Gene expression profiling of chickpea responses to drought, cold and high-salinity using cDNA microarray

Mantri, N 2007, Gene expression profiling of chickpea responses to drought, cold and high-salinity using cDNA microarray, Doctor of Philosophy (PhD), Applied Sciences, RMIT University.


Document type: Thesis
Collection: Theses

Attached Files
Name Description MIMEType Size
Mantri.pdf Mantri.pdf application/pdf 4.26MB
Title Gene expression profiling of chickpea responses to drought, cold and high-salinity using cDNA microarray
Author(s) Mantri, N
Year 2007
Abstract Cultivated chickpea (Cicer arietinum) has a narrow genetic base making it difficult for breeders to produce new elite cultivars with durable resistance to major biotic and abiotic stresses. As an alternative to genome mapping, microarrays have recently been applied in crop species to identify and assess the function of putative genes thought to be involved in plant abiotic stress and defence responses. In the present study, a cDNA microarray approach was taken in order to determine if the transcription of genes, from a set of previously identified putative stress-responsive genes from chickpea and its close relative Lathyrus sativus, were altered in chickpea by the three abiotic stresses; drought, cold and high-salinity. For this, chickpea genotypes known to be tolerant and susceptible to each abiotic stress were challenged and gene expression in the leaf, root and/or flower tis sues was studied. The transcripts that were differentially expressed among stressed and unstressed plants in response to the particular stress were analysed in the context of tolerant/susceptible genotypes. The transcriptional change of more than two fold was observed for 109, 210 and 386 genes after drought, cold and high-salinity treatments, respectively. Among these, two, 15 and 30 genes were consensually differentially expressed (DE) between tolerant and susceptible genotypes studied for drought, cold and high-salinity, respectively. The genes that were DE in tolerant and susceptible genotypes under abiotic stresses code for various functional and regulatory proteins. Significant differences in stress responses were observed within and between tolerant and susceptible genotypes highlighting the multiple gene control and complexity of abiotic stress response mechanism in chickpea. The annotation of these genes suggests that they may have a role in abiotic stress response and are potential candidates for t olerance/susceptibility.
Degree Doctor of Philosophy (PhD)
Institution RMIT University
School, Department or Centre Applied Sciences
Keyword(s) Chickpea
Gene expression
Versions
Version Filter Type
Access Statistics: 569 Abstract Views, 3045 File Downloads  -  Detailed Statistics
Created: Mon, 21 Feb 2011, 12:06:18 EST by Sue Fraumano
© 2014 RMIT Research Repository • Powered by Fez SoftwareContact us