Thank you for downloading this document from the RMIT Research Repository.

The RMIT Research Repository is an open access database showcasing the research outputs of RMIT University researchers.

Citation:

See this record in the RMIT Research Repository at:

Version: Accepted Manuscript

Copyright Statement: © 2013 Elsevier Ltd. All rights reserved.

Link to Published Version:
http://dx.doi.org/10.1016/j.pmatsci.2013.06.003

PLEASE DO NOT REMOVE THIS PAGE
Transition metal oxides - thermoelectric properties

Sumeet Walia, a* Sivacarendran Balendhran, a Hussein Nili, a, b Serge Zhuiykov, c Gary Rosengarten, d Qing Hua Wang, e Madhu Bhaskaran, a, b Sharath Sriram, a, b Michael S. Strano e and Kourosh Kalantar-zadeh a*

a School of Electrical and Computer Engineering, RMIT University, Melbourne, Australia
b Functional Materials and Microsystems Research Group, RMIT University, Melbourne, Australia
c Materials Science and Engineering Division, CSIRO, Highett, Victoria, Australia
d School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Melbourne, Australia
e Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.

*Corresponding author emails: kourosh.kalantar@rmit.edu.au and sumeet.walia@rmit.edu.au

RMIT University, GPO 2476, Melbourne-3000, Victoria, Australia.
Ph: + 61-3-9925-3254

Abstract

Transition metal oxides (TMOs) are a fascinating class of materials due to their wide ranging electronic, chemical and mechanical properties. Additionally, they are gaining increasing attention for their thermoelectric (TE) properties due to their high temperature stability, tunable electronic and phonon transport properties and well established synthesis techniques. In this article, we review TE TMOs at cryogenic, ambient and high temperatures. An overview of strategies used for morphological, composting and stoichiometric tuning of their key TE parameters is presented. This article also provides an outlook on the current and future prospects of implementing TMOs for a wide range of TE applications.

Keywords: transition metal oxides, thermoelectric, Seebeck coefficient, electrical conductivity, thermal conductivity, doping, stoichiometry, composting, nanostructuring
Table of Contents

1 Introduction ... 6

2 Basic principles of thermoelectricity in TMOs ... 8

 2.1 Thermal conductivity κ ... 8

 2.1.1 Bulk (3D) materials ... 8

 2.1.2 2D materials ... 10

 2.1.3 1D materials ... 11

 2.1.4 0D materials ... 12

 2.2 Electrical conductivity σ ... 14

 2.2.1 Bulk (3D) materials ... 15

 2.2.2 2D materials ... 15

 2.2.3 1D materials ... 16

 2.2.4 0D materials ... 17

 2.3 Seebeck coefficient S ... 17

 2.3.1 Bulk (3D) materials ... 17

 2.3.2 2D materials ... 18

 2.3.3 1D materials ... 19

 2.3.4 0D materials ... 20

3 Strategies to tune and alter TE parameters of TMOs .. 21

 3.1 Optimization using stoichiometry and doping techniques 22

 3.2 Substructuring ... 23

 3.3 Nanostructuring .. 25

 3.4 Compositing .. 27

4 Transition metal oxides and their TE properties ... 27

 4.1 Titanium oxides – TiO$_x$... 27

 4.1.1 Crystal structure ... 27

 4.1.2 TE properties of stoichiometric TiO$_2$.. 28

 4.1.3 TE properties of non-stoichiometric, doped and composite TiO$_x$ 28

 4.1.4 Methods of synthesis ... 32

 4.2 Manganese oxides – MnO$_x$... 33

 4.2.1 Crystal structure ... 33

 4.2.2 TE properties of stoichiometric MnO$_2$.. 33
4.2.3 TE properties of non-stoichiometric, doped and composite MnO_x

4.2.4 Methods of synthesis

4.3 Tungsten oxides – WO_x

4.3.1 Crystal structure

4.3.2 TE properties of stoichiometric WO_3

4.3.3 TE properties of non-stoichiometric and doped WO_x

4.3.4 Methods of synthesis

4.4 Zinc oxides – ZnO

4.4.1 Crystal structure

4.4.2 TE properties of stoichiometric ZnO

4.4.3 TE properties of non-stoichiometric and doped ZnO

4.4.4 Methods of synthesis

4.5 Copper oxides – Cu_2O and CuO

4.5.1 Crystal structure

4.5.2 TE properties of stoichiometric copper oxides

4.5.3 TE properties of non-stoichiometric, doped and composite copper oxides

4.5.4 Methods of synthesis

4.6 Vanadium oxides

4.6.1 Crystal structure

4.6.2 TE properties of stoichiometric V_2O_5

4.6.3 TE properties of nanostructured, doped and composite V_2O_5

4.6.4 Methods of synthesis

4.7 Cobalt oxides

4.7.1 Crystal structure

4.7.2 TE properties of stoichiometric cobalt oxides

4.7.3 TE properties of non-stoichiometric, doped, composite and nanostructured cobalt oxides

4.7.4 Methods of synthesis

4.8 Rhodium oxides – RhO_x

4.8.1 Crystal structure

4.8.2 TE properties of stoichiometric RhO_x

4.8.3 TE properties of non-stoichiometric, composite and doped RhO_x

4.8.4 Methods of synthesis
4.9 Molybdenum oxides – MoO$_x$... 59
 4.9.1 Crystal structure .. 59
 4.9.2 TE properties of stoichiometric MoO$_x$.. 59
 4.9.3 TE properties of non-stoichiometric, doped and composite MoO$_x$ 59
 4.9.4 Methods of synthesis ... 60
4.10 Other transition metal oxides and their TE properties ... 61
 4.10.1 Iron oxides .. 61
 4.10.2 Chromium oxides .. 62
 4.10.3 Scandium oxides .. 62
 4.10.4 Zirconium oxides ... 63
 4.10.5 Cadmium oxides ... 63
 4.10.6 Nickel oxides ... 63
 4.10.7 Iridium oxides ... 64
 4.10.8 Other TMOs .. 64
5 Applications of TE TMOs ... 65
 5.1 Cooling and refrigeration .. 65
 5.2 Energy harvesting from heat .. 67
 5.3 Photovoltaic (PV) – solar thermoelectric generators (STEGs) and radioisotope
 thermoelectric generators (RITEGs) .. 68
 5.3.1 PV-STEG .. 68
 5.3.2 RITEG ... 69
 5.4 Sensors .. 71
 5.5 Thermopower wave sources .. 72
6 Conclusion and future outlook .. 73
7 References ... 76
Nomenclature

Acronyms

TE Thermolectric
TMOs Transition metal oxides
TPF Thermolectric power factor
QDSL Quantum dot superlattice
SNW Segmented nanowire
DOS Density of states
2DEG Two-dimensional electron gas
RTA Relaxation time approximation
DFT Density functional theory
SPS Spark plasma sintering
EBE Electron beam evaporation
RF Radio frequency
PLD Pulsed laser deposition
ALD Atomic layer deposition
MBE Molecular beam epitaxy
CVD Chemical vapour deposition
MOCVD Metal organic chemical vapour deposition
VDWE Van der Waals epitaxy
SSR Solid state reaction
GPR Gas phase reaction
LPR Liquid phase reaction
STEG Solar thermoelectric generator
RITEG Radio isotope thermoelectric generator
LED Light emitting diode
1 Introduction

Thermoelectric (TE) materials are utilized for the conversion of a temperature gradient to a voltage gradient and *vice versa*. TE materials are widely regarded as the materials that can provide potential solutions for power generation and refrigeration technologies as well as their future advancements[1-4]. Additionally, they offer opportunities for the development of technologies in areas such as smart sensors, energy harvesting, and the new concept of thermopower wave sources[5-9].

Transition metal oxides (TMOs) are a vast but conventionally less widely studied family of TE materials, which include materials such as titanium, manganese, tungsten, zinc, copper, vanadium, cobalt, rhodium, and molybdenum oxides. However, these materials are now drawing increasing attention. Metal oxides can show a wide range of electronic properties ranging from insulating to semiconducting and conducting[10]. Their electronic properties can be engineered by changing their morphology, doping and stoichiometry. The phonon generation and propagation properties in many TMOs are well understood and molecular engineering methods have been developed for tuning them. Additionally, TMOs show a wide range of interesting thermal properties at cryogenic, ambient and high temperatures (Fig. 1). Many TMOs offer high Seebeck coefficients, with desired thermal and electrical conductivities and heat capacities, at targeted temperatures that can be exploited for different applications[11-14]. Their abundance in nature is another important advantage for technologies to be widely adopted.

Despite all the aforementioned promising properties, TMOs have yet to achieve their true potential in the TE realm. This review article will provide a comprehensive outlook on the TE properties of various TMOs and assess their performance. The critical parameters of thermal conductivity, electrical conductivity and Seebeck coefficient will be thoroughly discussed. The effect of changing the morphology and nanostructuring on the thermal and electrical
conductivities and Seebeck coefficient of TMOs will be presented. Critical discussions on different types of TMOs and the effect of oxidation, reduction and dopants on their TE properties will also be presented. This paper will discuss the most significant recent advances in the development of metal oxides for a wide range of applications including conventional purposes such as waste heat harvesting, refrigeration, and sensors as well as new concepts such as thermopower waves. Finally, we will provide an outlook for future directions and applications for TMOs in TEs at a range of operating temperatures.

Fig. 1. Operating temperature ranges of various TMOs and TMO composites. (Reproduced with permission from [15].)
2 Basic principles of thermoelectricity in TMOs

The fundamental factors that govern TE properties are thermal conductivity (κ), electrical conductivity (σ) and Seebeck coefficient (S). The performance of TE materials is generally assessed by the figures of merit (ZT) defined as $S^2\sigma/\kappa$, and the thermoelectric power factor (TPF) defined as $S^2\sigma$. In this section, we present an overview of the main equations governing the aforementioned TE parameters for bulk three dimensional (3D) and low dimensional (2D, 1D and 0D) structures.

2.1 Thermal conductivity κ

Thermal conductivity is the ability of a material to conduct heat. The main contributors to the thermal conductivity are phonons and charge carriers (electrons and holes). The overall thermal conductivity (κ_{total}) of a material is defined as: [16, 17]

$$\kappa_{\text{total}} = \kappa_{\text{phonon}} + \kappa_{\text{electron}} \quad (1)$$

where, κ_{phonon} is the lattice thermal conductivity due to acoustic phonons travelling through the crystal lattice and κ_{electron} is the electronic thermal conductivity due to charge carriers. Phonons and charge carriers can undergo scattering due to other phonons, lattice defects, impurities, electrons, grain boundaries and interfaces[18]. Such scattering then results in changes of thermal conductivity. The fundamentals of κ_{phonon} and κ_{electron} for bulk as well as low dimensional materials are discussed next.

2.1.1 Bulk (3D) materials

For semiconducting and insulating TMOs, acoustic phonons are the major contributors to κ_{total}. However, for highly doped and non-stoichiometric TMOs the electronic thermal conductivity also plays an important role. For bulk materials, the kinetic theory of gases defines the κ_{phonon} and κ_{electron} as:
\[\kappa_{\text{phonon}} = \frac{1}{3} \upsilon_s C_v L_{ph} \]
\[\kappa_{\text{electron}} = \frac{1}{3} c_e v L = L \sigma T \]

(2a)

(2b)

where \(\upsilon_s \) is the velocity of sound, \(C_v \) is the heat capacity at constant volume, \(L_{ph} \) is the phonon mean free path, \(c_v \) is the electronic specific heat per volume, \(v \) is the electron velocity that can be assumed to be the Fermi velocity \(v_F \), \(\Lambda \) is the electron mean free path, \(L \) is the Lorenz number (\(2.45 \times 10^{-8} \text{ V}^2\text{K}^2 \)), \(\sigma \) is the electrical conductivity, and \(T \) is the temperature in Kelvin.

\(C_v \) and \(\upsilon_s \) are typically temperature independent for \(T > 300 \text{K} \); hence at high temperatures, \(\kappa_{\text{phonon}} \) primarily depends on \(L_{ph} \) and can be largely attributed to phonon-phonon scattering[19].

On the other hand, \(\kappa_{\text{electron}} \) depends on the electron mean free path. The Wiedemann-Franz law as shown in Eq. 2b states that \(\kappa_{\text{electron}} \) is directly proportional to \(\sigma \) and \(T \), so that any variation in \(\kappa_{\text{electron}} \) affects \(\sigma \). Hence, the only TE parameter that is independent of the electronic band structure is \(\kappa_{\text{phonon}} \).

In semiconducting and insulating TMOs, phonons are the majority contributors to \(\kappa_{\text{total}} \), making it possible to tune their \(\kappa_{\text{total}} \) with a negligible effect on \(\sigma \). A comprehensive theoretical analysis of \(\kappa \) has been provided elsewhere[17]. In order to improve the performance of TE materials for conventional applications such as cooling and energy scavenging, a reduction in \(\kappa_{\text{phonon}} \) is desirable. In theory, the minimum \(\kappa_{\text{phonon}} \) is achieved when the mean free path of the phonons is no more than the interatomic spacing of the constituent atoms[4]. Limiting \(L_{ph} \) by confining phonons can help achieve this goal. Such a confinement can be obtained by creating low dimensional materials, which are described next.
2.1.2 2D materials

A two-dimensional (2D) quantum well structure consists of a very thin layer of material that is nanometers thick in one dimension and semi-ininitely large in the other two dimensions. 2D quantum well structures are likely to reduce the κ_{total} of TMOs compared to their bulk counterparts because phonons mainly scatter at the interfaces, while the motion of the electrons can be confined parallel to the layers. $\kappa_{electron2D}$ is a strong function of the thickness of layers (W). For 2D quantum well structures, $\kappa_{phonon2D}$ and $\kappa_{electron2D}$ along the x-axis (Fig. 2a) have been defined as:[20, 21]

$$\kappa_{phonon2D} = \frac{k_B}{2\pi^2 \nu} \left(\frac{k_B}{\hbar}\right)^3 T^3 \int_0^{\theta/T} \frac{\tau_c \xi^4 e^\xi}{(e^\xi - 1)^2} d\xi$$ (3a)

$$\kappa_{electron2D} = \frac{\tau \hbar^2}{4\pi W} \left(\frac{2k_BT}{\hbar^2}\right)^2 \left(\frac{m_y}{m_x}\right)^{1/2} k_B \left(3F_2 - 4\frac{F_1^2}{F_0}\right)$$ (3b)

where, k_B is the Boltzmann constant, \hbar is the Planck constant, e is the electron charge, $m_{x,y,z}$ are the three components of the effective mass, θ is the Debye temperature, $\xi = \hbar \omega/k_B T$ ($\hbar \omega$ being the phonon energy), T is the absolute temperature, τ is the electron relaxation time and is defined as $\tau = \mu_x m_y/e$ where μ_x is the mobility along the x-axis (Fig. 2a), ν is the velocity of sound, F_i are the Fermi-Dirac functions and τ_c is the combined phonon relaxation time due to all resistive processes (which include boundary scattering, mass difference scattering, scattering at dislocations and Umklapp scattering processes), which is governed by the Matthiessen’s rule (see ref. [21] for details). According to Eq. 3a, the theoretical value of $\kappa_{phonon2D}$ is strongly influenced by the phonon-phonon energy, its relaxation time τ_c, which is a function of the quantum well dimension and temperature.

$\kappa_{electron2D}$ depends only on two effective mass components of the electrons as shown in Eq.3b. This is because, unlike phonons, electrons can only move in a 2D motion parallel to the...
layers due to the quantum confinement. Additionally, a stronger confinement (by decreasing W) is expected to increase $\kappa_{\text{electron}2D}$. However, the result of reducing W is generally a decrease in the overall thermal conductivity. This is especially useful in engineering ZT when both Seebeck coefficient and electrical conductivity of the material remain constant. There are practical examples of employing 2D TMOs such as TiO$_2$, cobalt oxides and manganese oxides[22] which will be discussed in their relevant sections. The application of 2D TMOs with increased ZT values [22] has been demonstrated in energy scavenging at elevated temperatures that will also be discussed later.

2.1.3 1D materials

Hicks et al. developed a theoretical model and predicted that materials in 1D form (such as quantum wires, nanobelts and nanorods) can result in further reduction of κ_{electron}, compared to bulk and 2D structures[23]. The thermal conductivity of phonons in 1D structures were theoretically modelled by Zou and Balandin.[24] The equations describing κ_{phonon} and κ_{electron} for 1D structures are: [23, 24]

\[
\kappa_{\text{phonon}1D} = \frac{k_B}{2\pi^2 v} \left(\frac{k_B}{\hbar} \right)^3 T^3 \int_0^{\theta/T} \frac{\tau_c \xi^4 e^\xi}{(e^\xi - 1)^2} d\xi \times \left[1 - \frac{24}{\pi} G(\eta(\xi), p) \right] d\xi
\]

(4a)

\[
\kappa_{\text{electron}1D} = \frac{2\tau}{\pi a^2} \left(\frac{2k_B T}{\hbar^2} \right)^{1/2} (m_x)^{-1/2} k_B^2 T \left(\frac{5}{2} F_{3/2} - \frac{9F_{1/2}^2}{2F_{-1/2}} \right)
\]

(4b)

where, a is the width of a 1D structure with a square cross section, m_x is the effective mass component in the x direction (Fig. 2b), v is the phonon group velocity, T is the temperature, θ is the Debye temperature, $\xi=\hbar\omega/ k_B T$ ($\hbar\omega$ being the phonon energy), A is the phonon mean free path ($A(\xi)=\nu(\xi)\tau(\xi)$), η is the ratio between the wire width and A ($\eta(\xi)=a \pi/\Lambda(\xi)$), p is a parameter which characterizes the interface roughness and its effect on the phonon scattering.
The value of p represents the probability of a phonon undergoing diffusive scattering (refer to [24] for additional details). Other parameters have been defined in Eq. 3a & 3b.

The theoretical ZT calculations using Eqs.4a and 4b for a 1D structure show that it strongly depends on its width. For widths smaller than the thermal de Broglie wavelength of the carriers, the ZT increases significantly with decreasing the width of the 1D structure. TMOs such as ZnO and TiO$_2$ have been extensively synthesised in 1D morphologies (nanorods, nanoribbons and nanotubes) [25, 26] and the thermal conductivity of such materials are strongly affected by such morphological manipulations[25].

2.1.4 0D materials

Unlike 2D or 1D structures, the carriers in 0D structures such as quantum dots are confined in all directions. The transport mechanism in 0D structures is thus different from others, in the sense that unconventional conduction behaviour such as tunnelling is required to maintain its electronic conductivity. Therefore, 0D structures such as quantum dot superlattices (QDSLs) and segmented nanowires (SNWs) were proposed to provide a conduction pathway. As the name suggests, such segmented structures consist of a series of interwoven quantum dots of two different materials (Fig.2c). The electronic transport along the wire axis occurs by tunnelling between adjacent quantum dots. Furthermore, due to the wire boundaries and interfaces between the quantum dots, the phonon conduction along the wire axis is impeded, resulting in a reduced lattice thermal conductivity.

The lattice thermal conductivity for 0D structures ($\kappa_{\text{phonon}0D}$) such as QDSLs and SNWs comprising of two different materials A and B is defined as:[27, 28]

$$\frac{L}{\kappa_{\text{phonon}0D}} = \frac{L_A}{\kappa_{\text{phonon}A}} + \frac{L_B}{\kappa_{\text{phonon}B}} + 4 \left(\frac{1}{C_A v_A t_{AB}} + \frac{1}{C_B v_B t_{BA}} \right) \left(1 - \frac{t_{AB} + t_{BA}}{2} \right)$$ \hspace{1cm} (5)

$$+ \frac{3}{d_w} \left(\frac{L_A}{C_A \nu_A \alpha_A} + \frac{L_B}{C_B \nu_B \alpha_B} \right)$$
where, $C_{A,B}$ is the heat capacity, $v_{A,B}$ is the sound velocity of the nanodot material, $L_{A,B}$ is the length of the material’s segment, t_{AB} and t_{BA} are the average transmissivity of phonons from quantum dot A to B and vice versa, $\alpha_{A,B}$ is the geometric factor that depends on the aspect ratio (L_A/d_w or L_B/d_w) of the quantum dots in which d_w is the diameter of the wire. The first two terms in Eq.5 account for the intrinsic phonon scattering events, while the third and fourth terms account for the contribution of the segment interface and the wire boundary scattering processes to the κ_{phonon0D}. It is evident that the segment length, the choice of materials A and B, as well as the aspect ratio of the quantum dots play a vital role in determining κ_{phonon0D} and hence, the design of the QDSL or SNW structure is the most important factor governing the thermal properties. In order to quantify the electronic contribution of the thermal conductivity ($\kappa_{\text{electron0D}}$) in a QDSL or SNW structure, the Kroenig-Penney model is used. This model determines the dispersion relation $E_{n,m}(k)$ for the electrons that move along the axis in the n,m sub-band of the wire experiencing a square periodic potential[29], where k is a 1D wave vector that describes the energies of these electrons in the square potential[28]. The electronic band structure of each sub-band is highly dependent on the segment length (L_A or L_B), the potential barrier height and the transport effective masses[28].

The constant relaxation time approximation is used for calculating the following fundamental integrals for the conduction band: [27]

$$K(\alpha) = \frac{4\tau}{\pi^2 \hbar^2 d_w^2} \sum_{n,m} \int \frac{1}{g_{n,m}(E)} \left(E_{n,m} - E_F\right)^\alpha \left(-\frac{\delta f}{\delta E}\right) dE$$ \hspace{1cm} (6a)

$$g_{n,m}(E) = \frac{2}{\pi} \left(\frac{\delta E_{n,m}}{\delta \kappa}\right)^{-1}$$ \hspace{1cm} (6b)

where, $\alpha=0, 1$ or 2, τ is the relaxation time of the carriers, E_F is the Fermi energy, $f(E)$ is the Fermi-dirac distribution function and $g_{n,m}(E)$ is the density of states of the n,m sub-band,
which is defined in Eq. 6b. The electronic component of the lattice thermal conductivity in 0D structures ($\kappa_{\text{electron0D}}$) is defined as:[27]

$$\kappa_{\text{electron0D}} = \frac{1}{T} \left(K_{(2)} - \frac{K_{(1)}^2}{K_{(0)}} \right)^{1/2}$$ \hspace{1cm} (7)

From Eq. 6a, b & 7, it is clear that $\kappa_{\text{electron0D}}$ is strongly dependent on the diameter of the SNWs, as well as the carrier relaxation time. However, as discussed before, the electronic contribution towards the thermal conductivity in semiconducting TMOs is generally much lower, compared to the phonon contribution at small diameters. The superlattice interfaces in TMO-based 0D structures such as SNWs are expected to enhance the phonon scattering to further suppress the thermal conductivity compared to the bulk form[30].

The above discussion shows that a reduction in the dimensionality of the system can result in a reduced lattice thermal conductivity, due to the phonon mean free paths being limited by the nanostructuring, and consequently increased phonon scattering. This can potentially enhance the efficiency of TE TMOs for energy scavenging applications, while can increase the performance of temperature sensors, which are based on such structures.

2.2 Electrical conductivity σ

The electrical conductivity of TMOs in bulk and low dimensional form has been extensively studied[31-34]. Most TMOs exhibit low σ in their bulk due to low mobilities of charge carriers[35]. However, it has been shown that quantum confinement of these carriers alters the electronic density of states (DOS). Various nanostructuring and doping techniques can be employed to alter the carrier concentrations by adjusting the bandgap and surface energy in TMOs[31]. In this section, we will discuss the theoretical equations that govern the electrical conductivity of TMOs in bulk and low dimensional forms.
2.2.1 Bulk (3D) materials

For bulk TMOs, the electrical conductivity can be defined in a simplistic form as follows:[16, 29]

\[\sigma = n(E)e\mu(E) = n(E)e^2 \tau(E) \frac{\tau(E)}{m^*} \]

(8)

where, \(n(E) \) is the density of carriers which is a function of the density of states \(g(E) \), \(e \) is the electronic charge, \(\mu(E) \) is the differential carrier mobility, \(\tau(E) \) is the relaxation time and \(m^* \) is the carrier effective mass.

The \(m^* \) of many TE TMOs such as TiO\(_2\) and layered cobalt oxides is relatively large.[16, 36] Additionally, they also suffer due to short relaxation times[37-39]. As a result, the charge carrier mobilities of many TMOs are relatively small. The carrier concentrations of bulk TMOs, which is affected by the thermionic effect, depend on their bandgap and temperature. As a result, the carrier mobilities and concentrations in TMOs can be tuned using various doping and nanostructuring techniques.

2.2.2 2D materials

The electrical conductivity of TMOs can be enhanced by fabricating quantum well structures, which result in the quantum confinement of carriers. For a 2D quantum well structure discussed previously in section 2.1.2, Hicks et al. defined the electrical conductivity \((\sigma_{2D})\) as:[20]

\[\sigma_{2D} = \frac{1}{2\pi W}(m^*_x m^*_y)^{1/2} F_0 e \mu_x \left(\frac{2k_B T}{\hbar^2} \right) \]

(9)

where, \(W \) is the quantum well width, \(m^*_x \) and \(m^*_y \) are the effective mass components in the \(x \) and \(y \) direction (in the plane of the 2D material) respectively, \(F_0 \) is the Fermi energy, \(e \) is the electron charge, \(\mu_x \) is the mobility, \(T \) is the temperature, \(k_B \) is the Boltzmann constant and \(\hbar \) is
the Planck’s constant. In such structures the electrons are confined only to a 2D motion that is parallel to the layers. Eq.9 shows that a reduction in W enhances σ_{2D}. In TMOs, the Fermi level can be adjusted using various doping techniques and methods that control stoichiometry. In these materials, the Fermi level is a strong function of morphology and the temperature[40]. As expected, enhanced electrical conductivities have been demonstrated in various 2D TMOs such as MoO$_3$, CoO$_2$ and ZnO nanobelts[41][42][43].

2.2.3 1D materials

In morphologies such as one-dimensional nanorods, nanotubes or nanobelts of TMOs, σ is predicted to increase by reducing the cross sectional area of the structure. Such enhancement is mainly due to increased charge carrier mobilities via changes in DOS[44, 45]. σ in such 1D structures is defined as:[23]

$$\sigma_{1D} = \frac{1}{\pi a^2} (m_*^x)^{1/2} F_{-1/2} e \mu_x \left(\frac{2k_B T}{\hbar^2} \right)^{1/2}$$

where, a is the width of a 1D structure with a square cross section, m_*^x is the effective mass component in the x direction. Other parameters have been defined in Eq. 9. Additionally, σ can be tuned by changing the Fermi level of the TMOs, which result in the carrier concentration change as well[46][47].

TMOs such as TiO$_2$ and ZnO are widely synthesised in various 1D morphologies[25, 26]. As predicted, σ in such quasi-1D structures is shown to increase compared to the bulk forms[46]. The carrier concentrations in such structures can be adjusted by the use of suitable dopants[46, 48]. There are many good review articles that cover the topic of electrical conductivity in various 1D TE TMO structures[46, 49].
2.2.4 0D materials

QDSL or SNW structures, described in section 2.1.4, allow for electrical conduction through mechanisms such as tunnelling or hopping. Well-separated discrete energy states of the segments alter the fundamental properties such as DOS and bandgap energy in an alternating manner along the 1D wire[50, 51]. At the same time, the 0D characteristics, and in particular the electrical conductivity, of each quantum dot is maintained by the energy differential of the conduction or valence bands between the two constituent materials that form the wire[28]. The electrical conductivity for such 0D structures is defined as: [27, 28]

\[\sigma_{0D} = e^2 K(0) \]

(11)

\(K(0) \) is defined in Eq. 6a. It can be seen from Eq.11 that the \(\sigma_{0D} \) is a strong function of the diameter as well as the electronic DOS. An enhanced \(\sigma \) is expected in QDSL and SNW structures with reducing diameters. This is mainly because of the increased carrier relaxation times in such low dimensional structures[51].

2.3 Seebeck coefficient \(S \)

The Seebeck coefficient is the magnitude of the induced voltage divided by the temperature gradient across a material. The Seebeck effect is caused by charge-carrier diffusion and phonon drag. Many TE TMOs such as TiO\textsubscript{2}, ZnO, CoO and MnO\textsubscript{2} exhibit large Seebeck coefficients. High \(S \) values in TMOs usually arises from either high effective masses (\(m^* \)) due to electronic correlations[52] or from electron–electron interactions[53]. An enhancement in the \(S \) of TMOs can be achieved by altering the DOS through nanostructuring techniques. The theory governing the \(S \) of bulk and low dimensional TE TMOs is presented in this section.

2.3.1 Bulk (3D) materials

For semiconducting TMOs in bulk form, the simplified Seebeck coefficient can be estimated by the following expression:[16]
\[S_{bulk} = \frac{8m^* \pi^2 k_B^2}{3e\hbar^2} T \left(\frac{\pi}{3n}\right)^{2/3} \]

(12)

where, \(n \) is the carrier concentration, \(m^* \) is the carrier effective mass, \(e \) is the electronic charge, \(T \) is the temperature, \(h \) is Planck’s constant and \(k_B \) is the Boltzmann constant.

Eq.12 shows that a higher \(m^* \) results in larger Seebeck coefficients. TMOs usually exhibit high effective carrier masses, which explain the high \(S \) values observed in many TMOs. From Eq. 12 it is also predicted that an increase in \(T \) also enhances \(S \). Dramatically enhanced \(S \) has been observed in many TMOs such as ZnO and MnO\(_2\) at elevated temperatures\[5, 9\] and will be discussed in their relevant sections.

2.3.2 2D materials

2D quantum well structures can result in enhanced \(S \) of TE TMOs materials due to changes in the Fermi energy of the carriers as well as the electronic DOS. For a 2D quantum well structure, the Seebeck coefficient is defined as:\[20\]

\[S_{2D} = -\frac{k_B}{e} \left(\frac{2F_1}{F_0} - \chi^*_{2D} \right) \]

(13a)

\[\chi^*_{2D} = \frac{1}{k_BT} \left(E_F - \frac{\pi^2 k_B^2 T^2}{12E_F} - \frac{\hbar^2 \pi^2}{2m^* W^2} \right) \]

(13b)

where, \(k_B \) is the Boltzmann constant, \(e \) is the electron charge, \(E_F \) is the Fermi energy, \(T \) is the temperature, \(m^*_e \) is the component of the effective mass, \(W \) is the quantum well width and \(F_i \) are Fermi-Dirac functions. \(\chi^*_{2D} \) is the reduced chemical potential for quasi-2D structures.

The decrease in \(W \) of the quantum well is predicted to result in an enhanced \(S \) as can be seen from Eq. 13a & b. Additionally, the electron filtering (i.e. only high energy electrons can pass while others are scattered)[54] in such low-dimensional heterostructures is expected to decouple the \(S \) and \(\sigma \), allowing fairly independent control over these properties. The
phenomenon of electron filtering is explained in more detail elsewhere[51, 55]. In 2D TMOs, an increase in S has been experimentally observed. Ohta et al. demonstrated dramatic increases in S (up to ~ 5 times) for 2D electron gas (2DEG) systems based on doped TiO$_2$ which will be discussed in detail in Section 4.1.3[56, 57]. 2D layered cobalt oxides and rhodium oxide also show higher S compared to their bulk forms[58, 59].

2.3.3 1D materials

TMOs are widely synthesised in various 1D morphologies[26, 60-62]. Size reduction to a single dimension is expected to enhance S due to the altered DOS. The S for a 1D structure is defined as:[23]

$$S_{1D} = -\frac{k_B}{e} \left(\frac{3F_{1/2}}{F_{-1/2}} - \eta\right)$$

(14)

where, F_i is the Fermi Dirac function, e is the electronic charge, k_B is the Boltzmann constant and $\eta = \zeta/k_B T$ is the reduced chemical potential, in which ζ is the chemical potential relative to the lowest bound state. In a 1D structure, S is influenced by the Fermi level of the carriers (Eq.14), which in turn is strongly influenced by the width of the 1D structure.(see ref.[23] for details). Hence, an enhancement of S is predicted with decreasing width of the 1D structure. S is also a function of the energy derivative of the electronic DOS[35]. As the dimensionality decreases, an increase in Seebeck coefficient is expected because of changes in the DOS due to quantum confinement[20, 21, 23, 63]. Due to the extensive information that is available about the crystal structures of TMOs, such morphological tuning of the DOS can be conveniently carried out. As predicted, the S in 1D TE TMO such as ZnO nanowires is shown to increase due to quantum confinement[49] and exhibits a value of ~ -450 μV/K at room temperature.
2.3.4 0D materials

QDSL and SNW structures as described in section 2.1.4 exhibit sharper DOS compared to higher dimensional structures, due to the superlattice-like structure along the wire axis (Fig. 2c). An electronic structure with sharp maxima in the DOS like this is predicted to be the best for TE materials[50, 64]. Due to their unique electronic band structure and sharp density of states, an enhancement of S is expected in QDSLs and SNWs[50].

The Seebeck coefficient of a segmented nanowire is defined as:[27, 28]

$$S_{0D} = -\frac{1}{eT} \left(\frac{K(1)}{K(0)} \right)$$

(15)

From Eq. 6 a, b and 15 it is obvious that a sharp maximum in the electronic DOS (Fig. 2d) will result in a strong increase in the Seebeck coefficient. As the diameter is decreased, the size quantisation effects prevail, resulting in an enhanced S. The increase of S in such 0D TMO structures is expected to be more pronounced. Even though metal oxide based SNWs have been synthesised[46, 65], there are no reports investigating their Seebeck coefficients. This presents a vast potential for future work in the field of TE TMOs.

From the discussion in this section, it is evident that reducing the dimensionality of TMOs offers opportunities to tune the key TE parameters of κ, σ and S independently. There has been a continuous development in the synthesis techniques of TMOs and there is a vast amount of information available about their crystal structure, phases and various morphologies. This allows flexibility in their fabrication which can be carried out at both large and small scales using liquid and gas phase deposition techniques, allowing tuning of their TE properties at low dimensions to engineer TMOs with high TPFs and figures of merit.

A recent review article comprehensively discusses the latest developments in the synthesis of metal oxide nanostructures[66].
3 Strategies to tune and alter TE parameters of TMOs

The TE performance of TMOs is assessed on the basis of the application. Applications of TE TMOs can be classified into four major categories: (1) cooling and refrigeration, (2) energy scavenging from heat, (3) sensors and (4) thermopower wave sources, all of which will be discussed in detail in section 5. For cooling, refrigeration, and energy scavenging, a high TPF along with a low κ is desirable[67, 68]. Sensors generally require high S and low κ, while σ can be either high or low depending on the type of sensor. Thermopower wave sources require a high TPF and benefit from a high κ [5-7, 69]. Hence, the tuning of the key TE parameters in TMOs depends on the application.

Furthermore, a fundamental understanding of the carrier transport processes contributing to the TE effect in TMOs is required. There are however, many complexities in determining the
key quantities in electron and phonon transport both theoretically and experimentally[70-72].

Tuning of transport properties of TE TMOs, such as reducing electronic thermal conductivity[73] or reducing the bipolar effect[74, 75], is possible. In their recent review papers, Minnich et al.[72] and Zebarjadi et al.[70] have extensively covered the challenges and strategies for improving our understanding of carrier transport processes.

In this section, the techniques that are commonly used to alter the TE parameters of TMOs are briefly discussed.

3.1 Optimization using stoichiometry and doping techniques

The incorporation of dopants and altering of stoichiometry are widely employed for adjusting the TE parameters of TMOs[76]. The type of application plays a crucial role in determining the correct technique in this regard[77]. For cooling, refrigeration, heat scavenging and sensing applications, methods that reduce κ_{phonon} are generally desirable. Crystal disorder in the unit cell can be created by doping or altering stoichiometry of the TMO crystal lattice[34]. Such manipulations change the vibrational properties of the crystal and influence κ_{phonon}[16] or by introducing additional scattering sites for phonons, thereby limiting κ_{phonon}[78-82]. κ_{electron} is also affected by changing the stoichiometry and doping level of the TE TMOs. κ_{electron} depends on the electrical conductivity of TMOs (Eq. 2b) and is also a function of the Fermi level and charge carrier concentration, which are directly affected by changes of stoichiometry or incorporation of dopants[17]. In many refrigeration and heat scavenging applications, high electrical conductivity is desired, which generally directly increases κ_{electron}. However, this is not desirable as it enhances the exchange of heat between two sides. Hence, doping, compositing and processes altering the oxygen deficiency can be implemented to achieve the desired thermal conductivity. Conversely, in thermopower wave sources, high TPF and κ are desirable. This can be achieved by the use of metallic dopants or reducing the TMOs to a degree that the Seebeck coefficient is not compromised. Such
dopants result in enhanced TPFs in TMOs such as ZnO and CoO$_2$, which will be discussed in details in sections 4.4 and 4.7 respectively[83-95] [96].

After incorporating dopants and altering the stoichiometry, the most challenging issue is the determination of electronic band structures[70]. Theoretical methods such as density functional theory (DFT) can help; however, underestimation of the band gap by DFT calculations generally results in inaccuracy of theoretical predictions of the Seebeck coefficient and the bipolar effect[70]. Many methods have been developed to address this issue, such as the dynamical mean-field theory (DMFT)[97] which has been successfully applied to the case of TMOs[98].

The calculation of electron mobility and carrier lifetime is even more challenging. First principles calculations can only be performed on limited supercell sizes and the inclusion of long range potentials is difficult[70]. More importantly, inelastic scattering mechanisms at the elevated operating temperatures of TE TMOs renders relaxation time approximations (RTA) calculated from first-principles and DFT mostly invalid[99, 100]. The details of carrier lifetime in many TE TMOs are still relatively unknown. Hence, an improved fundamental understanding of the mechanisms governing the formation, stability, and properties of interfaces is required[54].

3.2 Substructuring

In engineering TE TMOs, it is generally desirable to decouple κ_{phonon} and κ_{electron}. For many refrigeration and heat scavenging applications it is desired to adjust κ_{phonon} without affecting σ (hence κ_{electron}). Substructuring (or segmentation) approaches are suggested to be efficient for such manipulations. Substructuring relies on a periodic arrangement of layers with different electron and phonon transport characteristics, resulting in a complex material structure with distinct regions providing particular functionalities (Fig. 3). For many refrigeration and heat
scavenging applications, an ideal TE TMO would comprise a high mobility semiconductor region entwined with a phonon scattering region that houses disordered structures (dopants and lack of stoichiometry), without affecting the carrier mobilities of the other region[16]. A detailed discussion on the substructuring approach is provided in another review[16]. TMOs occurring as natural superlattices can provide an independent control of transport properties, providing an excellent platform to engineer high performance TE materials. TMOs such as the doped cobalt oxide systems are a classic example of the benefits of substructuring approach, which will be discussed in detail later[11]. Another advantage of TMOs is that they can be fabricated in a variety of well-studied structures and a large number of synthesis techniques to fabricate them in different morphologies and structures have been well-established, making the substructuring approach highly attractive in order to tune their TE parameters according to the desired application.

Fig. 3. Schematic depiction of the substructuring approach in doped cobalt oxide, comprising of ordered CoO$_2$ layers that are separated by disordered layers (of Na dopant) to achieve a good electrical conductivity and poor phonon conductivity. (Reproduced with permission from[42].)
3.3 Nanostructuring

As discussed earlier, the S, σ and κ for conventional 3D crystalline TMOs are interrelated and cannot be controlled independently. Any increase in σ results in an enhanced κ_{electron} (Eq. 2b). Additionally, a change in the Fermi level and carrier concentration affects both κ_{electron} and κ_{phonon}.

At the nanometer scale, there are significant changes to the electronics of TE TMOs (see section 2), which allow for alternative techniques to control the S, σ and κ in a relatively independent manner. In nanostructured materials, quantum confinement effects [51] and surface properties become much more important, and result in properties that are changed from those of the bulk forms. The quantum confinement of carriers in nanostructured TMOs is predicted to enhance both their TPF and ZT (see section 2.2 and 2.3) [63]. Additionally, it is well known that nanostructuring of TMOs alters their Fermi level and carrier concentration.[31] Nanostructures also introduce additional scattering mechanisms. If the spacing between the nanoparticles is larger than the electron mean free path (MFP), they will act as an additional source of electron scattering in the host material. If however, the spacing is smaller than the electron MFP, the scattering mechanisms will become much more complex since the leakage of the electron wave into the nanoparticles is no longer negligible.[70, 101] The nanostructuring technique has resulted in enhanced TPFs and ZTs in TMOs such as TiO$_2$, ZnO, cobalates and manganates which will be discussed in detail in Section 4[56] [91] [102, 103].

In addition to the electronics of TMOs, their phonon propagation properties and as a result κ_{phonon} can be tuned via nanostructuring (see section 2.1), resulting in enhanced phonon scattering and altered phonon mean free paths.[103] If the dimensions of semiconducting TE TMOs are smaller than the mean free path of the phonons, but larger than the mean free path of the charge carriers, a reduction in κ_{phonon} can be obtained due to boundary scatterings,
without affecting σ. Koumoto et al. have reviewed the progress in the development of nanostructured TE TMOs[22].

Nanostructuring can be implemented to decrease the lattice thermal conductivity by introducing many interfaces with spacing smaller than the phonon mean free path. Although reducing lattice thermal conductivity through alloying and/or nanostructuring techniques has been the most effective way to improve performance of TE TMOs for conventional applications, details of phonon transport mechanisms are still not very well understood[72]. Even in bulk form, theoretical and experimental determination of quantities such as phonon mean free path is still a challenge[72]. Phonon transport models based on Callaway model of thermal conductivity[104] usually require adjusting various fitting parameters causing inconsistency in the models fundamental predictions such as phonon’s wavelength and mean free path. Calculations of the thermal conductivity and phonon mean free path in TE TMOs using combined density functional theory (DFT) [105, 106] and molecular dynamics (MD) [107-109] simulations on the other hand are difficult and computationally costly because of the extremely complex crystal structure of alloys and misfit layered oxides. Moreover, the introduction of many interfaces in the material via nanostructuring adds more complexity to the problem.

The problem is even more complex in case of electron transport. In case of heavily doped complex TE TMOs, the standard analysis based on the Boltzmann equation with the assumption that the mean free path is much larger than the de Broglie wavelength leads to inaccurate results[72, 110]. Nanostructuring further complicates the problem as the interfaces introduce complex scattering mechanisms that should be accounted for in theoretical analysis[111]. Therefore, modeling the transport phenomena in bulk and nanostructured TE TMOs would require more powerful tools such as the non-equilibrium Green’s functions with the inclusion of electron wave effects[72].
3.4 Compositing

It is suggested that composites can be useful in controlling TE parameters of TMOs, as they can be designed to show high density of the interfaces[112], that can be used for adjusting both phonon and electron scattering. TMO composites’ distinct advantages are their cost effectiveness and scalability[113]. An excellent review article discussing the impact of the bulk composite engineering approaches on S, σ and κ can be seen in ref. [72]. Composites of TMOs have resulted in enhanced TPFs, which will be discussed later in the relevant sections[91, 114].

4 Transition metal oxides and their TE properties

In this section, the most common TMOs that have been investigated for their TE properties will be discussed. An overview of their crystal structures and their TE properties in doped and various stoichiometry conditions will be presented. Additionally, different synthesis methods of these TE TMOs will be illustrated. For further information regarding the structures, properties and syntheses of TMOs, the readers can refer to comprehensive text books in this field[115-117].

4.1 Titanium oxides – TiO$_x$

4.1.1 Crystal structure

TiO$_2$ is one of the most investigated metal oxides for a wide variety of photocatalytic, TE, solar cell, biosensing and gas sensing applications. TiO$_2$ has a bandgap of \sim3.2 eV in its intrinsic form[118]. The most common polymorphs of TiO$_2$ are anatase, rutile and brookite. Rutile and anatase exhibit a tetragonal structure, while brookite is orthorhombic[119]. The transformation with increasing temperature usually follows the sequence: anatase→brookite→rutile. Generally in between room temperature and 598 K anatase is the dominant polymorph. Above 625 K, the anatase transforms to brookite[120]. Heating of titania in the
temperature range of 873 to 1275 K leads to an alteration of phase stabilities, and it transforms almost completely to rutile. Many reviews on the various crystal structures, size and temperature dependence of the different polymorphs as well as different morphologies of stoichiometric and non-stoichiometric TiO$_2$ exists[119-121].

4.1.2 TE properties of stoichiometric TiO$_2$

TiO$_2$ can be synthesised in many different morphologies such as spheroidal nanocrystallites, nanoparticles, nanotubes, nanosheets, nanofibers and epitaxial thin films[122]. The room temperature S of crystalline TiO$_2$ is reported to be approximately $-600 \mu V/K$, while σ of the order of 10^3 S/m is observed, resulting in a TPF of 360 $\mu W/m.K^2$. The κ at room temperature is ~ 5.8 W/m.K and is reduced with increasing temperature (~ 2.8 W/m.K at 1073 K) [123]. Owing to a moderate σ and high κ, the ZT in pure TiO$_2$ is low (< 0.025) [123, 124]. However, non-stoichiometric TiO$_{(2-x)}$ has been demonstrated to be promising for TE applications at both cryogenic [125] and elevated temperatures[124]. The TE properties of reduced, oxidized and doped TiO$_2$ are discussed next.

4.1.3 TE properties of non-stoichiometric, doped and composite TiO$_x$

Non-stoichiometric TiO$_x$ can show fascinating TE properties both at elevated and cryogenic temperatures. Tsuyomoto et al. have shown that TiO$_x$ ($x=1.94$) with an orthorhombic crystal structure, exhibits a peak S of $-518 \mu V/K$ and σ of 2×10^3 S/m at ~ 350 K. They demonstrated that both S and σ increase with temperature, resulting in a TPF of $\sim 540 \mu W/m.K^2$ at 343 K[126]. Interestingly, single crystal rutile TiO$_2$ reduced to TiO$_{(2-x)}$ via annealing in H$_2$ at elevated temperatures as high as 1050 K shows exceptionally high TPFs at cryogenic temperatures. TiO$_{(2-x)}$ generates enlarged phonon scattering by the defect planes, resulting in low thermal conductivities (0.83 W/m.K). Fig. 4a & 4b depict that TiO$_{(2-x)}$ can exhibit an extraordinary S of up to $-60,000 \mu V/K$, with TPF and ZT of $\sim 1.7\times10^4 \mu W/m.K^2$ and 0.1, respectively, at temperatures in the range of 10 K[125]. Another study showed that non-
stoichiometric TiO$_{(2-x)}$ with a rutile crystalline structure, formed after annealing and reduction in a carbon environment at 1373 K, demonstrates a TPF of 100 μW/m.K2 at temperatures of up to 550 K[124]. Obviously, the introduction of oxygen vacancies in the TiO$_2$ crystal result in enhanced σ due to an increase in carrier concentration (Eq. 8). In contrast, a prolonged oxidation of TiO$_2$ at elevated temperatures, results in lower σ and S (– 600 to +150 μV/K) and therefore low TPFs and ZTs (<0.1). Additionally, a transition from n-type to p-type is also observed in the oxidation process, at temperatures around 1300 K[127].

In addition to the change of stoichiometry, the doping technique is usually employed to tune the TE properties in TiO$_2$. As discussed in section 3.1, metallic dopants are useful as they result in enhanced electrical conductivities. Additionally, the doping process creates crystal disorder, which reduces the lattice thermal conductivities. It has been shown that Na doped titanate nanotubes (DTNTs) with a composition such as Na$_{2-x}$H$_x$Ti$_3$O$_7$ result in TPFs ranging between 174 - 280 μW/m.K2, and a peak ZT of 0.3, at elevated temperatures (745-1032 K).[128] 2% Nb doped, anatase, n-type TiO$_2$ epitaxial films show a TPF and ZT of 250 μW/m.K2 and 0.25, respectively, at 900 K[129]. Similar observations have also been made by Sheppard et al. at elevated temperatures[130, 131].

![Fig. 4. (a) Seebeck coefficient (red) and electrical resistivity (blue) of reduced single crystal rutile TiO$_x$ as a function of annealing temperature and (b) Seebeck coefficient as a function of temperature for a sample annealed in H$_2$ at 1053 K. (Reproduced with permission from [125].)
A TiO$_2$ composite commonly investigated for its excellent TE properties is strontium titanate (SrTiO$_3$), also known as STO[1, 57, 132]. STO is a perovskite type oxide that exists in an isotropic cubic crystal structure at temperatures above 100 K. Additionally, it shows a strong structural tolerance to substitutional doping. Due to its d-band nature, the effective mass of carriers is quite large in STO, resulting in a high S (Eq.12). Additionally, STO exhibits a very high melting point (~2350 K), suggesting its stability at high temperatures[22].

In its pure form, STO is essentially an insulator; however, it can be tuned to be semiconducting or metallic by substitutional doping with La$^{3+}$ or Nb$^{5+}$[57]. The highest TPF and ZT for La and Nb doped STO single crystal has been reported to be 3600 μW/m.K2 and 0.1, respectively at room temperature, while the corresponding values at 1000 K, are 865 μW/m.K2 and 0.27, respectively (Fig. 5a-e) [133] [1, 132] [134]. A number of studies on the TE properties of La and Nb doped STO thin films exist[129] [134] [135]. The ZT values are limited primarily due to its high κ (∼11.0-3.2 W/m.K in the temperatures of 300-1000 K respectively) [22]. This high κ value can be ascribed to the perovskite type structure of STO, which even in the presence of dopant cations as point defects, lacks effective phonon scattering centers.

Muta et al. suggested that a Ca$^{2+}$ substitution at Sr$^{2+}$ sites may result in reduced κ, as it is established that such substitutions result in the introduction of defects that usually lower κ[136]. However, Yamamoto et al. have reported that such an approach results in a dramatic reduction of the TPF, which indicates that any further improvement in ZT is almost impossible to achieve in a conventional 3D bulk state of STO[137].

A reduction in the STO dimensionality is a strategy that is predicted to enhance TE properties by offering independent control of the key TE parameters (section 2). The fabrication of a two-dimensional electron gas (2DEG) can be useful as it results in a 2D quantum
confinement of carriers. Ohta et al. utilized a high density 2DEG, which is confined within a layer of STO that has a thickness of a unit cell (0.3905 nm) [56]. Such 2DEG is realized in SrTiO$_3$/SrTi$_{0.8}$Nb$_{0.2}$O$_3$ superlattices and TiO$_2$/SrTiO$_3$ heterointerfaces. It was shown that in an optimised state, a 2DEG exhibits a massive TPF of 1.0×10^5 μW/m.K2. The resultant ZT at room temperature was approximately 2.4 even if a κ value of a bulk single crystal STO is used (12 W/m.K). A recently published review article discusses new developments in STO based thermoelectrics in detail[78].
Fig. 5. (a) Electrical conductivity, (b) Seebeck coefficient, (c) thermal conductivity, (d) TPF and (e) ZT vs temperature for different concentrations of La dopant in STO thin films. (Reproduced with permission from [134].)

4.1.4 Methods of synthesis

Many different vapour chemical based methods have been used for forming TE TiO₂ materials. Chemical synthesis which involves sol gel hydrolysis, electrochemical methods such as anodization of Ti and hydrothermal synthesis have been commonly used for
producing doped or non-stoichiometric TiO₂, as the concentration of dopants and metal/oxygen ratios can be readily controlled in such methods[122],[138] [128].

Vapour deposition techniques including sputtering and pulsed laser deposition (PLD) have also been commonly used for forming highly crystalline TiO₂ with predetermined concentrations of dopants[129]. STO thin films doped with both La and oxygen vacancies have been shown to be synthesized using the PLD technique[134] [139]. PLD can also be used in forming 2DEG STO crystals comprised of superlattices of insulating/ Nb-doped layers of STO to achieve very high TPF of 1.0 × 10⁵ μW/m.K²[56, 57].

4.2 Manganese oxides – MnOₓ

4.2.1 Crystal structure

MnO₂, the most common form of manganese oxide, is a small bandgap (~ 1.3 eV), n-type semiconductor and is widely used for electrodes in supercapacitors, electrochemical batteries and microbial fuel cells[140] and as a catalytic material[141]. It exists in a number of structural forms[142, 143]. The most common polymorphs are the α-MnO₂ (psilomelane - monoclinic structure) and β-MnO₂ (pyrolusite - rutile structure) [140]. Other forms known as δ-, γ- and λ-MnO₂ also exist, and differ in the way in which the MnO₆ octahedra are linked[138, 144, 145]. A detailed study of various crystal phases of MnO₂ is presented elsewhere[143].

4.2.2 TE properties of stoichiometric MnO₂

β-MnO₂ has been reported to be promising for TE applications at elevated temperatures[9, 142]. Although, the semiconducting properties of α-, β- and γ-MnO₂ have been studied in detail,[146] their TE properties have not been widely investigated, and only a limited number of studies exist. It has been reported that bulk and thin film β-MnO₂ exhibit S of
approximately –300 μV/K and σ of 10^3 S/m, resulting in a TPF of 90 μW/m.K^2[147].

Recently, Song et al. reported extremely high Seebeck coefficients in β-MnO_2 nanopowder[142]. The S and σ of the MnO_2 thin films have been shown to increase dramatically with temperature[9]. A Seebeck coefficient of approximately –1900 μV/K at a temperature of 623 K has been demonstrated. The σ of the thin films at such elevated temperatures is ~10^3 S/m, resulting in a TPF of 3600 μW/m.K^2. The κ for MnO_2 is reported to be approximately 4 W/m.K[9].

Although the TPF of MnO_2 is high, its ZT is still low. As suggested in section 3.3, nanostructuring can be used to tune the TE properties of a material. MnO_2 nanostructures such as nanorods and nanowires have been synthesized via various methods [9, 142].

4.2.3 TE properties of non-stoichiometric, doped and composite MnO_x

Doping and compositing are good strategies that can be used for increasing TE performance of MnO_x by introducing defects in the crystal structure, thereby impeding the lattice thermal conduction. Polycrystalline, bi-layered LaSr_2Mn_{2-x}Co_xO_7 (x<0.2) has been reported to exhibit extremely low TPFs[148]. However, the most commonly reported manganate stoichiometry for TE applications is the perovskite type CaMnO_3. It exhibits an orthorhombic symmetry in which each Mn atom is surrounded by six Mn neighbours. It occurs in two anti-ferromagnetic crystal phases: the A-type and G-type, out of which the G-type phase is more stable. The G-type phase exhibits an indirect bandgap of 0.7 eV, which accounts for its perfect semiconducting behaviour[149]. The mixed valent, perovskite electron doped manganite CaMnO_3 has been shown to be a promising n-type TE material, especially at high temperatures[79]. This perovskite system exhibits S of –350 μV/K and σ of 50 S/m, resulting in a TPF of 6.1 μW/m.K^2, which is very low for TE applications. However, the electrical conductivity of such an oxide can be enhanced by introducing suitable dopants[22]. The manganate may be doped on either site. The most commonly used dopant is ytterbium (Y) on
the calcium site and niobium (Nb) on the manganese site. The Y doping is particularly beneficial as it results in a lower \(\kappa \) and has been shown to be the most effective dopant[78-81].

A peak TPF of 300 \(\mu \text{W/m.K}^2 \) has been reported in \(\text{CaMn}_{0.96}\text{Nb}_{0.4}\text{O}_3 \) at 1000 K. The highest reported value of ZT is 0.2 at 1000 K for the stoichiometry \(\text{Ca}_{1-x}\text{R}_x\text{MnO}_3 \), which is much less than the desired value of at least 1, to make it practically applicable in TE modules[150]. Unfortunately, it has been predicted, using the dynamical mean field theory, that ZT>1 in electron doped \(\text{CaMnO}_3 \) is rather unlikely to be achieved[79].

Koumoto et al. used a nanostructuring approach in an effort to enhance the TE performance as predicted in section 3.3[22]. They showed that \(\text{Ca}_{0.9}\text{Yb}_{0.1}\text{MnO}_3 \) nanoparticles synthesised using gas phase reaction (GPR) show a higher TPF and ZT compared to those synthesised using solid state reaction (SSR) or liquid phase reaction (LPR). This is because GPR generally results in smaller and impurity-free particles due to the nature of the reaction medium. The difference in the TE properties of the GPR and SSR synthesised nanoparticles over a temperature range of 300 to 1100 K is shown in Fig. 6a-c. The highest value of the TPF was 190 \(\mu \text{W/m.K}^2 \) at 973 K, for the GPR synthesised nanoparticles, mainly due to lower electrical resistivity. The change of ZT with temperature for the GPR and SSR synthesised nanoparticles is shown in Fig. 6d. The maximum ZT value was 0.13 at 1073 K for particles synthesised using the GPR, which was approximately 1.5 times higher compared to the one’s synthesised using SSR at the same temperature[22]. In this case, there was no significant enhancement in the TPF and ZT after nanostructuring.
Fig. 6. (a) Resistivity, (b) Seebeck coefficient, (c) TPF and (d) ZT of GPR (red) and SSR synthesised (black) Yb-doped CaMnO₃ nanoparticles (Reproduced from [22].)

4.2.4 Methods of synthesis

Similar to other metal oxides, various liquid and gas phase synthesis techniques have been used for forming MnO₂. Electrochemical techniques such as anodization and electrodeposition are some of the commonly used liquid phase methods[151-154]. Chemical techniques such as the sol-gel and hydrothermal are also used to prepare crystalline α and β-MnO₂[155-157]. Vapour phase techniques such as PLD, atomic layer deposition (ALD) and molecular beam epitaxy (MBE) have also been used to synthesise MnO₂ thin films[158-160].
4.3 Tungsten oxides – WO$_x$

4.3.1 Crystal structure

Tungsten oxides (WO$_3$) are widely studied for sensing, chromic and photocatalytic properties[60] and WO$_3$ is the most commonly investigated stoichiometry of WO$_x$. WO$_3$ is an n-type TMO with a perovskite-like structure. It is well known for its various properties in a non-stoichiometric form, as its lattice can support a significant concentration of oxygen vacancies[60, 161]. Crystals of WO$_3$ are formed by the corner and edge sharing of WO$_6$ octahedra. Such corner sharing results in the following crystal phases: monoclinic I (γ), monoclinic II (ϵ), triclinic (δ), orthorhombic (β), tetragonal (α) and cubic (although cubic is not a commonly observed phase) [60]. Under different temperature conditions, bulk WO$_3$ follows the following sequence: monoclinic II (ϵ-WO$_3$, < 230 K) → triclinic (δ-WO$_3$, 230 to 290 K) → monoclinic I (γ-WO$_3$, 290 K to 603 K) → orthorhombic (β-WO$_3$, 603 K to 1013 K) → tetragonal (α-WO$_3$, > 1013 K) [162, 163]. At room temperature, γ-WO$_3$ is the most stable crystal phase[60]. The bandgap of WO$_3$ ranges between 2.6-3.25 eV depending on the crystal phase and size[60]. Tungsten oxide, which is synthesised or manipulated in liquid media, is very commonly found in hydrated form (γH$_2$O.WO$_3$).

4.3.2 TE properties of stoichiometric WO$_3$

There are only a few studies that have examined the TE properties of stoichiometric WO$_3$ and WO$_3$ hydrates[164, 165]. WO$_3$ exhibits σ ranging between 10–10$^{-2}$ S/m depending on the stoichiometry[166]. Additionally, σ is also influenced by the grain size, film thickness and dopants. Hence, the electrical properties are strongly dependent on the synthesis techniques and conditions[167]. It has been shown that the S of WO$_3$ hydrates is highly temperature dependent and generally increases linearly with temperatures between sub-zero to 323 K. Beyond 373 K, S decreases exponentially and it also gradually loses the water content at
higher temperatures. A peak S with an absolute value of 480 μV/K is observed at 363 K[164]. Due to a low σ, the TPF is poor.

Hutchins et al. investigated the TE properties of α-WO$_3$ films of different thicknesses (100-500 nm) [168]. The S of the n-type WO$_3$ thin films varies with temperature (Fig. 7a), with the magnitude decreasing with increasing the film thickness, attaining a maximum absolute value of ~ 780 μV/K at a temperature of 350 K. Fig. 7b shows that σ of a 100 nm thick α-WO$_3$ film increases exponentially with temperature. The peak TPF of the α-WO$_3$ films was reported to be of the order of 1 μW/m.K2[168]. Additionally, Patil et al. demonstrated S of 600 μV/K in stoichiometric WO$_3$ films at a temperature of 473 K[165]. The κ of stoichiometric WO$_3$ thin films is 1.63 W/m.K[169]. Undoped WO$_3$ films thus exhibit a maximum TPF of ~ 4 μW/m.K2, which is rather too low to be considered for many TE applications except possibly in sensors for measuring temperatures.

4.3.3 TE properties of non-stoichiometric and doped WO$_x$

Non-stoichiometric tungsten oxides have not shown any improvement in TE performance compared to the stoichiometric counterparts owing to the poor σ[170]. However, using other TMOs for doping WO$_3$ appears to be an effective approach to manipulate its TE properties. Recently, the TE properties of ZnO doped WO$_3$ ceramics were investigated[161]. The introduction of ZnO was shown to result in an increased σ, by approximately two orders of magnitude, while causing only a slight drop in S. A ZnO doping concentration of 0.5 % was found to be optimal, resulting in a maximum TPF of 1.34 μW/m.K2 at 973 K, which is similar to the values reported in stoichiometric WO$_3$ and at least four orders of magnitude higher than that of non-stoichiometric WO$_3$[171]. The variation of TPF with temperature for different levels of ZnO doping is shown in Fig. 7c. Aluminium oxide (Al$_2$O$_3$) doping has also been shown to enhance σ of WO$_3$ by a factor of 10^6[166]. Elevated σ was also observed by adding Co$_3$O$_4$, MnO$_2$, LiO$_2$ and TiO$_2$ dopants[172].
To make WO$_3$ a viable TE TMO, nanostructured WO$_3$ needs to be investigated for its TE properties. Although, WO$_3$ nanostructures are widely synthesised and reported for other applications, a detailed investigation of their TE properties has not been carried out.

Fig. 7. (a) Seebeck coefficient, (b) electrical conductivity variation with temperature for α-WO$_3$ films and (c) TPF obtained for varying ZnO doping concentrations in WO$_3$ ceramics. (Reproduced with permission from (a), (b) [168] and (c) [161].)
4.3.4 Methods of synthesis

Many liquid and vapour phase synthesis methods have been used to synthesise WO$_3$. Due to a high dependence of σ on the stoichiometry, the parameters of synthesis techniques play important roles in determining the TE properties of WO$_3$. The commonly used liquid phase techniques to synthesise crystalline WO$_3$ are sol-gel, hydrothermal synthesis and electrochemical techniques such as anodization and electrodeposition[173-175] [60, 176, 177]. The most common vapour phase techniques include RF sputtering, PLD, electron beam evaporation and thermal evaporation[60, 178, 179]. A detailed review of synthesis techniques for various WO$_3$ is presented elsewhere[60].

4.4 Zinc oxides – ZnO

4.4.1 Crystal structure

ZnO is the most widely investigated TMO for a wide variety of photovoltaic, sensing, optoelectronic, piezoelectric and TE applications[43, 180-183]. ZnO is a direct bandgap binary n-type semiconductor with a bandgap of 3.3 eV at room temperature and substantial ionic character residing at the borderline between a covalent and an ionic semiconductor[184]. It can show either a hexagonal wurtzite, cubic zinc-blende (which are both tetrahedral) or rarely rocksalt structure (which is formed at very high pressures) [43] [184]. In wurtzite structure, every Zn atom is surrounded by four oxygen atoms. In zinc-blende structure, each oxygen atom is surrounded by four Zn atoms in a similar fashion. At ambient temperatures and pressure wurtzite is the stable polymorph and a stable zinc-blende structure is generally obtained when ZnO is grown on cubic substrates[184].
4.4.2 TE properties of stoichiometric ZnO

ZnO is considered as a promising high temperature TE material and can be synthesised in a variety of morphologies such as poly- and single crystal ceramics, epitaxial thin films, nanorods, nanobelts, nanorings, hierarchical nanostructures[43].

At ambient temperatures, pure ZnO shows a TPF of ~800 µW/m.K². However, it also exhibits a high κ (~40 W/m.K). The κ of ZnO reduces at higher temperatures (~5 W/m.K at 1000 K). This has been attributed to increased phonon scattering possibly as a result of large and substantially anisotropic thermal expansion of ZnO[185]. Another study showed that sputtered ZnO thin films can exhibit TPFs as high as $1.0 \times 10^3 \mu W/m.K^2$[5].

Although it is possible to reach low κ‘s of 2-3 W/m.K at room temperature for nanograined ZnO ceramics[186], these structures exhibit highly reduced σ and therefore, neither TPF or ZTs improves. It has been postulated that the defects at grain boundaries are the major contributor to the drop in σ[186]. Overall, samples with larger grain sizes have been shown to exhibit higher σ.

As expected, nanostructuring approaches for bulk doped and undoped ZnO have also been shown to reduce κ[91, 186]. A large number of studies on TE properties of pure and doped ZnO have been conducted on polycrystalline ceramics[84-86, 88-90, 92, 93, 187-198]. TE properties of ZnO thin films[199-201] as well as nanostructures [87, 91, 94, 202, 203] have also been targeted in a number of studies. Commonly, nanostructuring results in a significant increase in S. As temperature increases, both S and σ are enhanced, resulting in higher TPFs and ZTs.

Of more interest however, are the TE properties of doped and co-doped ZnO, where the TPF and ZT can reach values as high as 1500 $\mu W/m.K^2$ and 0.65 respectively, making ZnO a viable candidate for a variety of TE applications.
4.4.3 TE properties of non-stoichiometric and doped ZnO

For heat scavenging applications, ZnO is commonly doped by n-type dopants such as Al, Ge, Ni and Ti to achieve improved TE properties. Al is the most common dopant for ZnO [83-94]. Generally, Al doping increases the carrier mobility and reduces the phonon mean free path in the crystal lattice of ZnO, resulting in higher σ and lower κ. ZT has been shown to increase to as high as 0.30 at 1273 K for Al concentrations of ~0.02 and a high TPF of 1500 μW/m.K2 has been achieved at such elevated temperatures [83] Beneficial effects of Al doping can also be described in terms of its contribution to the high c-axis compression of the ZnO lattice leading to the increase in effective mass (m^*), resulting in enhanced S (Eq. 12) [89].

The dependence of TE properties of Al-doped ZnO (AZO), on the grain structure and secondary phases is further highlighted in a study by Jood et al [91]. Bulk pellets, obtained by cold-pressing and sintering the nanocrystals that comprise of ZnO nanograins with ZnAl$_2$O$_4$ nanoprecipitates, were shown to reduce κ to very low values (1.5 W/mK at 300 K). These nanocomposites also showed high σ and S, resulting in a significantly high TPF and ZT of 900 μW/m.K2 and 0.44 respectively, at 1000 K.

There are also reports of co-doping ZnO with Al and other n-type dopants. Co-doping of Fe, Ni and Sm metals with AZO has not shown significant improvement in TE properties, with the highest TPF and ZT of 675 μW/m.K2 and 0.126 respectively, for Ni-co-doped AZO at 1073 K [93]. On the other hand, co-doping of AZO with Ga resulted in significant improvement in ZT. Ga co-doping seemed to increase the solubility of Al in ZnO and strongly reduce the κ value at 2 mol% of Ga. Also, much larger TPFs than those of AZO have been observed in co-doped samples (Fig. 8). The ZT value Zn$_{0.96}$Al$_{0.02}$Ga$_{0.02}$O reached a maximum of 0.47 at 1000K and 0.65 at 1247 K, a significant enhancement over conventional AZO [88].
A study on co-doped Zn$_{0.97}$Al$_{0.03-y}$Ti$_y$O has shown an enhancement in both σ and S, resulting in TPFs as high as 3.8×10^3 μW/m.K2 for Zn$_{0.97}$Al$_{0.02}$Ti$_{0.01}$O at 1073 K.[86] κ and ZT values of these samples have however not been reported. Ga doping has also been reported to improve TE properties of ZnO resulting in ZT values close to the best Al-doped ZnO ceramics[198].

![Fig. 8. Temperature dependence of TPF of Zn$_{1-x-y}$Al$_x$Ga$_y$O ceramics. (Reproduced with permission from [88].)](image)

4.4.4 Methods of synthesis

ZnO is widely synthesised using various liquid and vapour phase fabrication techniques. It can be synthesised in many different morphologies such as nanowires, nanospikes, nanopillars, nanorods and nanobelts. Over the years, liquid phase fabrication techniques such as hydrolysis, spray pyrolysis, sol-gel and hydrothermal synthesis have been employed to
prepare ZnO for various applications[204-206] [207]. Other liquid phase methods to synthesise highly crystalline ZnO nanostructures include electrochemical techniques such as anodization and electrodeposition[208, 209].

Vapour deposition techniques such as RF/DC sputtering, ALD and MBE as well as chemical vapour deposition (CVD) technique and metal organic chemical vapour deposition (MOCVD) have been used to synthesise pure as well as doped ZnO thin films[210-213]. Other techniques such as spark plasma sintering (SPS) and PLD have also been widely used to synthesise densified ZnO in a powdered form[170][214, 215].

4.5 Copper oxides – Cu2O and CuO

4.5.1 Crystal structure

Copper oxide occurs in two common phases: cuprous oxide (Cu2O) and cupric oxide (CuO). Cu2O (copper(I) oxide) has been commonly used for application in solar cells, catalysts, and sensors[216]. It exhibits a cubic crystal structure with a forbidden direct bandgap of ~1.9-2.2 eV, making it very challenging to study quantum confinement effects or modify its properties[217, 218]. Cu2O has also been shown to depart from stoichiometry towards excess oxygen, leading to a p-type semiconducting nature and has been one of the most studied materials in semiconducting physics[219]. On the other hand, CuO (copper(II) oxide) belongs to the monoclinic crystal system with a direct bandgap of 1.2-1.5 eV and has been studied for photoconductive applications and is also the basis for several high temperature superconductors[217, 220]. In CuO, each Cu atom is coordinated by 4 oxygen atoms in an approximately square planar configuration. In a pure state and good stoichiometry, CuO behaves almost like an electrical insulator. However, non-stoichiometry leads to important semiconducting characteristics[221].
4.5.2 TE properties of stoichiometric copper oxides

A limited number of studies have been carried out on the TE properties of copper oxides in the 1990s. Jeong et al. examined the S and σ in uniaxially pressed CuO powder, which was subsequently sintered at different temperatures[222]. The CuO sample sintered at 1273 K in air, showed a peak S of $\sim 650 \, \mu V/K$ between 400 to 500 K. Beyond 500 K, the S dropped rapidly. The corresponding σ as seen from Fig. 9a was approximately 1 S/m, resulting in a TPF of $0.42 \, \mu W/m.K^2$[222].

It has been shown that single crystal Cu$_2$O exhibits a high S at elevated temperatures ($\sim 1050 \, \mu V/K$ at 923 K) [219]. On the other hand, the S of CuO thin films has been shown to change with varying film thicknesses (340 nm to 620 nm) and exhibits a maximum value of $\sim 500 \, \mu V/K$ for ~ 600 nm thick films (Fig. 9b) [221]. However, none of these works reported electrical or thermal conductivities. The full TE properties of intrinsic copper oxides are yet to be investigated.

4.5.3 TE properties of non-stoichiometric, doped and composite copper oxides

The doping technique has been shown to result in significant effect on the TE properties of copper oxides. Koffyberg et al. have demonstrated the TE effect in polycrystalline samples of Li doped CuO[223]. They have shown an average p-type S of $770 \, \mu V/K$ and σ of 6.25 S/m, resulting in a TPF of $3.7 \, \mu W/m.K^2$[223].

It seems that the most commonly investigated copper oxide composite for its TE properties is La$_2$CuO$_4$. It exhibits a simple layered structure comprising of 2D CuO$_2$ planes in a unit cell and is the parent compound for high temperature superconductivity, which is related to the excess oxygen content and the structural change as a result of phase transition[224]. This layered structure makes the anisotropy of conduction very strong. Due to the anisotropic
nature of their electrical conduction, such composites are potential TE materials. A detailed overview of its crystal phases is provided elsewhere[225].

For enhancing the TE properties of La$_2$CuO$_4$ metallic dopants can be incorporated. In this regard, TE properties of La$_{2-x}$R$_x$CuO$_4$ polycrystalline ceramics, where R can be Pr, Y or Nb have been investigated[226]. In this study, it has been shown that the choice of dopants plays a crucial role in determining the TE properties. Fig. 9c shows the variation of the TPF of La$_{2-x}$R$_x$CuO$_4$ with temperature for different dopants. As can be seen, with increasing temperature the TPFs of all composites decrease, eventually becoming stable above 700 K[226]. Samples show S ranging between 200 to 620 μV/K. Amongst them La$_{1.98}$Y$_{0.02}$CuO$_4$ ceramics exhibit a high TPF of 10^3 μW/m.K2. The maximum ZT was reported to be 0.17 at 330 K, which is around 3 times higher than pure La$_2$CuO$_4$[226].

Studies on TE properties of n-type RE$_2$CuO$_4$ oxides, where RE is a rare earth element such as neodymium, samarium or gadolinium, have shown TPFs and ZTs of the order of 10 μW/m.K2 and 0.005, respectively, at 950 K[227]. The electrical resistivities of such composites show a negative temperature dependence and is at least a magnitude higher than many conventional TE materials. Such RE$_2$CuO$_4$ type oxides exhibit a high κ of \sim30 W/m.K at 300 K, which drops to \sim 8 W/m.K at 950 K [227], and can potentially be suitable for thermopower wave applications.
Fig. 9. (a) Electrical conductivity variation of CuO sintered at different temperatures, (b) Seebeck coefficient variation with temperature for CuO films of different thicknesses and (c) Temperature dependence of TPF for various La$_2$CuO$_4$ ceramics, (inset shows ZT values at 330 K) [LNCO (Nb doped La$_2$CuO$_4$), LPCO (Pr doped La$_2$CuO$_4$), LYCO (Y doped La$_2$CuO$_4$)]. (Reproduced with permission from (a) [222], (b)[226] and (c) [221].)

4.5.4 Methods of synthesis

Many liquid and vapour phase methods are used for synthesising Cu$_2$O and CuO. Liquid phase techniques of for the sol-gel[228], hydrothermal[229] and spray pyrolysis[230] have been used for the synthesis of copper oxides. Other liquid phase techniques commonly employed to prepare high purity copper oxides include electrochemical methods such as anodization and electrodeposition[231, 232]. The chemical synthesis methods, especially
hydrothermal are much desired for many applications as they are low cost, offer morphology control and facilitate low temperature synthesis and are therefore viable for large scale production[229]. Additionally, they result in a departure from stoichiometry when it is needed due to the introduction of point defects and impurities in the crystal lattice. Vapour phase techniques such as RF sputtering, PLD, various evaporation approaches and MBE have been demonstrated to synthesise crystalline copper oxide thin films at different oxygen contents[220]. Additionally, the CVD technique has also been utilized to synthesise copper oxides[233].

In most copper oxide synthesis methods a mixture of phases like Cu, Cu₂O and CuO is obtained. Post-deposition annealing or deposition at high temperature is usually needed to achieve the desired phase.
4.6 Vanadium oxides

4.6.1 Crystal structure

Vanadium oxide exists in many phases that include VO, VO₂, V₂O₃ or V₂O₅. However, only V₂O₅ demonstrates TE properties and shows highly anisotropic n-type electrical conduction[234]. It has a direct bandgap of ~2.4 eV and is a promising electrode material for energy storage systems such as Li-ion batteries[235-238] and possesses a high ionic storage capacity because of its layered structure[239]. Over the years, it has also been intensely investigated for its electrochromic properties[240, 241]. Unlike other configurations of vanadium oxide that have been known to exhibit multiple crystal phases, V₂O₅ exists only as an orthorhombic crystal, which is fundamentally comprised of VO₅ pyramids that form alternating double chains along the \(b \)-axis[242]. A detailed overview of the crystal structures of all phases of vanadium oxide is provided elsewhere[242].

4.6.2 TE properties of stoichiometric V₂O₅

Kounavis et al. have demonstrated that V₂O₅ gels exhibit a room temperature TPF of 0.3 \(\mu \text{W/m.K}^2 \)[243]. V₂O₅ films synthesised by sol-gel method exhibit \(S \) of ~ –200 \(\mu \text{V/K} \), but have very high resistances of the order of \(10^3 \) to \(10^4 \) \(\Omega \)[239]. Hence, it is evident that the \(\sigma \) of V₂O₅ films requires significant enhancement for practical refrigeration and energy scavenging applications.

4.6.3 TE properties of nanostructured, doped and composite V₂O₅

Bahgat et al. have synthesized highly oriented nanocrystalline, hydrated vanadium pentoxide, (V₂O₅ \(n \)H₂O) films of 200 nm thickness. The \(S \) and \(\sigma \) of such films have been shown to increase with temperature, resulting in a peak TPF of 101.25 \(\mu \text{W/m.K}^2 \) at 480 K (Fig. 10a & b) [244].
Iwanaga et al. have studied the TE properties of V$_2$O$_5$ thin films and reported that the introduction of metallic dopants (Na in this case) can improve the TPF values dramatically. This is primarily due to an increase in σ by a factor of up to $\sim 10^4$. At the same time, the S reduces to almost half its value. The direct measurements of TPF have shown an enhanced TPF of 10μW/m.K2 (compared to $\sim 10^{-2} \mu$W/m.K2 for pure V$_2$O$_5$ films) for 35% Na doping[245].

Liu et al. have shown that polyethylene oxide (PEO) intercalated layered V$_2$O$_5$ xerogel nanocomposites result in low TPFs.[246] PbO and ZnO based vanadates have also been shown to exhibit S of up to -400μV/K at room temperature[247]. However, σ in such composites is low, so they can possibly be used only in temperature sensors.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure10.png}
\caption{Temperature dependence of (a) electrical conductivity, (b) Seebeck coefficient for the as-cast and heat treated films during heating and cooling cycles of hydrated V$_2$O$_5$. (Reproduced with permission from [244].)}
\end{figure}

4.6.4 Methods of synthesis

V$_2$O$_5$ films can be synthesised using various liquid and vapour phase techniques[248]. Commonly used liquid phase methods for the synthesis of V$_2$O$_5$ thin films are the sol-gel and the hydrothermal synthesis technique in which hydrated forms are obtained. The sol-gel
synthesised hydrated nanocrystalline V$_2$O$_5$ has been shown to exhibit the highest TPF[244]. A melt quench technique has also been employed to dope various concentrations of Na$^+$ ions into sol-gel solutions and subsequently, thin films of Na intercalated V$_2$O$_5$ can be prepared[243, 245]. Hydrothermal synthesis is often utilized to synthesise V$_2$O$_5$ nanostructures such as nanotubes and nanowires[249, 250]. Other liquid phase methods include the electrodeposition and anodization techniques which have also been shown to synthesise V$_2$O$_5$ nanostructures[251-253].

Vapour phase techniques such as RF sputtering[254], ALD[255] and PLD[256] have also been shown to deposit crystalline V$_2$O$_5$ thin films of various phases. Additionally, the CVD method has also been demonstrated to form highly crystalline V$_2$O$_5$ thin films[257]. However, there are few reports on the TE properties of V$_2$O$_5$ prepared using vapour deposition techniques.
4.7 Cobalt oxides

4.7.1 Crystal structure

Cobalt oxide based materials have received great attention for their application in gas sensing, heterogeneous catalysts, intercalation compounds for energy storages, electrochromic devices and more recently as TE materials [258, 259]. Cobalt oxides are generally found in two stable oxide compounds: Co$_3$O$_4$ and CoO. Co$_3$O$_4$ is the more stable of these two. Both Co$_3$O$_4$ and CoO exhibit a cubic lattice. Co$_3$O$_4$ is a spinel with the presence of both Co$^{2+}$ and Co$^{3+}$ ions in its lattice. Co$_3$O$_4$ exhibits a bandgap in the range of 1.4-1.8 eV, while CoO has a higher energy bandgap of 2.2-2.8 eV. Both Co$_3$O$_4$ and CoO are usually non-stoichiometric with excess oxygen, leading to p-type semiconducting behaviours[259].

4.7.2 TE properties of stoichiometric cobalt oxides

So far, the TE properties of pure cobalt oxides have not been investigated widely, mainly due to the fact that high resistivities result in a poor TE performance for many energy scavenging applications. It has been shown that in a bulk form CoO exhibits a TPF of ~ 80 μW/m·K2 at 1000 K[260]. However, the use of various approaches suggested in section 3 such as the addition of metallic dopants, substructuring, and reducing the dimensionality have made doped cobalt oxides the best TMOs for various TE applications.

4.7.3 TE properties of non-stoichiometric, doped, composite and nanostructured cobalt oxides

Rare-earth cobalt oxides (RECoO$_3$) with perovskite crystal structures have been studied for their TE properties for energy scavenging and cooling properties and have shown relatively large figure of merits around the room temperature[82]. Their high-temperature performance is however limited.

P-type cobalt oxide composites are among the TE metal oxides with the largest ZT values reported to date. The most promising cobaltite composites for such TE applications are
Na\textsubscript{x}CoO\textsubscript{2} and Ca\textsubscript{3}Co\textsubscript{4}O\textsubscript{9}[78]. The high ZT values are associated with their crystal structures, which consist of CoO\textsubscript{2}- planes composed of edge-sharing CoO\textsubscript{6} octahedra, and other structural components between these layers. NaCoO\textsubscript{2} exhibits a weak monoclinic distortion with respect to the hexagonal unit cell caused by the ordering of a layer of sodium ions in between CoO\textsubscript{2} planes, while Ca\textsubscript{3}Co\textsubscript{4}O\textsubscript{9} comprises of a distorted rock-salt type layer of Ca\textsubscript{2}CoO\textsubscript{3}, which lowers thermal conductivity by shortening the phonon mean free path (Eq. 2a), and is located between two CdI\textsubscript{2} type CoO\textsubscript{2} layers that are mainly responsible for providing the path for electrical conduction. Hence, these composites are a classic example of substructuring, which is predicted to enhance TE performance (section 3.2).

Terasaki \textit{et al.} are the pioneers of layered cobalt oxide base TE materials. They were the first group to demonstrate large TPFs of the order of 5×103 μW/m.K2 (compared to 4×103 μW/m.K2 for Bi\textsubscript{2}Te\textsubscript{3}) and ZT as high as 0.75 in NaCo\textsubscript{2}O\textsubscript{4} single crystals at room temperature[11]. Fig. 11a & b show the variation of resistivity and \textit{S} with temperature for the NaCo\textsubscript{2}O\textsubscript{4} single crystals[11]. Subsequent studies have shown that polycrystalline Na\textsubscript{x}CoO\textsubscript{2} exhibits TPF as high as 1.4×103 μW/m.K2 for \textit{x} = 0.85 at room temperature[261, 262]. For Na\textsubscript{x}CoO\textsubscript{2}, silver (Ag) doping results in the enhancement of ZT[78]. Other metallic dopants such as Cu[95] and Zn[96] have also been shown to increase the TPFs, while Sr doping results in the improvement of ZT[263]. Polycrystalline Na\textsubscript{x}CoO\textsubscript{2} typically shows a peak ZT of ~0.11. However, recently, two-dimensional (2D) and stacked Na\textsubscript{x}CoO\textsubscript{2} nanostructures prepared by exfoliation/restacking method were reported to exhibit enhanced TE properties for energy scavenging applications, as expected from the discussion in section 2[264, 265]. The enhancement was attributed to the reduction of in-plane and cross-plane thermal conductivities in the super-lattice like structures, resulting in enhanced TPFs and ZTs of approximately 500 μW/m.K2 and 0.4, respectively.
On the other hand, undoped Ca$_3$Co$_4$O$_9$ exhibits σ, S, κ, TPF and ZT of 10^4 S/m, 150 μV/K, 2 W/m.K, 225 μW/m.K2 and 0.3, respectively, at elevated temperatures as large as 1000 K. Although, the room temperature TPFs performance of Ca$_3$Co$_4$O$_9$ is inferior to Na$_x$CoO$_2$, it is more commonly used in various TE applications due to its superior stability to compositional changes and better performance at high temperatures[78].

Similar to Na$_x$CoO$_2$, the addition of Ag as a dopant[266, 267] or a second phase composite [266, 268, 269] has been shown to improve TE properties of Ca$_3$Co$_4$O$_9$. A Ca$_{2.7}$Ag$_0.3$Co$_4$O$_9$/Ag-10 wt% composite showed an enhanced ZT of 0.5 at 1000 K. Bismuth (Bi) doping has also resulted in enhanced TPFs and reduced κ. However, the ZT of Bi-doped samples, is not as high as those of Ag doped oxides. Ca$_{2.75}$Gd$_{0.25}$Co$_4$O$_9$ ceramics have also been shown to exhibit TPF and ZT of 480 μW/m.K2 and 0.23 respectively, at 923 K (Fig. 11c) [270]. It is seen that the Ca$_{2.75}$Gd$_{0.25}$Co$_4$O$_9$ ceramics synthesised using the SPS method exhibit slightly higher TPFs and ZTs compared to hot press (HP) synthesised samples (Fig. 11c). There are also reports on the doping of Ca$_3$Co$_4$O$_9$ with transition metals [271, 272] such as copper and nickel. Gallium addition has been demonstrated to improve TPFs and ZTs[273]. Doping with lanthanum and lanthanide elements has also been studied but the TE enhancements have not been as impressive[78].
Fig. 11. (a) Resistivity and (b) Seebeck coefficient variations with temperature for NaCo$_2$O$_4$ single crystals in plane (ρ_a) and out of plane (ρ_c) and (c) comparison of ZT and TPF for SPS and hot pressed (HP) synthesised Ca$_{2.75}$Gd$_{0.25}$Co$_4$O$_9$ samples. (Reproduced with permission from (a), (b) [11] and (c) [270].)

4.7.4 Methods of synthesis

Cobalt oxide can be synthesised using various liquid and vapour phase methods. Epitaxial thin films are generally preferred as they result in highly oriented structures[1, 274, 275]. Liquid phase techniques such as spray pyrolysis, sol-gel and hydrothermal have been employed to fabricate cobalt oxide thin films as well as nanostructures in various morphologies such as nanorods, hierarchical nanocolumns, nanocubes, nanowires and nanorods [258, 276-278]. Although, other liquid phase methods such as electrodeposition have also been employed[279]. An excellent review article summarises various liquid phase synthesis techniques for fabricating cobalt oxide nanostructures[278].

Vapour phase methods that include MBE, PLD and EBE have conventionally been used for the growth of epitaxial Ca$_3$Co$_4$O$_9$ films. For Na$_x$Co$_2$ films however, the volatility of sodium ions poses difficulties in controlling stoichiometry. The CVD synthesis technique has been shown to be advantageous since it allows accurate tailoring of system composition, structure, morphology via suitable choice of a precursor compounds and deposition conditions[258].
4.8 Rhodium oxides – RhO\textsubscript{x}

4.8.1 Crystal structure
Rhodium oxides are generally found in two crystal oxide compounds: RhO\textsubscript{2} and Rh\textsubscript{2}O\textsubscript{3}. RhO\textsubscript{2} exhibits a tetragonal rutile structure, which transforms into corundum type α-Rh\textsubscript{2}O\textsubscript{3} after annealing above 1000 K[280] . Heating above such temperatures results in a transformation to orthorhombic type β-Rh\textsubscript{2}O\textsubscript{3}[281]. Rhodium oxides have been investigated primarily for applications in catalytic chemistry, electrochromisms and as a conductive transparent oxide[282-284] . Additionally, misfit-layered rhodium oxides with two-dimensional CdI\textsubscript{2}-type crystal structures, analogous to that of cobalt oxides, are among the best candidates for forming p-type TE materials[59]. As in the case for cobalt oxides, their superior thermopower properties originate from CdI\textsubscript{2}-type layers, which favour low spin state of Rh3+/ Rh4+ with degeneracies of spin and orbital as the key factors[285] . The CdI\textsubscript{2}-type layer has a hexagonal symmetry, while the misfit layer is generally a square lattice. However, a layered Bi-Sr-Rh-O system with fluorite-type misfit layers with a trigonal symmetry has also been reported to exhibit similar TE properties[59] .

4.8.2 TE properties of stoichiometric RhO\textsubscript{x}
There are no reports of stoichiometric RhO\textsubscript{x} being employed in TE systems. What follows is a brief overview of the studies on rhodium oxide based metal oxide systems that are among the best p-type TE TMOs.

4.8.3 TE properties of non-stoichiometric, composite and doped RhO\textsubscript{x}
Okada et al. initially reported the first synthesized misfit-layered rhodium based metal oxide in polycrystalline form[286] . Samples of (Bi\textsubscript{1-x}Pb\textsubscript{x})\textsubscript{1.8}Sr\textsubscript{2}Rh\textsubscript{1.6}O\textsubscript{y} (x=0, 0.1, 0.2) and Bi\textsubscript{1.8}Ba\textsubscript{2}Rh\textsubscript{1.9}O\textsubscript{y} were investigated for their TE properties, with the most promising results being 125 \textmu V/K, 213 S/m and 3.3 \textmu W/m.K2 for S, σ and TPF, respectively, at room temperature (see Fig. 12a-c). In another study, polycrystalline samples of Co and Rh mixed...
solutions Bi$_{1.7}$Ba$_2$(Co$_{1-z}$Rh$_z$)O$_y$ with hexagonal (Co, Rh)O$_2$ layers have been synthesized in an effort to further alter the TE properties by decreasing κ[287]. Although κ was reduced in the solid solution, the σ also dropped due to the distortions made by different ionic size elements in (Co, Rh)O$_2$ layers and therefore, TE performance did not improve.

Kobayashi et al. have synthesized rhodium oxide based single crystals in Br-Sr-Rh-O systems with alternately stacked conductive RhO$_x$ and insulating in (Bi$_{0.75}$Sr$_{0.25}$)O$_{1.5}$ fluorite-type layers[59]. Interestingly, the misfit layer showed a trigonal symmetry with a rhombohedral unit cell, rather than the square-lattice usually observed in other oxides. Room temperature S of up to 63 μV/K and σ of 6.25×10^4 S/m were obtained for Bi$_{0.78}$Sr$_{0.4}$RhO$_{3+y}$ crystals. The TPF of such a composite was estimated to be 248 μW/m.K2, which is comparable to the values for cobalt oxide based systems[59]. Additionally, single crystals of Ba$_{1.2}$Rh$_8$O$_{16}$ have been shown to exhibit κ and ZT values of 3 W/m.K and 0.02 at 200 K, respectively[288].

A recent first principle investigation of layered K$_x$RhO$_2$ composites based on ab-initio calculations and Boltzmann transport theory has suggested that the material system has the potential for exceptionally remarkable TE properties[289]. Calculations found large Seebeck coefficients in the temperature range of 0 to 700 K for hydrated phase of K$_x$RhO$_2$. Moreover a peak value of $ZT = 0.3$ is predicted for K$_{78}$RhO$_2$ at 100 K, which is higher than Na$_x$CoO$_2$ systems. Even at room temperature, TPFs higher than Na$_x$CoO$_2$ are predicted[289].
Fig. 12. Temperature (T) dependence of (a) resistivity (ρ), (b) Seebeck coefficient (S), and (c) thermal conductivity (κ) for Bi$_{1.7}$Ba$_2$(Co$_{1-z}$Rh$_z$)O$_y$ of varying rhodium concentration (z) (Reproduced with permission from [287].)

4.8.4 Methods of synthesis

Many liquid and vapour phase techniques are employed to synthesise rhodium oxides. Amongst the liquid phase synthesis techniques, sol-gel and hydrothermal are the most commonly used methods to synthesise Rh$_2$O$_3$ in various morphologies[290-292]. Vapour phase techniques such as RF sputtering, electron beam evaporation (EBE) and the CVD method are used for preparing crystalline rhodium oxide thin films[293]. Misfit, layered rhodium oxide composites such as (Bi$_{1-x}$Pb$_x$)$_{1.8}$Sr$_2$Rh$_{1.6}$O$_y$ are synthesised using the SSR technique[286, 287]. It should be considered that RhO$_2$ is insoluble even in hot aqua regia, hence solution based synthesis techniques are not employed for forming RhO$_2$. SSR is therefore commonly utilised[294].
4.9 Molybdenum oxides – MoO$_x$

4.9.1 Crystal structure

The most common stoichiometries of MoO$_x$ are MoO$_2$ and MoO$_3$. However, MoO$_3$ is the most widely investigated stoichiometry of MoO$_x$ for a variety of applications such as gas sensing, photochromic devices, light emitting diodes (LEDs), batteries and organic solar cells\[238, 295-302\]. The most common crystal phases of MoO$_3$ are the thermodynamically stable α-MoO$_3$ and the metastable β-MoO$_3$[303-306]. Bulk α-MoO$_3$ exhibits an indirect bandgap of \sim3 eV and has an orthorhombic crystal structure, that comprises of dual layered planar crystals of distorted MoO$_6$ octahedra that are held together by weak van der Waals forces. β-MoO$_3$ on the other hand comprises of MoO$_6$ octahedra that share corners in all the three dimensions, resulting in a monoclinic 3D structure[302, 307]. At temperatures above 620 K, the β phase transforms into the more stable, layered α-MoO$_3$ phase[303, 304].

4.9.2 TE properties of stoichiometric MoO$_x$

There is no literature that reports the TE properties of stoichiometric molybdenum oxides, primarily due to their low σ. However, incorporation of various dopants and implementation of MoO$_x$ composites have been shown to result in high TPFs.

4.9.3 TE properties of non-stoichiometric, doped and composite MoO$_x$

Non-stoichiometric and doped molybdenum oxides have been shown to exhibit high TPFs. Xu et al. investigated the TE properties of highly reduced molybdenum oxides (RMo$_8$O$_{14}$) where R=La, Ce, Nd and Sm. Fig. 13a shows the TPFs of the four composites at different temperatures. It is seen that NdMo$_8$O$_{18}$ exhibits a peak TPF and ZT of 177 μW/m.K2 and 0.1, respectively, at 1000 K. The κ of the composite has been reported to be 3.19 W/m.K at 322 K, which drops to 2 W/m.K at 1164 K[308, 309]. It is evident that the TPF is certainly large enough to make these molybdenum oxide composites promising for high temperature energy scavenging applications.
It has also been shown that the use of composites can result in enhanced TE performance as suggested in section 3.4. A study reports that the TPFs of polyaniline (a typical conductive polymer) molybdenum trioxide (PANI/MoO$_3$) composites, is high. A maximum TPF of $\sim 10^2 \, \mu W/m.K^2$ was observed for 10 wt% of MoO$_3$ (Fig. 13b) [310].

![Fig. 13.](image)

Fig. 13. (a) Temperature dependence of TPF of RMo$_8$O$_{14}$ (R:La, Ce, Nd, Sm) pellets, and (b) electrical conductivity vs TPF of PANI/MoO$_3$ composites vs MoO$_3$ concentration in the composite. (Reproduced with permission from (a) [309] and (b) [310].)

4.9.4 Methods of synthesis

Similar to other TMOs, MoO$_3$ can be synthesised using many different liquid and vapour phase techniques. The commonly used liquid phase techniques include sol-gel, hydrothermal, and electrodeposition[304]. Vapour phase techniques such as thermal evaporation, electron beam epitaxy, PLD, RF/DC sputtering, MBE and van der Waal epitaxy (VDWE) have been used for synthesising MoO$_3$ in various thin film and nanostructured forms. Amongst these, MBE and VDWE have been shown to synthesise ordered, layered MoO$_3$ structures. Additionally, CVD techniques are also employed to synthesise crystalline MoO$_3$. A detailed overview of the synthesis techniques to produce various morphologies of MoO$_3$ is provided elsewhere[302].
4.10 Other transition metal oxides and their TE properties

In this section, we will discuss other TMOs, whose TE properties have not been widely investigated. Most of these TMOs are wide bandgap materials, resulting in extremely poor electrical conductivities. However, a few oxides such as iron oxide, cadmium oxide, nickel oxide and doped zirconium oxide exhibit promising TE properties for various applications. In this section, we provide a brief overview of the small number of reports on the TE properties of the remaining TMOs in their stoichiometric and/or doped states.

4.10.1 Iron oxides

There are many known stable iron oxide stoichiometries available. Amongst them, Fe$_2$O$_3$ is the iron oxide compound that has been studied for its TE properties. An analysis of a limited number of reports suggests that Fe$_2$O$_3$ can potentially be a promising TMO for TE applications at high temperatures as it exhibits high TPFs at room as well as elevated temperatures.

Fe$_2$O$_3$ thin films have been shown to exhibit peak S of 1650 μV/K in the temperature range of 270-290 K. A peak σ of 5.5×103 S/m has been reported in the same temperature range, resulting in a high TPF of 1.5×104 μW/m.K2[311]. Li- doped α-Fe$_2$O$_3$ has been reported to exhibit a TPF of 5.5×103 μW/m.K2 at temperature over 800 K for which a κ of 4 W/m.K has been reported[312]. Fe$_2$O$_3$-NiO composites have also been shown to exhibit high TPFs at elevated temperatures (900 μW/m.K2 at 823 K) [313]. Nanostructuring technique has been predicted to enhance TE performance (section 3.3). Although, 1D electronic quantum confinement has been demonstrated in α-Fe$_2$O$_3$ nanorods, they have not been examined for their TE properties[314].
4.10.2 Chromium oxides

There exists many crystalline phases of chromium oxides however, Cr$_2$O$_3$ is the most stable bulk form of this TMO,[315] with a few recent reports on its TE properties[311, 316]. Cr$_2$O$_3$ thin films have been shown to exhibit S of 3500-4500 μV/K at room temperature. However, we wish to add that such dramatically high S has not been confirmed by any other study so far. A σ of 5.8×10^3 S/m has been reported for stoichiometric Cr$_2$O$_3$[311]. Another study demonstrates a TPF of 3.5 μW/m.K2 at a temperature of 1300 K in Cr$_2$O$_3$[316].

The effect of TiO$_2$ addition to Cr$_2$O$_3$ on its TE properties has also been investigated. A 2% TiO$_2$ addition results in a slightly improved TPF of 5.6 μW/m.K2[317].

The TE properties of chromium oxide compounds such as CuCrO$_2$ have also been studied. A maximum TPF and ZT of 236 μW/m.K2 and 0.1 at 1100 K has been obtained[318]. CrO$_{0.1}$N$_{0.9}$ polycrystalline samples have also been reported to show a TPF of 80 μW/m.K2 at 300 K[319].

The above discussion shows that sufficiently large TPFs have been demonstrated for Cr$_2$O$_3$ and its compounds. However, further studies are required to establish chromium oxide as a viable TE TMO for many applications.

4.10.3 Scandium oxides

Scandium oxide is a wide band gap (6 eV) insulating material, and is therefore not useful for TE conversion applications[118]. Doping can slightly improve electrical conduction; however, it is still insufficient for any meaningful TE energy scavenging applications. Cu doped scandium oxide epitaxial thin films exhibit S and σ of 40 μV/K and 110 S/m, respectively, at room temperature, resulting in extremely low TPF of 0.18 μW/m.K2[320].
4.10.4 Zirconium oxides

Zirconium oxides are stable at extremely high temperatures and are generally used as ionic conductors at such temperatures. As such these oxides are frequently used in oxygen sensors and fuel cell membranes[321]. ZrO$_2$ is the most common crystal phase of zirconium oxides which is found in three phases: a cubic phase with a fluorite structure that occurs at temperatures >2850 K and transforms into a tetragonal phase at 2650 K, which on further cooling transforms to a monoclinic phase[322]. It exhibits a wide bandgap of 5 eV[118].

Pure ZrO$_2$ does not exhibit good TE properties due to its poor σ. However, ZrO$_2$/CoSb$_3$ nanocomposites show a peak S of 140 μV/K at 700 K for 5 % ZrO$_2$ and a corresponding σ and κ of 3.75×10^4 S/m and 2.75 W/m.K, respectively[114]. The resulting TPF and ZT is approximately 735 μW/m.K2 and 0.2, respectively. Therefore, it is obvious that the incorporation of ZrO$_2$ can potentially be a good approach for obtaining enhanced TE properties for energy scavenging at elevated temperatures.

4.10.5 Cadmium oxides

Cadmium oxide is an n-type semiconductor, which exhibits a cubic rocksalt type crystal structure with a direct bandgap of ~2.1 eV at room temperature[323]. A study of highly crystalline CdO thin films have revealed high σ of the order of 10^5 S/m and a peak S of ~90 μV/K, resulting in a high TPF of ~800 μW/m.K2[324]. Another study has demonstrated a TPF of 100 μW/m.K2 at 700 K[325]. Other studies on pure as well as doped CdO have revealed similar order of magnitude TPFs[326-328]. Therefore, it is evident that CdO can potentially be a viable n-type TE TMO at elevated temperatures.

4.10.6 Nickel oxides

Nickel oxide is a p-type semiconductor that exhibits a cubic rocksalt type crystal structure with a rather large bandgap of 3.6-4.0 eV. Although the σ of stoichiometric NiO is extremely
low, Ni$^{2+}$ vacancies are easily formed in undoped NiO, resulting in dramatic improvements in σ[329].

In the past, a few studies have examined TE properties of NiO[330, 331]. One such study has reported S, σ of 101 μV/K and 10^{-2} S/m respectively, at room temperature. The TPF is extremely low primarily due to poor electrical conductivity[331].

The use of metallic dopants such as Li and Na has been shown to result in enhanced TE properties[332] [333]. Li doped NiO exhibits TPFs of the order of 10^2 μW/m.K2 at temperatures exceeding 1000 K, suggesting its suitability as a promising metal oxide for energy scavenging and thermopower wave sources[332].

4.10.7 Iridium oxides

IrO$_2$ is the most stable phase of iridium oxides and exhibits a TiO$_2$ like rutile crystal structure. The TE properties of pure IrO$_2$ have not been examined. However, Ca-Ir-O composites have been investigated for their TE properties by Keawprak et al.[334-336]. They reported low TPFs and ZTs (~35 μW/m.K2 and 0.01, respectively).

4.10.8 Other TMOs

Other transition metals such as Nb, La, Ac Y, Ta, Re, Hf, Ag and Te are usually employed as dopants in other TE TMOs for tuning their various TE properties in order to achieve higher TPFs and ZTs. However, reports on their stoichiometric TMOs are rare and yet to be fully investigated.
5 Applications of TE TMOs

As discussed in Section 3, the applications of TE TMOs can be classified into four major categories. In this section, a brief description of such TMO-based TE applications is provided.

5.1 Cooling and refrigeration

One of the practical implementation of TE materials is for cooling and refrigeration[3]. TMOs generally do not provide considerable efficiencies for cooling and refrigeration near room temperatures. However, many of them including titanium oxide, copper oxide compounds (La₂CuO₄) and doped cobalt oxides, are promising for cooling and refrigeration applications at low temperatures due to their large TPFs at cryogenic temperatures[337, 338]. The advantage of TMO-based cooling and refrigeration systems is their low cost and easy large-scale fabrication. Many TMOs can be synthesised in low dimensions, using well-established methods which were presented in Section 4, making them attractive for developing micro/nano cooling devices[339]. A schematic of such cooling devices is shown in Fig. 14, and consists of complementary arrays of n-type and p-type TE TMOs, which are electrically in series and thermally in parallel, transferring heat from one side of the module to another[261]. The need for micro-domain cooling is driven largely by the shrinking size of electronic devices. Most electronics and optoelectronic technologies require localised spot cooling of small components and TE modules are capable of very localised cooling[261]. Such modules are extensively used for maintaining laser diodes at constant temperatures in order to stabilise their operating wavelengths [340, 341]. They are also widely used for the temperature management of high power dissipating electronic equipment such as ICs, microprocessors, charge coupled devices (CCD), IR cooling in optoelectronic systems, air conditioners and laboratory cooling plates[67, 342, 343]. Additionally, a reversal of the
current allows these devices to act as spot heaters as well, rendering them with additional usage flexibility\cite{344}.

Military applications such as night vision systems and heat seeking missiles depend on sensors in their infrared imaging systems. These sensors work efficiently at extremely low temperatures. TE TMO based cooling systems can be used to produce such low temperatures of the order of \(~190\) K in these devices\cite{67, 345}. Such cooling devices are also increasingly finding applications in the biological world. For a wide cryogenic implementation in the biological world, TMOs due to their non-toxicity and biological compatibility are potentially desirable.

\textbf{Fig. 14.} Pictorial representation of a TE cooling device. (Reproduced with permission from \cite{261}.)
5.2 Energy harvesting from heat

The application of TMOs for waste heat recovery is particularly attractive, given their stability at very high temperatures, even though the maximum theoretical efficiencies for TMOs in the high temperature regimes is in the range of 4-6%[346]. Complex oxides such as p-type layered cobaltites and n-type doped SrTiO$_3$, CaMnO$_3$ and ZnO are among the best candidates for TE power generation modules operating at mid to high temperature ranges[12, 347, 348]. Among these, p-type Ca$_3$Co$_4$O$_9$ (either undoped or doped with bismuth) and n-type doped CaMnO$_3$ are commonly used in TE modules. TMO TE modules are being increasingly employed for waste heat recovery in vehicles by all major auto-makers in order to comply with stricter emission requirements[78, 349]. Such TE generators convert the waste heat from the exhaust into useful power that can be used to operate the on-board electrical systems, thereby increasing fuel efficiency[4]. Each kilogram of fuel saving reduces CO$_2$ emissions by 3.16 kg. Additionally, the application of TMO TE modules in the industrial waste heat recovery sector is also gaining increasing attention due to the tremendous economic and environmental benefits that can be realised especially in the aluminium smelting, glass manufacturing and cement production industries.

The first prototypes of power generation modules incorporating TMOs were reported by Shin et al. in which an output power of 14 mW was measured at a temperature gradient of 500 K (1000 K on the hot side and 500 K on the cool side) and the efficiency was calculated to be 0.64%[350, 351]. All-oxide TE modules were later developed by Matsubara et al. and Funahashi et al. that generated output powers as large as 94.4 mW[352, 353]. Subsequently, using the same p- and n-type oxides Funahashi et al. fabricated a module comprising of 140 oxide pairs on an alumina substrate resulting in an output power of 0.15 W with a temperature gradient of 551 K[354]. The power generation efficiency was estimated to be around 1.4%. A further improvement in the output power (0.28 W) was achieved through the
fabrication of a pipe-shaped module comprising 54 oxide pairs.[355]. Another plate-shaped module fabricated using 8 pairs of p-type Co-394 and n-type CaMn_{0.98}Mo_{0.02}O_3 (Mn-113) bulks on alumina substrate reached an output power of 0.34 W[356]. Other studies with cobalt and manganese based oxides have resulted in output powers of the same order[357-360].

The nanostructuring approach has also been implemented to improve the performance of TMO based TE modules. Such modules use nanostructured p-type cobalates, manganates or n-type ZnO and have been shown to generate powers as high as 0.4 W[361-363].

5.3 Photovoltaic (PV) – solar thermoelectric generators (STEGs) and radioisotope thermoelectric generators (RITEGs)

5.3.1 PV-STEG

Photovoltaic cells are widely deployed to harness solar energy and convert it to useful electrical energy. An interesting idea to improve the efficiency of these cells is the incorporation of TE devices, also known as solar thermoelectric generators (STEGs). These TE-solar hybrid systems can take advantage of the IR part of the solar spectrum, which is not effectively captured by conventional solar cells[364]. This idea was first proposed as early as 1954 by Telkes et al. and involves concentrating the solar energy to create heat which is harnessed by the TE systems to convert it into electricity[365]. A schematic of a STEG is shown in Fig. 15. The conversion efficiency of the STEG depends on the temperature difference between the hot (T_h) and the cold (T_c) side. The cooling on the opposite side is provided by circulating a liquid, which can simultaneously be utilised to drive a steam engine or a heating system for auxiliary solar heat utilisation[366]. Solar concentrator systems have been shown to achieve high temperatures of up to 1000 K[366]. At such high temperatures, TMOs are highly desirable due to their high thermal stabilities and acceptable ZT values. In fact, Robert et al. have shown that doped cobalt oxides are highly promising for STEGs[366,
Weidenkaff et al. and Tomes et al. have also demonstrated STEGs based on TMOs such as cobalates, manganates and cuprates[102, 362].

5.3.2 RITEG

The use of radioisotope thermoelectric generators (RITEGs) for powering space missions has been well established. This is because TE converters are extremely reliable for long operating lifetimes. They are compact, rugged, adaptable, and radiation-resistant and they generate no noise, vibrations or torque during the course of operation. Additionally, they do not need any start up device[368]. Spacecraft that venture into the outer universe, where the availability of solar energy is diminished, benefit from the durability and consistency of the electrical as well as thermal energy derived from radioisotope energy sources[369]. The decay of radioactive isotopes generates a significant amount of heat and it is highly desirable to use this heat in spacecraft thermal control, as energy resources are limited. A detailed discussion on the operation of these systems has been presented by Obrien et al[370].

The efficiency in such systems is highly sensitive to temperature and high operating temperatures are desirable in order to achieve an effective radiative heat rejection. As such, TE TMOs such as ZnO, ZrO$_2$ and cobalt oxides offer promising alternatives for any stable and cost effective RITEG development. Lange et al. have provided a comprehensive review on the current state-of-the-art RITEG technology and also discussed the scope of future improvements[368].
Fig. 15. Schematic of a solar thermoelectric generator (STEG), comprising of a solar concentrator and both p and n type TE elements. (Reproduced with permission from[371].)
5.4 Sensors

TMO-based TE transducers can be implemented for a wide variety of sensing applications. An overview of the different sensing capabilities can be found in ref. [8]. In brief, they can be widely used in measuring temperature[372-375], in measuring generated heat from chemical reactions[376], in gas sensing [377-381] and biological sensing[376, 382]and be incorporated into other sensing systems. In such sensors, a variation in the generated voltages induced due to the Seebeck effect in TE materials are used to assess the sensor performance[383].

For TMO-based temperature sensors, a high S (to generate large output voltage hence obtaining large signal to noise ratios) and low σ (to limit the wastage of energy), κ (to limit the exchange of heat between the measurement point and the rest of the measurement system) are desirable. This ensures that a high sensitivity is maintained for a prolonged time, without an unnecessary exchange of heat.

TMOs such as ZnO, TiO$_2$ CuO and V$_2$O$_5$ have been employed in temperature sensors and infrared detectors[372-375].

Additionally, such thermal sensors can be used to detect various electrical, magnetic, chemical and radiation signals[8, 384]. For high temperature sensing applications, TE TMOs such as ZnO, TiO$_2$, Fe$_2$O$_3$ and ZrO$_2$ are highly desirable, as they offer high temperature stability and high sensitivities at such elevated temperatures. TMO based sensors can also be integrated with microfluidics to measure very small heat exchanges in biological fluids and biochemical reactions at a wide range of operating temperatures. It is suggested that TMOs such as ZnO can also be ideal materials for such transducers due to their bio-compatibility and good TE properties[43, 385].

The TE properties of TMOs are also exploited for sensing a wide variety of gases. TE gas sensors based on TMOs such as NiO, Co$_3$O$_4$, TiO$_2$ and Fe$_2$O$_3$ have already been
reported[377-380]. Interestingly, such sensors can operate as both semiconducting and thermoelectric gas sensors, providing unique output information for the operators.

5.5 Thermopower wave sources

Miniaturization of energy sources is a key challenge to overcome in order to develop the next generation of micro/nano electronic devices. Current energy generation technologies cannot be scaled down to the micro/nano level, while maintaining their energy discharge capabilities. A novel concept of thermopower waves has been demonstrated to be highly promising for the development of the next generation micro/nano scale power sources[5-7, 9, 386]. In such systems, thermopower waves are propagated along a TE system, which generally comprises of a modest to high thermally conductive material. A pictorial representation of a thin film thermopower device is shown in Fig. 16 a. As a result of the coupling of intense exothermic chemical reaction to free charge carriers in the TE material, which should also be highly electrically conducting, an output power is generated. A preferably modest to high κ of the core TE material is required in such thermopower wave sources in order to facilitate the sustained propagation of thermopower waves. High σ is needed to increase the output current and as a result output power. Therefore, thermopower wave sources require materials with a high TPF. TMOs such as ZnO and MnO$_2$ have resulted in the highest voltage outputs (500 mV and 1.8 V, respectively) (Fig. 16b & c) among all thermopower wave systems reported so far[5-7, 9, 69, 386, 387]. An added advantage is that the high temperature stability of TMOs provides the opportunity of refuelling such systems, as the TE materials remain largely intact after the reaction.
Fig. 16. (a) Schematic of thin film thermopower wave system and output voltage profiles for (b) ZnO and (c) MnO$_2$ based thermopower wave sources. (Reproduced with permission from (b) [5] and (c) [9].)

6 Conclusion and future outlook

In summary, we presented a comprehensive analysis of various TMOs and their TE properties. The article included an analysis of the theory governing the thermal and electrical conductivities, and Seebeck coefficients of bulk and low dimensional TMOs. An overview of the crystal structures of TMOs, along with various liquid and vapour phase techniques to synthesise them were presented. The effects of stoichiometry alteration, doping, compositing, and nanostructuring were discussed for target TE TMOs at cryogenic, ambient and elevated temperatures, where applicable. Additionally, a description of TE TMOs’ major applications was also provided. It was shown that TMOs exhibit promising TE properties that can be exploited for a wide range of applications.

Modification strategies based on reducing dimensions of TMOs have already resulted in enhanced TPFs and ZTs through engineering of their density of states. Enhanced ZTs can certainly be achieved by nanostructuring, substructuring, compositing, doping and changing the stoichiometry of TMOs. Theoretical grounds suggest that even higher ZTs can be obtained. This will enable widespread implementation of such TMOs in a variety of highly efficient cooling and refrigeration, energy scavenging, sensing and thermopower systems even at micro/nano dimensions. Theoretical models predict extraordinary enhancements in
TPFs and figures of merits in TMO based segmented 1D (0D) structures such as QDSLs and SNWs. However, such structures based on TMOs are still in their infancy and there is a need to extensively investigate their TE properties. Such structures will potentially result in dramatic improvements in TPFs and ZTs of TMOs, allowing their widespread implementation.

TMOs offer exciting avenues to harness industrial waste heat, providing cost effective and environmentally friendly electricity generation capabilities. Additionally, TMOs can also be implemented in TE modules for scavenging waste heat from exhausts in automobiles and the heat from the sun for useful power. The efficient implementation of such applications on a large scale inevitably requires high operating temperature ranges for which TMOs are the ideal candidate materials.

TMOs with high Seebeck coefficients and tunable electrical properties can be implemented in temperature, gas and bio sensors with high sensitivities, for applications in which very small heat generations or alteration of electrical and thermal properties should be detected. Many TMOs are biocompatible so they are great candidates in bio-applications. They can also endure low or high extremes of temperatures. TE TMOs can also be used to generate voltages at low dimensions to detect very minute heat exchanges. Such heat exchanger systems can be integrated with nanofluidics in many lab-on-a-chip applications.

The high TPFs of many TMOs at elevated temperatures also makes them attractive materials for thermopower wave sources. Already, TMOs such as ZnO and MnO$_2$ have resulted in the highest output voltages in such energy sources. Considering that significant enhancements in TPF can be seen in TMOs, achieving output voltages as high as 10 V in thermopower wave sources is not beyond possibility.
The environmental compatibility, low cost and highly engineer-able properties are very attractive features that TMOs offer. Alteration of stoichiometry, addition of dopants, formation of composites, nanostructuring and substructuring approaches have already shown their invaluable capabilities to adjust the TE parameters in many TMOs. However, there are still many challenges to be addressed and a fundamental understanding of the TE parameters in TMOs should be fully gained. The low efficiency of TMO-based TE materials is still their major drawback for many applications. Therefore, incorporation of such TMOs into many TE modules has been limited.

The transport phenomena at the boundaries and interfaces will require in-depth investigations to enable further morphological tuning of electrical and thermal properties in TMOs, making them viable candidates in a wide variety of TE applications. There are many unknowns regarding the effects of oxygen deficiency and dopants in TMOs. The same can be said for the effects of nanostructuring, substructuring and compositing. Still, the TE parameters of many TMOs have not been measured at different temperatures. The effects of superconductivity, junctions and environmental conditions have not been investigated for many TMOs and should be studied to gain a complete understanding of their properties. We believe that TMOs will play a pivotal role in the future development of applications such as cooling, heat scavenging, sensing and thermopower wave sources.
Acknowledgements

The authors thank colleagues and collaborators who have contributed to aspects of research reported in this work. M.B. and S.S. acknowledge fellowships from the Australian Research Council through Discovery Projects DP1092717 and DP110100262, respectively.

7 References

[34] Hendry VE, Cox PA. The surface science of metal oxides. Cambridge University Press; 1996.

[55] Zide JMO, Vashaee D, Bian ZX, Zeng G, Bowers JE, Shakouri A, et al. Demonstration of electron filtering to increase the Seebeck coefficient in In$_{(0.53)}$Ga$_{(0.47)}$As/In$_{(0.53)}$Ga$_{(0.28)}$Al$_{(0.19)}$As superlattices. Phys Rev B 2006;74.

[80] Wang Y, Sui Y, Su WH. High temperature thermoelectric characteristics of Ca0.9R0.1MnO3 (R=La, Pr, Yb). J Appl Phys 2008;104.

[268] Song Y, Sun Q, Zhao L, Wang F, Jiang Z. Synthesis and thermoelectric power factor of (Ca0.95Bi0.05)3Co4O9/Ag composites. Mater Chem Phys 2009;113:645-9.
[273] Nong N, Liu CJ, Ohtaki M. Improvement on the high temperature thermoelectric performance of Ga-doped misfit-layered Ca3Co4+xGa4O9+δ(x= 0, 0.05, 0.1, and 0.2). J Alloy Compd 2010;491:53-6.
[360] Lim CH, Choi SM, Seo WS, Park HH. A Power-Generation Test for Oxide-Based Thermoelectric Modules Using p-Type Ca3Co4O9 and n-Type Ca0.9Nd0.1MnO3 Legs. J Electron Mater 2012;41:1247-55.
[361] Souma T, Ohtaki M, Ohnishi K, Shigeno M, Ohba Y, Shimozaki T. Power generation characteristics of oxide thermoelectric modules incorporating nanostructured ZnO sintered

[363] Choi SM, Lee KH, Lim CH, Seo WS. Oxide-based thermoelectric power generation module using p-type Ca$_3$Co$_4$O$_9$ and n-type (ZnO)$_7$In$_2$O$_3$ legs. Energy Conv Manag 2011;52:335-9.

Figure captions

Fig. 1. Operating temperature ranges of various TMOs and TMO composites. (Reproduced with permission from [15].)

Fig. 2. (a) A 2D quantum well structure with width W, (b) 1D conductor (nanowire) with a square cross section of width a, (c) a segmented nanowire superlattice of diameter d_w comprising of quantum dots (0D) of alternating materials A and B, with respective segment lengths L_A and L_B. (d) Energy dependence of the electronic DOS in 3D, 2D, 1D and 0D materials. ((c), (d) Reproduced with permission from [28] and [29].)

Fig. 3. Schematic depiction of the substructuring approach in doped cobalt oxide, comprising of ordered CoO2 layers that are separated by disordered layers (of Na dopant) to achieve a good electrical conductivity and poor phonon conductivity. (Reproduced with permission from [42].)

Fig. 4. (a) Seebeck coefficient (red) and electrical resistivity (blue) of reduced single crystal rutile TiO$_x$ as a function of annealing temperature and (b) Seebeck coefficient as a function of temperature for a sample annealed in H$_2$ at 1053 K. (Reproduced with permission from [125].)

Fig. 5. (a) Electrical conductivity, (b) Seebeck coefficient, (c) thermal conductivity, (d) TPF and (e) ZT vs temperature for different concentrations of La dopant in STO thin films. (Reproduced with permission from [134].)

Fig. 6. (a) Resistivity, (b) Seebeck coefficient, (c) TPF and (d) ZT of GPR (red) and SSR synthesised (black) Yb-doped CaMnO$_3$ nanoparticles (Reproduced from [22].)

Fig. 7. (a) Seebeck coefficient, (b) electrical conductivity variation with temperature for α-WO$_3$ films and (c) TPF obtained for varying ZnO doping concentrations in WO$_3$ ceramics. (Reproduced with permission from (a), (b) [168] and (c) [161].)
Fig. 8. Temperature dependence of TPF of Zn$_{1-x-y}$Al$_x$Ga$_y$O ceramics. (Reproduced with permission from [88].)

Fig. 9. (a) Electrical conductivity variation of CuO sintered at different temperatures, (b) Seebeck coefficient variation with temperature for CuO films of different thicknesses and (c) Temperature dependence of TPF for various La$_2$CuO$_4$ ceramics, (inset shows ZT values at 330 K) [LNCO (Nb doped La$_2$CuO$_4$), LPCO (Pr doped La$_2$CuO$_4$), LYCO (Y doped La$_2$CuO$_4$)]. (Reproduced with permission from (a) [222], (b)[226] and (c) [221].)

Fig. 10. Temperature dependence of (a) electrical conductivity, (b) Seebeck coefficient for the as-cast and heat treated films during heating and cooling cycles of hydrated V$_2$O$_5$. (Reproduced with permission from [244].)

Fig. 11. (a) Resistivity and (b) Seebeck coefficient variations with temperature for NaCo$_2$O$_4$ single crystals in plane (ρ_a) and out of plane (ρ_c) and (c) comparison of ZT and TPF for SPS and hot pressed (HP) synthesised Ca$_{2.75}$Gd$_{0.25}$Co$_4$O$_9$ samples. (Reproduced with permission from (a), (b) [11] and (c) [270].)

Fig. 12. Temperature (T) dependence of (a) resistivity (ρ), (b) Seebeck coefficient (S), and (c) thermal conductivity (κ) for Bi$_{1.7}$Ba$_2$(Co$_{1-z}$Rh$_z$)O$_y$ of varying rhodium concentration (z) (Reproduced with permission from [287].)

Fig. 13. (a) Temperature dependence of TPF of RMo$_{8}$O$_{14}$ (R:La, Ce, Nd, Sm) pellets, and (b) electrical conductivity vs TPF of PANI/MoO$_3$ composites vs MoO$_3$ concentration in the composite. (Reproduced with permission from (a) [309] and (b) [310].)

Fig. 14. Pictorial representation of a TE cooling device. (Reproduced with permission from [261].)

Fig. 15. Schematic of a solar thermoelectric generator (STEG), comprising of a solar concentrator and both p and n type TE elements. (Reproduced with permission from[371].)

Fig. 16. (a) Schematic of thin film thermopower wave system and output voltage profiles for (b) ZnO and (c) MnO$_2$ based thermopower wave sources. (Reproduced with permission from (b) [5] and (c) [9].)