A library of AuNPs modified by RAFT polymers of different charge and chain length: High throughput synthesis and synchrotron XFM imaging using a zebrafish larvae model

Luan, B, Friedrich, T, Zhai, J, Streltsov, V, Lindsey, B, Kaslin, J, de Jonge, M, Zhu, J, Hughes, T and Hao, X 2016, 'A library of AuNPs modified by RAFT polymers of different charge and chain length: High throughput synthesis and synchrotron XFM imaging using a zebrafish larvae model', RSC Advances, vol. 6, no. 28, pp. 23550-23563.


Document type: Journal Article
Collection: Journal Articles

Title A library of AuNPs modified by RAFT polymers of different charge and chain length: High throughput synthesis and synchrotron XFM imaging using a zebrafish larvae model
Author(s) Luan, B
Friedrich, T
Zhai, J
Streltsov, V
Lindsey, B
Kaslin, J
de Jonge, M
Zhu, J
Hughes, T
Hao, X
Year 2016
Journal name RSC Advances
Volume number 6
Issue number 28
Start page 23550
End page 23563
Total pages 14
Publisher Royal Society of Chemistry
Abstract Gold nanoparticles (AuNPs) have been widely investigated in drug delivery and imaging. However, for such biomedical applications, the modification of AuNPs is necessary to improve their aqueous dispersion sta bility and biocompatibility, especially in a salt environment. Here, we report a simple and highly efficient method to create a library of polymer-modified gold nanoparticles (PAuNPs) and screen their dispersion stability utilizing high-throughput facilities (in total 1000 experiments). Three types of water soluble polymers with different charge and chain length were prepared using Reversible Addition-Fragmentation chain Transfer (RAFT) polymerization technology. The polymers were then converted into thiol-capped polymers by aminolysis and coated on AuNPs via thiol-gold binding to improve aqueous dispersion stability as well as the biocompatibility of AuNPs. Remarkably, we present the first report of imaging zebrafish embryos injected with a PAuNPs sample (selected from our PAuNPs library) using synchrotron X-ray fluorescence microscopy (XFM) beamline. The selected PAuNPs sample, which has been evaluated to be non-cytotoxic to L929 cells and biocompatible to zebrafish larvae in a wide range of concentrations, was injected into zebrafish larvae via the cardinal vein and could be clearly visualized in the whole circulatory system including both peripheral blood vessels and the head region by XFM. The result indicates that zebrafish larvae could be a potential animal model for probing the ability of AuNPs to cross the blood-brain barrier (BBB) and therefore hold promise for investigating AuNPs in biomedical applications such as detecting cancer and Alzheimer's disease (AD).
Subject Nanochemistry and Supramolecular Chemistry
DOI - identifier 10.1039/c6ra02801b
Copyright notice © The Royal Society of Chemistry 2016
ISSN 2046-2069
Versions
Version Filter Type
Citation counts: TR Web of Science Citation Count  Cited 4 times in Thomson Reuters Web of Science Article | Citations
Scopus Citation Count Cited 0 times in Scopus Article
Altmetric details:
Access Statistics: 10 Abstract Views  -  Detailed Statistics
Created: Wed, 19 Sep 2018, 13:27:00 EST by Catalyst Administrator
© 2014 RMIT Research Repository • Powered by Fez SoftwareContact us