefficient in the \(k-\varepsilon \) turbulence model

\(C_D \)
particle drag coefficient

\(C_{RNG} \)
constant in RNG LES model

\(C_1, C_2 \)
model constants for realizable \(k-\varepsilon \) turbulence model

\(C_{\varepsilon 1}, C_{\varepsilon 2} \)
model constants for standard and RNG \(k-\varepsilon \) turbulence models

\(d_p \)
particle diameter

\(e \)
coefficient of restitution

\(e_n, e_t \)
mean normal and tangential restitution coefficients

\(f \)
correction factor

\(F_{Di} \)
aerodynamic drag force

\(F_{Gi} \)
gravity force

\(F_r \)
Froude number

\(F_{WMI} \)
wall-momentum transfer due to particle-wall collision force

\(g \)
gravitational acceleration

\(h \)
step height

\(H_r \)
the mean roughness depth for wall surface

\(l_{sp} \)
turbulence interaction between the gas and particle phases for the particle phase turbulent fluctuating energy

\(l \)
length scale of energetic turbulent eddies

\(L_r \)
the mean cycle of roughness

\(L_s \)
characteristic length of the system

\(L_e \)
eddy length scale

\(m \)
ratio of particle to gas density
\dot{m} mass of particles in per unit volume of the gas and particle mixture
P_{A} the normal impulse due to adhesion during rebound
P_{D} the normal impulse generated by deformation during approach
P_{k} turbulence production by the mean velocity gradients of two phases
P_{k} rate of production term of the turbulent kinetic energy
P_{k} production term of the particle fluctuating energy
q_{p} general source term
r^{*} normalized radial co-ordinate
r uniform random number
Re Reynolds number
R_{f} restitution coefficient in the absence of adhesion
S source term
St Stokes number
S_{ij}, S_{jk}, S_{ki} strain rates
t_{cross} eddy crossing time
t_{int} eddy-particle interaction time
t_{p} particle relaxation time
t_{s} system response time
T fluid temperature
T_{L} fluid Lagrangian integral time
u_{i}^{p} particle incident velocity in tangential direction
u_{n}^{p} particle incident velocity in normal direction
u_{i}, u_{j}, u_{k} velocity
u_{o} free stream velocity
V_{s} characteristic velocity of the system
v_{i}^{p} particle rebound velocity in tangential direction
v_{n}^{p} particle rebound velocity in normal direction
v_{p} particle rebounding velocity
x_{i}, x_{j}, x_{k} Cartesian coordinate system
\(a_{if} \)
Interfacial area concentration

\(C \)
Adjustable model constant

\(C_D \)
Drag coefficient

\(C_{WE} \)
Wake entrainment coefficient

\(d \)
parent bubble diameter

\(d_i, d_j \)
daughter bubble diameters

\(d_H \)
Maximum bubble horizontal dimension

\(D \)
Inner diameter of the pipe

\(D_B \)
death rate due to break-up

\(D_C \)
death rate due to coalescence

\(D_s \)
Sauter mean bubble diameter

\(f_{BV} \)
brkage volume fraction

\(f_i \)
scalar variable of the dispersed phase

\(F_{C,F_B} \)
Coalescence and Breakage calibration factors

\(F_{ig} \)
Interfacial drag force

\(g \)
Gravitational acceleration

\(\bar{g} \)
Gravitational vector

\(h_0 \)
initial film thickness

\(h_l \)
critical film thickness

\(k \)
Turbulent kinetic energy

\(n_i \)
number density of the \(i \)th class

\(n_j \)
number density of the \(j \)th class

\(P \)
Pressure

\(P_B \)
production rate due to break-up

\(P_C \)
production rate due to coalescence

\(Re \)
Flow Reynolds number

\(R_{ij} \)
Net change rate of number density due to coalescence and break-up

\(t \)
Physical time

\(u \)
Velocity

\(u_t \)
Turbulent Velocity
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>\tilde{u}</td>
<td>Velocity vector</td>
</tr>
<tr>
<td>U</td>
<td>relative velocity between gas and liquid phase</td>
</tr>
<tr>
<td>U_r</td>
<td>terminal velocity of bubbles</td>
</tr>
<tr>
<td>V_i, V_j</td>
<td>volume corresponding to bubble group i and j</td>
</tr>
</tbody>
</table>

Greek letters

- α: volume fraction / void fraction
- β: model constant for RNG κ-ε turbulence model
- Γ: diffusivity of the scalar
- ε: dissipation rate of turbulent kinetic energy
- ε_0: the direction of the relative velocity between particle surface and wall
- ϕ: governing variable
- η: function defined in Equation (6)
- η_o: model constant for RNG κ-ε turbulence model
- k: turbulent kinetic energy
- μ: dynamic viscosity
- μ_0: the static friction coefficient
- μ_d: dynamic friction coefficient
- μ_{eff}: effective turbulent viscosity
- μ_t: turbulent viscosity
- ν: kinematic viscosity
- θ: angle between velocities of the particle and gas
- θ: particle incident angle
- ρ: density
- ρ_l: adhesion coefficient
- σ: turbulence Prandtl number
- τ_e: eddy life time
- τ_f: fluid time scale
- τ_w: wall shear stress
- τ_p: particle relaxation time
- ω: fluctuating vorticity
\(\omega_p \) particle initial angular velocity

\(\zeta \) normally distributed random number

\(\Pi_{gp} \) turbulence interaction between the gas and particle phases for the gas-particle

\(\Omega \) vorticity

\(\Omega_p \) particle rebounding angular velocity

Subscripts

add additional

eff effective

\(g \) gas phase

\(gp \) gas-particle

\(n \) normal direction

\(p \) particle phase

\(s \) solid phase

\(t \) tangential direction or turbulent phase

\(\alpha \) Void fraction

\(\varepsilon \) Turbulence kinetic energy dissipation

\(\eta_{jki} \) transfer coefficient between bubble groups arising from bubble breakup

\(\lambda \) Eddy size in the inertial subrange

\(\mu \) Effective viscosity

\(\xi \) size ratio between an eddy and a particle in the inertial subrange

\(\rho \) Density

\(\Delta \rho \) Density difference = \(\rho_i - \rho_g \)

\(\sigma \) Surface tension

\(\tau_{ij} \) Bubble contact time

\(\chi_{ij} \) Turbulent random coalescence rate
\[\Omega(v) \quad \text{Bubble breakup rate} \]

Superscript

- \(g \): gas phase
- \(gp \): gas-particle
- \(p \): particle phase
- \(\varepsilon \): dissipation rate of turbulent kinetic energy
- \(\kappa \): turbulent kinetic energy
- \(\overline{\cdot} \): averaged or resolved parameters
- \(\cdot' \): fluctuation
- \(g \): Gas
- \(gl \): Transfer of quantities from liquid phase to vapour phase
- \(i \): Index of gas/liquid phase
- \(l \): Liquid
- \(lg \): Transfer of quantities from gas phase to liquid phase
- \(\min \): Minimum operator
- \(\max \): Maximum operator